Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

Duration reproduction data under varying volatility for individuals with ASD and TD

strongway 3e1ed8d652 update readme, and add vector figures (pdfs) 10 months ago
data e1b29d7735 add two-state model 10 months ago
experiments fe7611c3a6 gin commit from MBP-S.local 2 years ago
figures 3e1ed8d652 update readme, and add vector figures (pdfs) 10 months ago
LICENSE 3b9d80356b Initial commit 2 years ago
README.md 3e1ed8d652 update readme, and add vector figures (pdfs) 10 months ago
analysis-notebook.ipynb 3e1ed8d652 update readme, and add vector figures (pdfs) 10 months ago
datacite.yml 3e1ed8d652 update readme, and add vector figures (pdfs) 10 months ago
kmodelY.py e1b29d7735 add two-state model 10 months ago
volatility-reproduction.Rproj fe7611c3a6 gin commit from MBP-S.local 2 years ago

README.md

Duration reproduction data under varying volatility for individuals with ASD and TD

authors: Z. Shi, F. Allenmark, L. Theisinger, R. Pistorius, S. Glasauer, H. Müller, C. Falter-Wagner

Folder Structure

  1. /experiments: Experimental codes and instructions This sub-folder contains Matlab codes and instructions for the duration reproduction task. The sequences of the duration reproductions are stored in the sub-folder /experiments/seqs. Those sequences were used for matched participants.
  2. /data: raw data files
    • rawdata.csv: Raw reproduction trials
    • parinfo.csv: Participant information, including AQ, EQ, SQ, IQ etc.
  3. /figures: figures generated by theh code.
  4. analysis-notebook.ipynb: the main analysis code and report
  5. kmodelY.py: the two-state iterative model used in the analysis
datacite.yml
Title Duration Reproduction Dataset under varying volatility for individuals with ASD and TD
Authors Shi,Zhuanghua;Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany;ORCID:0000-0003-2388-6695
Allenmark,Fredrik;Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany;ORCID:0000-0002-3127-4851
Theisinger,Laura A.;Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
Pistorius,Rasmus L.;Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
Glasauer,Stefan;Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Müller,Hermann J.;Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
Falter-Wagner,Christine M.;Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
Description Data and codes for the study: Beyond Prior Belief and Volatility - The Distinct Iterative Prior Updating Process in ASD.
License Creative Commons CC0 1.0 Public Domain Dedication (https://creativecommons.org/publicdomain/zero/1.0/)
References Shi, Z., Theisinger, L. A., Allenmark, F., Pistorius, R. L., Müller, H. J., & Falter-Wagner, C. M. (2022). Predictive coding in ASD: inflexible weighting of prediction errors when switching from stable to volatile environments. In bioRxiv (p. 2022.01.21.477218). https://doi.org/10.1101/2022.01.21.477218 [doi:10.1101/2022.01.21.477218] (IsSupplementTo)
Funding DFG, SH166/3-2
BGF, DFG, FA876/3-1, FA876/5-1
Keywords autism
predictive processing
prior belief
volatility
duration reproduction
iterative updating
Resource Type Dataset