DataLad dataset containing BIDS-converted MRI data used in Wittkuhn & Schuck, 2020, Nature Communications. For details, see: https://wittkuhn.mpib.berlin/highspeed/

Lennart Wittkuhn 36bb8a3e68 update documentation 1 month ago
.datalad a4652dfd2b Configure metadata type(s) 4 months ago
.heudiconv a2b905b439 add defaced BIDS-converted MRI data after running heudiconv and defacing 4 months ago
code 36bb8a3e68 update documentation 1 month ago
input f4b832b93c [DATALAD] Recorded changes 4 months ago
logs 4223e4692d add empty logs directory 4 months ago
sub-01 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-02 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-03 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-04 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-05 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-06 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-07 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-08 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-09 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-10 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-11 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-12 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-13 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-14 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-15 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-16 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-17 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-18 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-19 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-20 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-21 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-22 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-23 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-24 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-25 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-26 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-27 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-28 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-29 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-30 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-31 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-32 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-33 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-34 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-35 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-36 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-37 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-38 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-39 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
sub-40 5dd8eb86d8 [DATALAD RUNCMD] create IntendedFor fields in fieldmap .json files 3 months ago
tools @ f80da48176 7bccc01163 update tools 3 months ago
.bidsignore 8390ebe8cd add bisignore file and add .md extension to README 4 months ago
.gitattributes 8390ebe8cd add bisignore file and add .md extension to README 4 months ago
.gitignore 33c76ade2a change gitignore to include behavioral data subset 4 months ago
.gitmodules f4b832b93c [DATALAD] Recorded changes 4 months ago
CHANGES a2b905b439 add defaced BIDS-converted MRI data after running heudiconv and defacing 4 months ago
LICENSE f72c1f7c19 update LICENSE to CC BY-SA 4.0 1 month ago
README.md f72c1f7c19 update LICENSE to CC BY-SA 4.0 1 month ago
datacite.yml f72c1f7c19 update LICENSE to CC BY-SA 4.0 1 month ago
dataset_description.json 5aed1a4dc8 [DATALAD RUNCMD] create dataset_description.json 4 months ago
highspeed-bids.Rproj ea54b9049a add R project to git 4 months ago
highspeed-sequence-parameters.pdf 65df45ba14 add pdf print-out with the actual scanning parameters 4 months ago
participants.json 75f9f5f29e [DATALAD RUNCMD] create participants.json 4 months ago
participants.tsv 824a6e3f68 update participants.tsv after running highspeed-bids-participants.m 4 months ago
requirements.txt dcfa5af897 update requirements and /tools 4 months ago
task-highspeed_bold.json 15ae76469a rerun heudiconv conversion after fixing issue with singularity --contain 4 months ago
task-rest_bold.json 15ae76469a rerun heudiconv conversion after fixing issue with singularity --contain 4 months ago

README.md

Highspeed BIDS

Overview

This repository contains meta data of the DataLad dataset of the BIDS-converted MRI data used in Wittkuhn & Schuck, 2020, Nature Communications.

Please visit https://wittkuhn.mpib.berlin/highspeed/ for the project website and https://gin.g-node.org/lnnrtwttkhn/highspeed-bids to get the actual data.

Usage

Get data

$ datalad clone https://gin.g-node.org/lnnrtwttkhn/highspeed-bids
[INFO   ] Scanning for unlocked files (this may take some time) [INFO   ]
install(ok): highspeed-bids (dataset)
$ cd highspeed-bids
$ datalad get participants.tsv
get(ok): participants.tsv (file) [from origin...]

Run code

Please install the required packages listed in requirements.txt:

pip install -r requirements.txt

Contact

License

Please see the LICENSE file for details.

datacite.yml
Title Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex - MRI data according to the Brain Imaging Data Structure (BIDS)
Authors Wittkuhn,Lennart;Max Planck Institute for Human Development, Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany;ORCID:0000-0001-2345-6789
Schuck,Nicolas W.;Max Planck Institute for Human Development, Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany;ORCID:0000-0002-0150-8776
Description Neural computations are often fast and anatomically localized. Yet, investigating such computations in humans is challenging because non-invasive methods have either high temporal or spatial resolution, but not both. Of particular relevance, fast neural replay is known to occur throughout the brain in a coordinated fashion about which little is known. We develop a multivariate analysis method for functional magnetic resonance imaging that makes it possible to study sequentially activated neural patterns separated by less than 100 ms with precise spatial resolution. Human participants viewed images individually and sequentially with speeds up to 32 ms between items. Probabilistic pattern classifiers were trained on activation patterns in visual and ventrotemporal cortex during individual image trials. Applied to sequence trials, probabilistic classifier time courses allow the detection of neural representations and their order. Order detection remains possible at speeds up to 32 ms between items. The frequency spectrum of the sequentiality metric distinguishes between sub- versus supra-second sequences. Importantly, applied to resting-state data our method reveals fast replay of task-related stimuli in visual cortex. This indicates that non-hippocampal replay occurs even after tasks without memory requirements and shows that our method can be used to detect such spontaneously occurring replay.
License Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)
References Wittkuhn, L. and Schuck, N. W. (2020). Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex. Nature Communications [] (IsSupplementTo)
Wittkuhn, L. and Schuck, N. W. (2020). Faster than thought: Detecting sub-second activation sequences with sequential fMRI pattern analysis. bioRxiv. doi:10.1101/2020.02.15.950667 [doi:10.1101/2020.02.15.950667] (IsSupplementTo)
Funding Max Planck Society, Independent Max Planck Research Group grant
European Union, ERC Starting Grant ERC-2019-StG REPLAY-852669
Max Planck Institute for Human Development
Keywords cognitive neuroscience
functional magnetic resonance imaging
hippocampal replay
Resource Type Dataset