brainage
get_brainage.sh
This script is used for brain age prediction. Below is a description of each input arguments:
Usage
./get_brainage.sh -input <input_directory> \
-output <output_directory> \
-BIDS <yes/no> \
-CONDOR <yes/no> \
-RAW <yes/no> \
-RUN_FILE <bash_file_path> \
-SAVE_ALL <yes/no> \
-CONTAINER_PATH <path/to/containers> \
- input: input directory (can be a folder containing raw or preprocessed T1 MR Image which can be .nii, .nii.gz or .mgz)
- output: output directory where the results will be stored in
<subject_name>_<model>.csv
- BIDS: are the input files stored in BIDS format ?
- CONDOR: provides a
condor.submit
file
- RAW: are the input files raw ?
- RUN_FILE: path to the
run_<model>.sh
file
- SAVE_ALL: Do you want to save the intermidiate files (for ex:
subject_features
), if yes then the files will be stored in the folder <subject_name>_<model>
- CONTAINER_PATH: path to the directory containing the container images
'brainageR' folder:
1) Building the container
singularity build brainageR.sif brainageR.def
(not working at the moment)
2) Run the get_brainage.sh
with the proper files and paths
Example:
./get_brainage.sh -input <input_directory> \
-output <output_directory> \
-BIDS <yes/no> \
-CONDOR <yes/no> \
-RAW <yes/no> \
-RUN_FILE run_brainageR.sh \
-SAVE_ALL <yes/no> \
-CONTAINER_PATH <path/to/containers> \
'Enigma' folder:
1) Building the containers
Preprocessing: singularity build --fakeroot cat_preprocessing.simg Singularity_r2042
Prediction: singularity build --fakeroot enigma_stacking_agepred.simg enigma_stacking_pred.def
/!\ It is important to not change the name of the containers
2) Run the get_brainage.sh
with the proper files and paths
Example:
./get_brainage.sh -input <input_directory> \
-output <output_directory> \
-BIDS <yes/no> \
-CONDOR <yes/no> \
-RAW <yes/no> \
-RUN_FILE run_enigma.sh \
-SAVE_ALL <yes/no> \
-CONTAINER_PATH <path/to/containers> \
'More' folder:
1) Downloading the files
You should first download the following files: Singularity_r2042
, BA_predict.recipe
and run_more.sh
2) Building the containers
Preprocessing: singularity build --fakeroot cat_preprocessing.simg Singularity_r2042
Prediction: singularity build --fakeroot BA_predict.sif BA_predict.recipe
/!\ It is important to not change the name of the containers
3) Run the appropriate bash script for one subject or several
Examples:
For one subject:
./run_more.sh -input <path/to/input_file> \
-output <path/to/output_dir> \
-RAW <yes/no> \
-SAVE_FILE <yes/no> \
-CONTAINER_PATH <path/to/container_dir> \
-MODEL_NAME <model_name>
- input: path to a single T1 weighted MRI file (nii, nii.gz or mgz)
- output: path to the output directory
- raw: is the input file raw or preprocessed ? (default: yes)
- save_file: Do you want to save intermidiate files ? (default: no)
- container_path: path where the container(s) should be stored
- Model_name: name of the trained model that you want to use (default: 4sites.S4_R4_pca.gauss.models)
For several subjects:
./get_brainage.sh -input <input_directory> \
-output <output_directory> \
-BIDS <yes/no> \
-CONDOR <yes/no> \
-RAW <yes/no> \
-RUN_FILE run_more.sh \
-SAVE_ALL <yes/no> \
-CONTAINER_PATH <path/to/containers> \
-MODEL_NAME <model_name>