Tom Dupré la Tour 2 anni fa
parent
commit
b85d74360f
3 ha cambiato i file con 1944 aggiunte e 0 eliminazioni
  1. 238 0
      utils/example.py
  2. 1705 0
      utils/wordnet_categories.txt
  3. 1 0
      utils/wordnet_graph.dot

+ 238 - 0
utils/example.py

@@ -0,0 +1,238 @@
+import h5py
+import scipy.sparse
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def load_hdf5_array(file_name, key=None, slice=slice(0, None)):
+    """Function to load data from an hdf file.
+
+    Parameters
+    ----------
+    file_name: string
+        hdf5 file name.
+    key: string
+        Key name to load. If not provided, all keys will be loaded.
+    slice: slice, or tuple of slices
+        Load only a slice of the hdf5 array. It will load `array[slice]`.
+        Use a tuple of slices to get a slice in multiple dimensions.
+
+    Returns
+    -------
+    result : array or dictionary
+        Array, or dictionary of arrays (if `key` is None).
+    """
+    with h5py.File(file_name, mode='r') as hf:
+        if key is None:
+            data = dict()
+            for k in hf.keys():
+                data[k] = hf[k][slice]
+            return data
+        else:
+            return hf[key][slice]
+
+
+def load_hdf5_sparse_array(file_name, key):
+    """Load a scipy sparse array from an hdf file
+
+    Parameters
+    ----------
+    file_name : string
+        File name containing array to be loaded.
+    key : string
+        Name of variable to be loaded.
+
+    Notes
+    -----
+    This function relies on variables being stored with specific naming
+    conventions, so cannot be used to load arbitrary sparse arrays.
+    """
+    with h5py.File(file_name, mode='r') as hf:
+        data = (hf['%s_data' % key], hf['%s_indices' % key],
+                hf['%s_indptr' % key])
+        sparsemat = scipy.sparse.csr_matrix(data, shape=hf['%s_shape' % key])
+    return sparsemat
+
+
+def save_hdf5_dataset(file_name, dataset, mode='w'):
+    """Save a dataset of arrays and sparse arrays.
+
+    Parameters
+    ----------
+    file_name : str
+        Full name of the file.
+    dataset : dict of arrays
+        Mappers to save.
+    mode : str
+        File opening model.
+        Use 'w' to write from scratch, 'a' to add to existing file.
+    """
+    print("Saving... ", end="", flush=True)
+
+    with h5py.File(file_name, mode=mode) as hf:
+        for name, array in dataset.items():
+
+            if scipy.sparse.issparse(array):  # sparse array
+                array = array.tocsr()
+                hf.create_dataset(name + '_indices', data=array.indices,
+                                  compression='gzip')
+                hf.create_dataset(name + '_data', data=array.data,
+                                  compression='gzip')
+                hf.create_dataset(name + '_indptr', data=array.indptr,
+                                  compression='gzip')
+                hf.create_dataset(name + '_shape', data=array.shape,
+                                  compression='gzip')
+            else:  # dense array
+                hf.create_dataset(name, data=array, compression='gzip')
+
+    print("Saved %s" % file_name)
+
+
+def map_voxels_to_flatmap(voxels, mapper_file):
+    """Generate flatmap image from voxel array using a mapper.
+
+    This function maps an array of voxels into a flattened representation
+    of an individual subject's brain.
+
+    Parameters
+    ----------
+    voxels: array of shape (n_voxels, )
+        Voxel values to be mapped.
+    mapper_file: string
+        File containing mapping arrays for a particular subject.
+
+    Returns
+    -------
+    image : array of shape (width, height)
+        Flatmap image.
+    """
+    voxel_to_flatmap = load_hdf5_sparse_array(mapper_file, 'voxel_to_flatmap')
+    flatmap_mask = load_hdf5_array(mapper_file, 'flatmap_mask')
+
+    badmask = np.array(voxel_to_flatmap.sum(1) > 0).ravel()
+    img = (np.nan * np.ones(flatmap_mask.shape)).astype(voxels.dtype)
+    mimg = (np.nan * np.ones(badmask.shape)).astype(voxels.dtype)
+    mimg[badmask] = (voxel_to_flatmap * voxels.ravel())[badmask].astype(
+        mimg.dtype)
+    img[flatmap_mask] = mimg
+    return img.T[::-1]
+
+
+def plot_flatmap_from_mapper(voxels, mapper_file, ax=None, alpha=0.7,
+                             cmap='inferno', vmin=None, vmax=None,
+                             with_curvature=True, with_rois=True,
+                             with_colorbar=True,
+                             colorbar_location=(.4, .9, .2, .05)):
+    """Plot a flatmap from a mapper file.
+
+    Note that this function does not have the full capability of pycortex,
+    (like cortex.quickshow) since it is based on flatmap mappers and not on the
+    original brain surface of the subject.
+
+    Parameters
+    ----------
+    voxels : array of shape (n_voxels, )
+        Data to be plotted.
+    mapper_file : str
+        File name of the mapper.
+    ax : matplotlib Axes or None.
+        Axes where the figure will be plotted.
+        If None, a new figure is created.
+    alpha : float in [0, 1], or array of shape (n_voxels, )
+        Transparency of the flatmap.
+    cmap : str
+        Name of the matplotlib colormap.
+    vmin : float or None
+        Minimum value of the colormap. If None, use the 1st percentile of the
+        `voxels` array.
+    vmax : float or None
+        Minimum value of the colormap. If None, use the 99th percentile of the
+        `voxels` array.
+    with_curvature : bool
+        If True, show the curvature below the data layer.
+    with_rois : bool
+        If True, show the ROIs labels above the data layer.
+    colorbar_location : [left, bottom, width, height]
+        Location of the colorbar. All quantities are in fractions of figure
+        width and height.
+
+    Returns
+    -------
+    ax : matplotlib Axes
+        Axes where the figure has been plotted.
+    """
+    # create a figure
+    if ax is None:
+        flatmap_mask = load_hdf5_array(mapper_file, key='flatmap_mask')
+        figsize = np.array(flatmap_mask.shape) / 100.
+        fig = plt.figure(figsize=figsize)
+        ax = fig.add_axes((0, 0, 1, 1))
+        ax.axis('off')
+
+    # process plotting parameters
+    if vmin is None:
+        vmin = np.percentile(voxels, 1)
+    if vmax is None:
+        vmax = np.percentile(voxels, 99)
+    if isinstance(alpha, np.ndarray):
+        alpha = map_voxels_to_flatmap(alpha, mapper_file)
+
+    # plot the data
+    image = map_voxels_to_flatmap(voxels, mapper_file)
+    cimg = ax.imshow(image, aspect='equal', zorder=1, alpha=alpha, cmap=cmap,
+                     vmin=vmin, vmax=vmax)
+
+    if with_colorbar:
+        try:
+            cbar = ax.inset_axes(colorbar_location)
+        except AttributeError:  # for matplotlib < 3.0
+            cbar = ax.figure.add_axes(colorbar_location)
+        ax.figure.colorbar(cimg, cax=cbar, orientation='horizontal')
+
+    # plot additional layers if present
+    with h5py.File(mapper_file, mode='r') as hf:
+        if with_curvature and "flatmap_curvature" in hf.keys():
+            curvature = load_hdf5_array(mapper_file, key='flatmap_curvature')
+            background = np.swapaxes(curvature, 0, 1)[::-1]
+        else:
+            background = map_voxels_to_flatmap(np.ones_like(voxels),
+                                               mapper_file)
+        ax.imshow(background, aspect='equal', cmap='gray', vmin=0, vmax=1,
+                  zorder=0)
+
+        if with_rois and "flatmap_rois" in hf.keys():
+            rois = load_hdf5_array(mapper_file, key='flatmap_rois')
+            ax.imshow(
+                np.swapaxes(rois, 0, 1)[::-1], aspect='equal',
+                interpolation='bicubic', zorder=2)
+
+    return ax
+
+
+if __name__ == "__main__":
+    """
+    Example for how to load the fMRI test data,
+    and display the explainable variance on one subject's cortical surface.
+
+    More examples at https://github.com/gallantlab/voxelwise_tutorials
+    """
+    import os
+
+    directory = os.path.abspath('.')
+    subject = "S01"
+
+    # Load fMRI responses on the test set
+    file_name = os.path.join(directory, 'responses',
+                             f'{subject}_responses.hdf')
+    Y_test = load_hdf5_array(file_name, "Y_test")
+
+    # compute the explainable variance per voxel, based on the test set repeats
+    mean_var = np.mean(np.var(Y_test, axis=1), axis=0)
+    var_mean = np.var(np.mean(Y_test, axis=0), axis=0)
+    explainable_variance = var_mean / mean_var
+
+    # Map to subject flatmap
+    mapper_file = os.path.join(directory, 'mappers', f'{subject}_mappers.hdf')
+    plot_flatmap_from_mapper(explainable_variance, mapper_file, vmin=0,
+                             vmax=0.7)
+    plt.show()

File diff suppressed because it is too large
+ 1705 - 0
utils/wordnet_categories.txt


File diff suppressed because it is too large
+ 1 - 0
utils/wordnet_graph.dot