Нема описа

Galia Valentinova Anguelova 338e57c01d Bestanden uploaden naar '' пре 4 месеци
Figures e6e4bad23f Bestanden uploaden naar 'Figures' пре 4 месеци
App_2023_09_15.mlapp 14088085ed Bestanden uploaden naar '' пре 4 месеци
LICENSE b07dad4ccd Initial commit пре 4 месеци
README.md c4c9026ffe 'README.md' updaten пре 4 месеци
ROC_curve_2023_09_18.m 14088085ed Bestanden uploaden naar '' пре 4 месеци
create_dummy_var_2024_02_14.txt 14088085ed Bestanden uploaden naar '' пре 4 месеци
datacite_2.yml 34a8a85156 'datacite_2.yml' updaten пре 4 месеци
dataset_dummy_and_EEG_epochs.mat 338e57c01d Bestanden uploaden naar '' пре 4 месеци
modelAn_EEG_2024_02_14.py 14088085ed Bestanden uploaden naar '' пре 4 месеци
plot_EEGepoch_2024_02_18.m 14088085ed Bestanden uploaden naar '' пре 4 месеци
plot_EEGepoch_dummy_var_2024_02_18.m 14088085ed Bestanden uploaden naar '' пре 4 месеци
selection_EEGepochs_2024_02_14.txt 14088085ed Bestanden uploaden naar '' пре 4 месеци

README.md

Public_repository_Anguelova_2024_PLOSOne

Title: Post-processing deep neural network for performance improvement of interictal epileptiform discharges detection

Summary: In this study we aimed to further improve interictal epileptiform discharges (IED) detection performance of a deep neural network based algorithm with a second-level post-processing deep learning network, a method not previously applied in this field. Seventeen interictal ambulatory EEGs were used, 15 with focal and 2 with generalized epilepsy in patients of age range 4-80 years (median 19y, 25th-75th percentile 14-32y). The EEG data was split into 2s non-overlapping epochs. Epochs with an IED probability of at least 0.99, according to a previously developed VGG-C based convolutional neural network, were preselected for the second-level 2D convolutional neural network (CNN). The selected epochs were used as input for the second-level post-processing CNN in Python comprising of the following layers: visible, convolutional, max pooling, dropout, hidden dense (100 neurons) and output. Data was divided into an 80/20 training/validation, resulting in 3049 epochs for training/validation and 580 epochs for testing

Software: Matlab R2021a (The MathWorks, Inc., Natick, MA) Python 3.10 using Keras 2.6.0, Tensorflow 2.8.0 and scikit-learn 1.0.2

Content:

Code:

  • create_dummy_var_2024_02_14.m Create the dummy EEG variable to test the second-level network.
  • plot_EEGepoch_dummy_var_2024_02_18.m Plot the dummy EEG variable epochs.
  • selection_EEGepochs_2024_02_14.m Selection of the EEG epochs by the first-level network with a specific probability of being an IED. The first-level network is published elsewhere by da Silva et al., 2021.
  • plot_EEGepoch_2024_02_18.m Plot the EEG epochs, for scoring.
  • App_2023_09_15.mlapp MATLAB App used for scoring the EEG epochs.
  • modelAn_EEG_2024_02_14.py Deep leraning model of the second-level network. The first-level network is published elsewhere by da Silva et al., 2021.
  • ROC_curve_2023_09_18.m Plotting the ROC curve for dummy EEG variable and the true EEG epochs.

Data:

We are not allowed to share the patients’ EEG data. However, the figures of the anonymous EEG epochs that were scored with MATLAB App are provided

  • Figures -- Figuren_seizureLocation_selectie_deel1_nolegend -- Figuren_seizureLocation_selectie_deel2_nolegend

Authors: Galia Valentinova Anguelova MD MSc PhD and Patricia Margaret Baines MSc

Contact information: ganguelova@sein.nl

References

  1. Pillai J, Sperling MR. Interictal EEG and the Diagnosis of Epilepsy. Epilepsia. 2006;47(SUPPL. 1):14–22.
  2. Smith SJM, Smith S. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry [Internet]. 2005;76:2–7.
  3. Lodder SS, Askamp J, van Putten MJAM. Computer-Assisted Interpretation of the EEG Background Pattern: A Clinical Evaluation. PLoS One. 2014;9(1):85966.
  4. Lodder SS, van Putten MJAM. A Self-Adapting System for the Automated Detection of Inter-Ictal Epileptiform Discharges. PLoS One. 2014;9(1):85180.
  5. da Silva Lourenço C, Tjepkema-Cloostermans MC, van Putten MJAM. Machine learning for detection of interictal epileptiform discharges. Vol. 132, Clinical Neurophysiology; 2021. p. 1433–43.
  6. Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clinical Neurophysiology; 2002 Dec;113(12):1873-81.
  7. Tjepkema-Cloostermans MC, de Carvalho RC v, van Putten MJAM. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clinical Neurophysiology; 2018;129(10):2191-2196.
  8. da Silva Lourenço C, Tjepkema-Cloostermans MC, van Putten MJAM. Efficient use of clinical EEG data for deep learning in epilepsy. Clinical Neurophysiology. 2021 Jun 1;132(6):1234–40.
  9. Rosenberg Johansen A, Jin J, Maszczyk T, Dauwels J, Cash SS, Brandon Westover M. Epileptiform spike detection via convolutional neural networks. Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar:2016:754-758.
  10. Jing J, Sun H, Kim JA, Herlopian A, Karakis I, Ng M, et al. Development of Expert-Level Automated Detection of Epileptiform Discharges during Electroencephalogram Interpretation. JAMA Neurol. 2020 Jan 1;77(1):103–8.
  11. Haider A, Wei Y, Liu S, Hwang SH. Pre- and post-processing algorithms with deep learning classifier for Wi-Fi fingerprint-based indoor positioning. Electronics. 2019 Feb 1;8(2).
  12. Marechal E, Jaugey A, Tarris G, Paindavoine M, Seibel J, Martin L, et al. Automatic Evaluation of Histological Prognostic Factors Using Two Consecutive Convolutional Neural Networks on Kidney Samples. Clinical Journal of the American Society of Nephrology. 2022 Feb 1;17(2):260–70.
  13. Cho J, Lee K, Shin E, Choy G, Do S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? 2015 Nov 19; Available from: http://arxiv.org/abs/1511.06348
  14. Aggarwal CC. Neural Networks and Deep Learning: A Textbook. Neural Networks and Deep Learning: A Textbook. 2023 Jan 1;1–529.