Repo to store all downstream data for PEDLR.

Christoph Koch 4413be5e6c Update 'README.md' 1 year ago
.datalad a3c52f4328 [DATALAD] new dataset 1 year ago
analysis 0097030f16 Pre-release derivatives 1 year ago
figures 1af2e7e440 Overhaul pcrt sig annotations 1 year ago
model_fitting acfdd24fce Modelling results and analysis/results_02 for new bandit init (first three updates kicked out of LL calculation) 1 year ago
parameter_recovery 0097030f16 Pre-release derivatives 1 year ago
posterior_pred_checks 0097030f16 Pre-release derivatives 1 year ago
simulation 2260c8e8f0 Remove deprecated files 1 year ago
.gitattributes ce0657b272 Make sure README.md and LICENSE are not annexed 1 year ago
.gitignore 68a51730cc Add figure pdfs and rename seplr to valence in figs 1 year ago
LICENSE 0f9bfa5964 Add license and readme 1 year ago
README.md 4413be5e6c Update 'README.md' 1 year ago
datacite.yml fd06148742 Update 'datacite.yml' 1 year ago

README.md

pedlr-derivatives

Derivative data for the pedlr project by Christoph Koch, Ondrej Zika, Rasmus Bruckner, and Nicolas W. Schuck. This data set contains all downstream data files that originated from the analysis of the pedlr source dataset (https://doi.org/10.12751/g-node.9gm3lt) using the referenced analysis repository (https://doi.org/10.5281/zenodo.10211239) and described in Koch, C., Zika, O., Bruckner, R., & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. (https://doi.org/10.31234/osf.io/unx5y). The derivatives include all results that were reported in the cited pre-print.

For a description of the repositories structure see a commented folder structure below.

Datalad

This is a datalad repository. For more information on how to use and set up datalad on your machine please see https://www.datalad.org/.

A thorough walkthrough on how to use datalad is given by the datalad handbook. See the installation page in the datalad handbook for more information about setup and configuration of datalad.

Usage

Once you have datalad installed on your machine you can clone the dataset (e.g. via https) using

datalad clone https://gin.g-node.org/koch_means_cook/pedlr-derivatives.git

For in integrated usage with the analysis described in the referenced preprint (Koch, C., Zika, O., Bruckner, R., & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. https://doi.org/10.31234/osf.io/unx5y) clone the Github code repository (doi:10.5281/zenodo.10211239), then clone this datalad repository into the code repository and rename the datalad repository folder to derivatives. This will allow the analysis scripts to directly use this dataset.

Large files will not be downloaded automatically. To get them, you can use

datalad get <filename>

Large files that have been downloaded will be 'locked' and therefore read-only. If you wish to write you will need to unlock them using

datalad unlock <filename>

For more information on locked/unlocked files see here.

Data set structure

├── LICENSE   # License file (CC BY-SA 4.0)
├── README.md # This file
├── analysis  # Dir containing .html files of analysis notebooks
│   ├── data_quality.html   # Data quality assessment
│   ├── demographic.html    # Demographics summary
│   ├── results_01.html     # Main results (behavior)
│   ├── results_02.html     # Main results (modeling)
│   └── (...)
├── figures                 # Dir holding figures .pdf and data
│   └── (...)
├── model_fitting           # Dir holding data for model fitting
│   ├── fit-09RI1ZH_sv-random.tsv   # Example file: fit of all models to choice data (random starting-values)
│   ├── (...)
│   ├── modeldata-09RI1ZH_sv-random.tsv   # Example file: Model choice proabability for each trial (random starting-values)
│   └── (...)
├── parameter_recovery      # Dir holding analysis and data of model and parameter recovery
│   ├── analysis_model_recov.html  # Results model recovery
│   ├── analysis_param_recov.html  # Results parameter recovery
│   ├── modelrecov_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Fit of all models on data simulated by specified model (random parameters, fixed regression betas, random starting-values)
│   ├── (...)
│   ├── paramrecov_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Parameter recovery of all models on data simulated by specified model (random parameters, fixed regression betas, random starting-values)
│   ├── (...)
│   ├── recovdata_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Trialwise information on recovery (random parameters, fixed regression betas, random starting-values)
│   └── (...)
├── posterior_pred_checks             # Dir holding analysis and data of posterior predictive checks
│   ├── analysis_posterior_pred_checks.html    # Analysis notbook of post. pred. checks
│   ├── postpred-09RI1ZH_model-rw.tsv          # Data for post. pred. check for specified model
│   ├── (...)
│   ├── windowrizepred-09RI1ZH.tsv   # Data for post. pred. check (influence of surprise) for spec. model
│   └── (...)
└── simulation
    └── (...)

datacite.yml
Title Pedlr Derivatives
Authors Koch,Christoph;Universität Hamburg, Hamburg, Germany;ORCID:0000-0002-4620-9577
Zika,Ondrej;Max Plank Institute for Human Development, Berlin, Germany;ORCID:0000-0003-0483-4443
Bruckner,Rasmus;Freie Universität Berlin, Berlin, Germany;ORCID:0000-0002-3033-6299
Schuck,Nicolas W.;Universität Hamburg, Hamburg, Germany;ORCID:0000-0002-0150-8776
Description This is the derivatives data set of of the Pedlr project. This contains a datalad repository of all data downstream from the source data (source data available at DOI: 10.12751/g-node.9gm3lt). The code repository used to create all downstream data (from the source data) is available at DOI: 10.5281/zenodo.10211239
License Creative Commons Attribution-ShareAlike 4.0 International Public License (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
References Koch C, Zika O, Bruckner R, Schuck NW (2023) Influence of surprise on reinforcement learning in younger and older adults. https://doi.org/10.31234/osf.io/unx5y [doi:10.31234/osf.io/unx5y] (IsSupplementTo)
Koch C, Zika O, Bruckner R, Schuck NW (2023) Pedlr data. G-Node. https://doi.org/10.12751/g-node.9gm3lt [doi:10.12751/g-node.9gm3lt] (IsReferencedBy)
Koch C, Zika O, Bruckner R, Schuck NW (2023), Pedlr: Analysis of the dataset. Github. https://doi.org/10.5281/zenodo.10211239 [doi:10.5281/zenodo.10211239] (IsReferencedBy)
Funding MPG, M.TN.A.BILD0004
Keywords Reinforcement Learning
Computational Modeling
Aging
Surprise
Resource Type Dataset