123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- %% SCRIPT: CREATE EVENT.TSV FILES FROM THE BEHAVIORAL DATA FOR BIDS
- % =========================================================================
- % PROJECT: HIGHSPEED
- % WRITTEN BY LENNART WITTKUHN 2018 - 2020
- % CONTACT: WITTKUHN AT MPIB HYPHEN BERLIN DOT MPG DOT DE
- % MAX PLANCK RESEARCH GROUP NEUROCODE
- % MAX PLANCK INSTITUTE FOR HUMAN DEVELOPMENT
- % MAX PLANCK UCL CENTRE FOR COMPUTATIONAL PSYCHIATRY AND AGEING RESEARCH
- % LENTZEALLEE 94, 14195 BERLIN, GERMANY
- % =========================================================================
- %% DEFINE PATHS AND IMPORTANT VARIABLES:
- % clear the workspace and command window:
- clear variables; clc;
- % define the data root path
- path_root = fullfile('/Volumes','MPRG-Neurocode','Data','highspeed');
- % define the input path:
- path_input = fullfile(path_root,'main_mri','rawdata','behav_main');
- path_tardis = fullfile('/Users/wittkuhn/Volumes/tardis/highspeed');
- path_network = fullfile(path_root);
- % define the output path:
- % path_output = fullfile(path_root,'derivatives','events');
- path_output = fullfile(path_tardis, 'bids');
- %path_output = fullfile(path_network);
- % get the contents of the output directory:
- path_output_dir = dir(path_output);
- % check how many subjects are in the root directory:
- num_subs_found = sum(contains({path_output_dir.name},'sub'));
- % extended output path used to check for old files:
- path_old_files = fullfile(path_output,'*','*','func');
- % find all existing events.tsv files in the output directory:
- prev_files = dir(fullfile(path_old_files,'*events.tsv'));
- % delete all previous events files:
- for old_file = 1:length(prev_files)
- delete(fullfile(prev_files(old_file).folder,prev_files(old_file).name))
- end
- % define the script path:
- path_script = fullfile('~','highspeed','highspeed_analysis','code');
- % read the text file containing a list of subject ids:
- sub_list = dlmread(fullfile(path_script, 'parameters', 'highspeed_participant_list.txt'));
- % turn the array with ids into a strings in a cell array:
- sub_list = cellstr(num2str(sub_list));
- %check if the number of subjects in the list matches the target directory
- if numel(sub_list) ~= num_subs_found
- warning(['Number of subjects in the data dir does not match ' ...
- 'number of subjects in the subject text file!']);
- sub_alt_list = cellfun(@num2str,num2cell(1:length(sub_list)),'un',0);
- else
- sub_alt_list = sub_list;
- sub_alt_list = cellfun(@num2str,num2cell(1:num_subs_found),'un',0);
- end
- % determine the number of study sessions:
- num_ses = 2;
- % determine the number of task runs per study session:
- num_run = 4;
- % define a cell array containing the stimulus labels in german:
- key_set = {'Gesicht','Haus','Katze','Schuh','Stuhl'};
- % define a cell array containing the stimulus labels in english:
- value_set = {'Face','House','Cat','Shoe','Chair'};
- % create a dictionary that translates the stimulus labels:
- label_dict = containers.Map(key_set,value_set);
- % create a 2d-array of run indices ordered by run (row) and sessions (col):
- run_array = reshape(1:num_run * num_ses, num_run, num_ses);
- % define the names of the four different task conditions:
- task_names = {'oddball','sequence','repetition','repetition'};
- %%
- for sub = 1:length(sub_alt_list)
- %for sub = 1:1
- % initialize the maximum repetition trial index:
- max_rep = 0;
- % get the current subject id:
- sub_id = sub_list{sub};
- % print progress:
- fprintf('Running sub %d of %d\n', sub, length(sub_alt_list))
- % define a template string that takes subject, session and run id:
- template_string = '*sub_%s_session_%d*run_%d*';
- % put in the current subject, session and run id:
- file_string = sprintf(template_string,sub_id,num_ses,num_run);
- % read behavioral data files of all participants:
- path_file = dir(fullfile(path_input,file_string));
- % load the behavioral data into the workspace:
- load(fullfile(path_input,path_file.name));
- for session = 1:num_ses
- % create a subject identifier (in bids format):
- pad_sub = sprintf('sub-%02d',str2double(sub_alt_list{sub}));
- % create a session identififer (in bids format):
- pad_ses = ['ses-0', num2str(session)];
- % combine the two identifiers as the first part of file names:
- sub_file_name = strcat(pad_sub,'_',pad_ses);
- % create the subject output path:
- path_output_sub = (fullfile(path_output,pad_sub,pad_ses,'func'));
- % create the subject directory if it does not exist yet:
- if ~exist(path_output_sub,'dir')
- system(sprintf('mkdir -p %s',path_output_sub));
- end
- for run = 1:num_run
- events = table;
- for cond = 1:4
- event_all = extract_bids_events(Data, Basics, Sets, pad_sub, run, session, cond);
- events = [events;event_all];
-
- end
- % sort by event onset (i.e., in chronological order):
- events = sortrows(events,{'onset'});
- % make two copies of the repetition trials:
- rep_trials_old = events.trial(contains(events.condition, 'repetition'));
- rep_trials_new = rep_trials_old;
- % get the old trial indices while maintaining their order:
- trial_old = unique(rep_trials_old, 'stable');
- % get the number of repetition trials in the current run:
- n_rep_trials = length(trial_old);
- % create new trial indices depending on the running number of
- % repetition trials:
- trial_new = max_rep+1:max_rep+n_rep_trials;
- % change the old trial indices
- for i = 1:n_rep_trials
- rep_trials_new(rep_trials_old == trial_old(i)) = trial_new(i);
- end
- % update the repetition trials of the events files:
- events.trial(contains(events.condition, 'repetition')) = rep_trials_new;
- % update the counter of the maximum repetition trial index:
- max_rep = max(unique(events.trial(contains(events.condition, 'repetition'))));
- % create template string file for data output (tsv format):
- string_template = '_task-highspeed_rec-prenorm_run-0%d_events';
- % write conditon and run information into the string:
- string_written = sprintf(string_template,run);
- % create the full filenames:
- outfile_name = strcat(sub_file_name,string_written);
- % create paths of the tsv and csv files:
- path_tsv = fullfile(path_output_sub,strcat(outfile_name,'.tsv'));
- path_csv = fullfile(path_output_sub,strcat(outfile_name,'.csv'));
- % write the events table as csv file:
- writetable(events,path_csv,'Delimiter','\t');
- % copy the created file from csv to tsv file:
- copyfile(path_csv,path_tsv)
- % delete the csv file:
- delete(path_csv);
- end
- end
- end
|