|
@@ -1,479 +0,0 @@
|
|
|
-function figure_neurotrace(fld)
|
|
|
-
|
|
|
-fprintf('\n======================================================\n');
|
|
|
-fprintf('-- Creating Figure neurotrace --\n');
|
|
|
-fprintf('======================================================\n');
|
|
|
-
|
|
|
-%% settings
|
|
|
-green = [23, 105, 13]./255;
|
|
|
-red = [201, 0, 34]./255;
|
|
|
-cols = [green; 0.3 0.3 0.3; red; 1.00,0.84,0.00];
|
|
|
-
|
|
|
-snrthres = 2.5;
|
|
|
-smoothfact = 15; mindays = 3;
|
|
|
-falpha = 1; % set to 1 for converting to illustrator
|
|
|
-
|
|
|
-do_cleantraces = true; % if true we throw out artefact traces
|
|
|
-% citerion: avg emplitude in first 100ms after stimulus onset should be
|
|
|
-% at least 3 times the standard deviation in the preceding 100 ms
|
|
|
-do_latency = true;
|
|
|
-
|
|
|
-%% load RTs
|
|
|
-if exist(fullfile(fld.basedir, 'results','figure_behavior','RTs.mat'),'file')
|
|
|
- load(fullfile(fld.basedir, 'results','figure_behavior','RTs.mat'),'RTs');
|
|
|
-else
|
|
|
- error('RTs missing, run figure_behavior.m first');
|
|
|
-end
|
|
|
-
|
|
|
-%% plots
|
|
|
-% load traces
|
|
|
-monkeys = {'M1','M2'};
|
|
|
-wm = [];
|
|
|
-
|
|
|
-%% plot
|
|
|
-f1 = figure;
|
|
|
-set(f1,'Position',[500 500 1600 800])
|
|
|
-% individual animals
|
|
|
-for mi = 1:2
|
|
|
- monkey = monkeys{mi};
|
|
|
- savedir = fullfile(fld.basedir,'results','figure_neurotrace');
|
|
|
- load(fullfile(savedir, [monkey '_averages_snr' num2str(snrthres) '_mindays' num2str(mindays) '.mat']),...
|
|
|
- 'traces','tracesLUT','grandtraces','grandtracesLUT','env_t');
|
|
|
-
|
|
|
- traces_ALL{mi} = traces; %#ok<*AGROW,*NASGU>
|
|
|
- tracesLUT_ALL{mi} = tracesLUT;
|
|
|
- grandtraces_ALL{mi} = grandtraces;
|
|
|
- grandtracesLUT_ALL{mi} = grandtracesLUT;
|
|
|
- env_t_ALL{mi} = env_t;
|
|
|
-
|
|
|
- figure(f1); subplot(2,3,mi+1); hold on;
|
|
|
- mns = []; sems = []; trcs = cell(0);
|
|
|
- for cond = 1:3
|
|
|
-
|
|
|
- if do_cleantraces
|
|
|
- incl = grandtracesLUT(:,2)==cond;
|
|
|
- get_traces = grandtraces(incl,:);
|
|
|
- sel_LUT = grandtracesLUT(incl,:);
|
|
|
- incl_ALL{mi,cond} = incl;
|
|
|
-
|
|
|
- prewin = env_t > -0.1 & env_t < 0;
|
|
|
- postwin = env_t > 0 & env_t < 0.1;
|
|
|
- sd_pre = std(get_traces(:,prewin),0,2);
|
|
|
- m_post = mean(get_traces(:,postwin),2);
|
|
|
- snr_sel = m_post > 3*sd_pre;
|
|
|
-
|
|
|
- incl = incl(snr_sel');
|
|
|
- get_traces = get_traces(snr_sel',:);
|
|
|
- newLUT = sel_LUT(snr_sel',:);
|
|
|
-
|
|
|
- % now average sites over sessions
|
|
|
- get_traces_ = get_traces; % backup
|
|
|
- get_traces = [];
|
|
|
- for rs = unique(newLUT(:,1))'
|
|
|
- if sum(newLUT(:,1)==rs)>1
|
|
|
- get_traces = [get_traces;...
|
|
|
- mean(get_traces_(newLUT(:,1)==rs,:))];
|
|
|
- else
|
|
|
- get_traces = [get_traces; get_traces_(newLUT(:,1)==rs,:)];
|
|
|
- end
|
|
|
- end
|
|
|
- recsites{mi,cond}=unique(newLUT(:,1));
|
|
|
- else
|
|
|
- incl = tracesLUT(:,2)==cond;
|
|
|
- get_traces = traces(incl,:);
|
|
|
- sel_LUT = tracesLUT(incl,:);
|
|
|
- incl_ALL{mi,cond} = incl;
|
|
|
-
|
|
|
- newLUT = sel_LUT;
|
|
|
- recsites{mi,cond}=unique(newLUT(:,1));
|
|
|
- end
|
|
|
-
|
|
|
- % calculate the mean across channels
|
|
|
- s_traces = [];
|
|
|
- for t = 1:size(get_traces,1)
|
|
|
- s_traces(t,:) = smooth(get_traces(t,:),smoothfact);
|
|
|
- end
|
|
|
- s_traces_ALL{mi,cond} = s_traces;
|
|
|
-
|
|
|
- mn = mean(s_traces);
|
|
|
- mns(cond,:) = mn; % for calculating the difference between conditions
|
|
|
- trcs{cond} = s_traces; % for calculating the modulation onset
|
|
|
- sem = std(s_traces)./sqrt(sum(incl));
|
|
|
- sems(cond,:) = sem;
|
|
|
-
|
|
|
- t2 = [env_t*1e3, fliplr(env_t*1e3)];
|
|
|
- inBetween = [mn+sem, fliplr(mn-sem)];
|
|
|
- fill(t2, inBetween, 'g','LineStyle','none','FaceColor',cols(cond,:),...
|
|
|
- 'FaceAlpha',falpha); hold all
|
|
|
- plot(env_t*1e3,mn,'Color',cols(cond,:));
|
|
|
-
|
|
|
- RT=RTs{mi}(cond);
|
|
|
- plot([RT RT],[0 1],'--','Color',cols(cond,:),'LineWidth',2)
|
|
|
-
|
|
|
- xlim([0 0.25*1e3]); ylim([0 1]);
|
|
|
- end
|
|
|
- title(monkeys{mi}); xlabel('time(ms)'); ylabel('MUA');
|
|
|
-
|
|
|
-
|
|
|
- % only include sites with all conditions
|
|
|
- if size(recsites{mi,1},1) <= size(recsites{mi,2},1) && ...
|
|
|
- size(recsites{mi,1},1) <= size(recsites{mi,3},1)
|
|
|
- rsidx = [1 2 3];
|
|
|
- elseif size(recsites{mi,2},1) < size(recsites{mi,1},1) && ...
|
|
|
- size(recsites{mi,2},1) < size(recsites{mi,3},1)
|
|
|
- rsidx = [2 1 3];
|
|
|
- elseif size(recsites{mi,3},1) < size(recsites{mi,1},1) && ...
|
|
|
- size(recsites{mi,3},1) < size(recsites{mi,2},1)
|
|
|
- rsidx = [3 1 2];
|
|
|
- end
|
|
|
- rsinc{mi,rsidx(1)} = ismember(recsites{mi,rsidx(1)},recsites{mi,rsidx(1)});
|
|
|
- rsinc{mi,rsidx(2)} = ismember(recsites{mi,rsidx(2)},recsites{mi,rsidx(1)});
|
|
|
- rsinc{mi,rsidx(3)} = ismember(recsites{mi,rsidx(3)},recsites{mi,rsidx(1)});
|
|
|
-
|
|
|
- inRF = {'target','','distractor'};
|
|
|
- for cond = [1 3 4]
|
|
|
- figure(f1)
|
|
|
- subplot(2,3,mi+4);
|
|
|
- if cond < 4
|
|
|
- df = trcs{cond}(rsinc{mi,cond},:) - ...
|
|
|
- trcs{2}(rsinc{mi,2},:); % difference for each channel separately
|
|
|
- mn = mean(df);
|
|
|
- csem = std(trcs{cond}(rsinc{mi,cond},:) - ...
|
|
|
- trcs{2}(rsinc{mi,2},:))./...
|
|
|
- sqrt(size(trcs{cond}(rsinc{mi,cond},:),1));
|
|
|
- else
|
|
|
- df = trcs{1}(rsinc{mi,1},:) - ...
|
|
|
- trcs{3}(rsinc{mi,3},:);
|
|
|
- mn = mean(df);
|
|
|
- csem = std(trcs{1}(rsinc{mi,1},:) - ...
|
|
|
- trcs{3}(rsinc{mi,3},:))./...
|
|
|
- sqrt(size(trcs{1}(rsinc{mi,1},:),1));
|
|
|
- end
|
|
|
-
|
|
|
- inBetween = [mn+csem, fliplr(mn-csem)];
|
|
|
- fill(t2, inBetween, 'g','LineStyle','none','FaceColor',cols(cond,:),...
|
|
|
- 'FaceAlpha',falpha); hold all
|
|
|
- plot(env_t*1e3,mn,'Color',cols(cond,:));
|
|
|
- xlim([0 0.25*1e3]); ylim([-0.15 0.25]);
|
|
|
-
|
|
|
- % let's calculate the latency of modulation per channel
|
|
|
- if do_latency
|
|
|
- do_latfig=0;
|
|
|
- if mi==1
|
|
|
- until = find(env_t<0.25,1,'last');
|
|
|
- else
|
|
|
- until = find(env_t<0.21,1,'last');
|
|
|
- end
|
|
|
- lat = []; coeff = []; rs = []; converge = [];
|
|
|
- for i = 1:size(df,1) % loop channels
|
|
|
- cur_resp = df(i,1:until)';
|
|
|
- if cond==3
|
|
|
- % the latency function cannot fit downward modulation
|
|
|
- cur_resp = cur_resp*-1;
|
|
|
- end
|
|
|
- [lat(i),~] = latencyfit_jp(cur_resp,env_t(1:until)'*1000,do_latfig);
|
|
|
- end
|
|
|
-
|
|
|
- % latency on average
|
|
|
- cur_resp = mn(1:until)';
|
|
|
- if cond==3
|
|
|
- % the latency function cannot fit downward modulation
|
|
|
- cur_resp = cur_resp*-1;
|
|
|
- end
|
|
|
- lt = latencyfit_jp(smooth(cur_resp,20),env_t(1:until)'*1000,do_latfig);
|
|
|
-
|
|
|
- if cond < 4
|
|
|
- rng('default') % for reproducibility
|
|
|
- nsamp = 100;
|
|
|
- btstrp_LT = bootstrp(nsamp,@latencyfit_jp,smooth(cur_resp,20),env_t(1:until)'*1000,0);
|
|
|
- fprintf([monkey ' ' inRF{cond} ' - Bootstrapped latency [' num2str(nsamp) ' samples] =====\n'])
|
|
|
- fprintf(['mean: ' num2str(mean(btstrp_LT,'omitnan')) ', std:' num2str(std(btstrp_LT,'omitnan')) '\n'])
|
|
|
- BLT{mi,cond}=btstrp_LT;
|
|
|
- end
|
|
|
-
|
|
|
- if ~isnan(lt) % if lt = nan, latencyfit_jp gives no figure, so we shouldn't make a title either
|
|
|
- if cond < 4
|
|
|
- title([monkey ', fit on average response, ' inRF{cond} ' in RF']);
|
|
|
- else
|
|
|
- title([monkey ', fit on average response modulation']);
|
|
|
- end
|
|
|
- end
|
|
|
-
|
|
|
- if cond < 4
|
|
|
- disp([monkey ', latency of modulation onset when ' inRF{cond} ' is in RF: ' ...
|
|
|
- num2str(round(mean(lat,'omitnan'))) 'ms (' num2str(round(lt)) ...
|
|
|
- 'ms as estimated on the average response)']);
|
|
|
- else
|
|
|
- disp([monkey ', latency of targ-distr modulation: ' ...
|
|
|
- num2str(round(mean(lat,'omitnan'))) 'ms (' num2str(round(lt)) ...
|
|
|
- 'ms as estimated on the average response)']);
|
|
|
- end
|
|
|
- %disp(['individual channel estimates: ' num2str(lat)]);
|
|
|
-
|
|
|
- ModLatency{mi,cond} = lt;
|
|
|
- figure(f1);
|
|
|
- plot([lt lt],[-0.2 0.25],'--','Color',cols(cond,:),'LineWidth',2)
|
|
|
- if isnan(lt)
|
|
|
- plot([round(mean(lat,'omitnan')) round(mean(lat,'omitnan'))],[-0.2 0.25],...
|
|
|
- ':','Color',cols(cond,:),'LineWidth',2)
|
|
|
- end
|
|
|
- end
|
|
|
- end
|
|
|
- figure(f1)
|
|
|
- plot([0 .25*1e3],[0 0],'k');
|
|
|
- title(monkeys{mi}); xlabel('time(ms)'); ylabel('Modulation(MUA)');
|
|
|
-
|
|
|
- % save the extra cleaned traces
|
|
|
- save(fullfile(savedir,'Traces_SNR_trialbased.mat'),...
|
|
|
- 's_traces_ALL','recsites','rsinc');
|
|
|
-
|
|
|
- %% statistics
|
|
|
- window_means = [];
|
|
|
- win_idx = find(env_t>0.15 & env_t<0.20);
|
|
|
-
|
|
|
- for cond = 1:3
|
|
|
- if do_cleantraces
|
|
|
- incl = grandtracesLUT(:,2)==cond;
|
|
|
- get_traces = grandtraces(incl,win_idx); %#ok<*FNDSB>
|
|
|
- else
|
|
|
- incl = tracesLUT(:,2)==cond;
|
|
|
- get_traces = traces(incl,win_idx);
|
|
|
- end
|
|
|
- incl = tracesLUT(:,2)==cond;
|
|
|
-
|
|
|
- % calculate the average in a window
|
|
|
- s_traces = [];
|
|
|
- for t = 1:size(get_traces,1)
|
|
|
- s_traces(t,:) = smooth(get_traces(t,:),smoothfact);
|
|
|
- end
|
|
|
- window_means(:,cond) = mean(s_traces,2);
|
|
|
- end
|
|
|
- anova1(window_means);
|
|
|
-
|
|
|
- wm = [wm; window_means];
|
|
|
- wm2{mi} = window_means;
|
|
|
-end
|
|
|
-
|
|
|
-figure(f1); subplot(2,3,1); hold on;
|
|
|
-% pooled animals
|
|
|
-for cond = 1:3
|
|
|
- traces = [s_traces_ALL{1,cond};s_traces_ALL{2,cond}];
|
|
|
-
|
|
|
- % calculate the mean across channels
|
|
|
- % get_traces = traces(incl,:);
|
|
|
- get_traces = traces;
|
|
|
- s_traces = [];
|
|
|
- for t = 1:size(get_traces,1)
|
|
|
- s_traces(t,:) = smooth(get_traces(t,:),smoothfact);
|
|
|
- end
|
|
|
-
|
|
|
- mn = mean(s_traces);
|
|
|
- mns(cond,:) = mn; % for calculating the difference between conditions
|
|
|
- trcs{cond} = s_traces; % for calculating the modulation onset
|
|
|
- sem = std(s_traces)./sqrt(sum(size(s_traces,1)));
|
|
|
- sems(cond,:) = sem;
|
|
|
-
|
|
|
- t2 = [env_t*1e3, fliplr(env_t*1e3)];
|
|
|
- inBetween = [mn+sem, fliplr(mn-sem)];
|
|
|
- fill(t2, inBetween, 'g','LineStyle','none','FaceColor',cols(cond,:),...
|
|
|
- 'FaceAlpha',falpha); hold all
|
|
|
-
|
|
|
- RT=RTs{3}(cond);
|
|
|
- plot([RT RT],[0 1],'--','Color',cols(cond,:),'LineWidth',2)
|
|
|
- plot(env_t*1e3,mn,'Color',cols(cond,:));
|
|
|
- xlim([0 0.25*1e3]); ylim([0 1]);
|
|
|
-end
|
|
|
-title('BOTH animals pooled'); xlabel('time(ms)'); ylabel('MUA');
|
|
|
-
|
|
|
-inRF = {'target','','distractor'};
|
|
|
-
|
|
|
-for cond=1:3
|
|
|
- rsinc{3,cond} = [rsinc{1,cond};rsinc{2,cond}];
|
|
|
-end
|
|
|
-
|
|
|
-for cond = [1 3 4]
|
|
|
- figure(f1)
|
|
|
- subplot(2,3,4);
|
|
|
-
|
|
|
- if cond < 4
|
|
|
- df = trcs{cond}(rsinc{3,cond},:) - ...
|
|
|
- trcs{2}(rsinc{3,2},:); % difference for each channel separately
|
|
|
- mn = mean(df);
|
|
|
- csem = std(trcs{cond}(rsinc{3,cond},:) - ...
|
|
|
- trcs{2}(rsinc{3,2},:))./...
|
|
|
- sqrt(size(trcs{cond}(rsinc{3,cond},:),1));
|
|
|
- else
|
|
|
- df = trcs{1}(rsinc{3,1},:) - ...
|
|
|
- trcs{3}(rsinc{3,3},:);
|
|
|
- mn = mean(df);
|
|
|
- csem = std(trcs{1}(rsinc{3,1},:) - ...
|
|
|
- trcs{3}(rsinc{3,3},:))./...
|
|
|
- sqrt(size(trcs{1}(rsinc{3,1},:),1));
|
|
|
- end
|
|
|
-
|
|
|
- inBetween = [mn+csem, fliplr(mn-csem)];
|
|
|
- fill(t2, inBetween, 'g','LineStyle','none','FaceColor',cols(cond,:),...
|
|
|
- 'FaceAlpha',falpha); hold all
|
|
|
- plot(env_t*1e3,mn,'Color',cols(cond,:));
|
|
|
- xlim([0 0.25*1e3]); ylim([-0.15 0.25]);
|
|
|
-
|
|
|
- % let's calculate the latency of modulation per channel
|
|
|
- if do_latency
|
|
|
- do_latfig=0;
|
|
|
- if mi==1
|
|
|
- until = find(env_t<0.25,1,'last');
|
|
|
- else
|
|
|
- until = find(env_t<0.21,1,'last');
|
|
|
- end
|
|
|
- lat = []; coeff = []; rs = []; converge = [];
|
|
|
- for i = 1:size(df,1) % loop channels
|
|
|
- cur_resp = df(i,1:until)';
|
|
|
- if cond==3
|
|
|
- % the latency function cannot fit downward modulation
|
|
|
- cur_resp = cur_resp*-1;
|
|
|
- end
|
|
|
- [lat(i),~] = latencyfit_jp(cur_resp,env_t(1:until)'*1000,do_latfig);
|
|
|
- end
|
|
|
-
|
|
|
- %collect latencty
|
|
|
- clat{cond} = lat;
|
|
|
-
|
|
|
- % latency on average
|
|
|
- do_latfig=1;
|
|
|
- cur_resp = mn(1:until)';
|
|
|
- if cond==3
|
|
|
- % the latency function cannot fit downward modulation
|
|
|
- cur_resp = cur_resp*-1;
|
|
|
- end
|
|
|
- lt = latencyfit_jp(smooth(cur_resp,20),env_t(1:until)'*1000,do_latfig);
|
|
|
-
|
|
|
- if cond < 4
|
|
|
- rng('default') % for reproducibility
|
|
|
- nsamp = 100;
|
|
|
- btstrp_LT = bootstrp(nsamp,@latencyfit_jp,smooth(cur_resp,20),env_t(1:until)'*1000,0);
|
|
|
- fprintf([inRF{cond} ' - Bootstrapped latency [' num2str(nsamp) ' samples] =====\n'])
|
|
|
- fprintf(['mean: ' num2str(mean(btstrp_LT,'omitnan')) ', std:' num2str(std(btstrp_LT,'omitnan')) '\n'])
|
|
|
- BLT{3,cond}=btstrp_LT;
|
|
|
- end
|
|
|
-
|
|
|
- if ~isnan(lt) % if lt = nan, latencyfit_jp gives no figure, so we shouldn't make a title either
|
|
|
- if cond < 4
|
|
|
- title(['BOTH monkeys, fit on average response, ' inRF{cond} ' in RF']);
|
|
|
- else
|
|
|
- title('BOTH monkeys, fit on average response modulation');
|
|
|
- end
|
|
|
- end
|
|
|
- if cond < 4
|
|
|
- disp(['BOTH monkeys, latency of modulation onset when ' inRF{cond} ' is in RF: ' ...
|
|
|
- num2str(round(mean(lat,'omitnan'))) 'ms (' num2str(round(lt)) ...
|
|
|
- 'ms as estimated on the average response)']);
|
|
|
- else
|
|
|
- disp(['BOTH monkeys, latency of targ-distr modulation: ' ...
|
|
|
- num2str(round(mean(lat,'omitnan'))) 'ms (' num2str(round(lt)) ...
|
|
|
- 'ms as estimated on the average response)']);
|
|
|
- end
|
|
|
- %disp(['individual channel estimates: ' num2str(lat)]);
|
|
|
-
|
|
|
- figure(f1)
|
|
|
- plot([lt lt],[-0.2 0.25],'--','Color',cols(cond,:),'LineWidth',2)
|
|
|
- if isnan(lt)
|
|
|
- plot([round(mean(lat,'omitnan')) round(mean(lat,'omitnan'))],[-0.2 0.25],...
|
|
|
- ':','Color',cols(cond,:),'LineWidth',2)
|
|
|
- end
|
|
|
-
|
|
|
- end
|
|
|
-end
|
|
|
-figure(f1)
|
|
|
-plot([0 .25*1e3],[0 0],'k');
|
|
|
-title('ALL animals pooled'); xlabel('time(ms)'); ylabel('Modulation (MUA)');
|
|
|
-
|
|
|
-%% do a bootstrapped latency analysis to get some stats
|
|
|
-rng('default') % for reproducibility
|
|
|
-nsamp = 1000;
|
|
|
-btstrp_LAT = bootstrp(nsamp,@nanmean,[clat{1}' clat{3}']);
|
|
|
-[h,p,ci,stats]=ttest(btstrp_LAT(:,1)-btstrp_LAT(:,2));
|
|
|
-fprintf('== BTSTRP comparison of latencies ===\n');
|
|
|
-fprintf(['Mean difference in latency (T-SD): ' ...
|
|
|
- num2str(mean(btstrp_LAT(:,1)-btstrp_LAT(:,2))) ', SEM: ' ...
|
|
|
- num2str(std(btstrp_LAT(:,1)-btstrp_LAT(:,2))./sqrt(size(btstrp_LAT,1))) ...
|
|
|
- 'ms\n']);
|
|
|
-fprintf([num2str(sum((btstrp_LAT(:,1)-btstrp_LAT(:,2))<0)) '/' num2str(nsamp) ...
|
|
|
- ' T before SD, p = ' num2str(sum((btstrp_LAT(:,1)-btstrp_LAT(:,2))>0)/nsamp) ...
|
|
|
- ' that H0[T not before SD] is rejected \n']);
|
|
|
-fprintf(['ttest t(' num2str(stats.df) ') = ' num2str(stats.tstat) ...
|
|
|
- ', p = ' num2str(p) '\n']);
|
|
|
-
|
|
|
-%% use the bootstrapped latency estimates for stats
|
|
|
-fprintf('== Comparison of bootstrapped T-SD latencies ===\n');
|
|
|
-for mi=1:3
|
|
|
- [h,p,ci,stats]=ttest(BLT{mi,1}-BLT{mi,3});
|
|
|
- nn = sum(~isnan());
|
|
|
- if mi<3
|
|
|
- fprintf(['-- Monkey ' num2str(mi) ' --\n']);
|
|
|
- else
|
|
|
- fprintf('-- BOTH Monkeys --\n');
|
|
|
- end
|
|
|
- fprintf(['Mean difference in latency (T-SD): ' ...
|
|
|
- num2str(mean(BLT{mi,1}-BLT{mi,3},'omitnan')) ', SEM: ' ...
|
|
|
- num2str(std(BLT{mi,1}-BLT{mi,3},'omitnan')./sqrt(sum(~isnan(BLT{mi,1})))) ...
|
|
|
- 'ms\n']);
|
|
|
- fprintf([num2str(sum((BLT{mi,1}-BLT{mi,3})<0)) '/' num2str(100) ...
|
|
|
- ' T before SD, p = ' num2str(sum((BLT{mi,1}-BLT{mi,3})>0)/100) ...
|
|
|
- ' that H0[T not before SD] is rejected \n']);
|
|
|
- fprintf(['ttest t(' num2str(stats.df) ') = ' num2str(stats.tstat) ...
|
|
|
- ', p = ' num2str(p) '\n']);
|
|
|
-end
|
|
|
-
|
|
|
-%% statistics
|
|
|
-% do a simple paired t-test for each monkey
|
|
|
-fprintf('=============================\n');
|
|
|
-fprintf(' Paired T-test \n');
|
|
|
-fprintf('=============================\n');
|
|
|
-clear h p stats
|
|
|
-for mi = 1:2
|
|
|
- mns = wm2{mi};
|
|
|
- p = []; vp=[]; ci=1;
|
|
|
- for cond = [1 3]
|
|
|
- [vh,vp(end+1)]=vartest2(mns(:,cond),mns(:,2));
|
|
|
- [h,p(end+1),~,stats{mi,ci}] = ttest(mns(:,cond), mns(:,2));
|
|
|
- ci=ci+1;
|
|
|
- end
|
|
|
- [vh,vp(end+1)]=vartest2(mns(:,1),mns(:,3));
|
|
|
- [h,p(end+1),~,stats{mi,3}] = ttest(mns(:,1), mns(:,3));
|
|
|
-
|
|
|
- disp([monkeys{mi} ', target response increased: p=' num2str(p(1)) ...
|
|
|
- ' t = ' num2str(stats{mi,1}.tstat) ', df = ' num2str(stats{mi,1}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(1)) ')']);
|
|
|
- disp([monkeys{mi} ', distractor response decreased: p=' num2str(p(2)) ...
|
|
|
- ' t = ' num2str(stats{mi,2}.tstat) ', df = ' num2str(stats{mi,2}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(2)) ')']);
|
|
|
- disp([monkeys{mi} ', targ vs distractor: p=' num2str(p(3)) ...
|
|
|
- ' t = ' num2str(stats{mi,3}.tstat) ', df = ' num2str(stats{mi,3}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(3)) ')']);
|
|
|
-end
|
|
|
-
|
|
|
-%Both together
|
|
|
-mns = [wm2{1}; wm2{2}];
|
|
|
-p = [];vp=[]; ci=1;
|
|
|
-for cond = [1 3]
|
|
|
- [vh,vp(end+1)]=vartest2(mns(:,cond),mns(:,2));
|
|
|
- [h,p(end+1),~,stats{3,ci}] = ttest(mns(:,cond), mns(:,2));
|
|
|
- ci=ci+1;
|
|
|
-end
|
|
|
-[vh,vp(end+1)]=vartest2(mns(:,1),mns(:,3));
|
|
|
-[h,p(end+1),~,stats{3,3}] = ttest(mns(:,1), mns(:,3));
|
|
|
-
|
|
|
-disp(['BOTH, target response increased: p=' num2str(p(1)) ...
|
|
|
- ' t = ' num2str(stats{3,1}.tstat) ', df = ' num2str(stats{3,1}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(1)) ')']);
|
|
|
-disp(['BOTH, distractor response decreased: p=' num2str(p(2)) ...
|
|
|
- ' t = ' num2str(stats{3,2}.tstat) ', df = ' num2str(stats{3,2}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(2)) ')']);
|
|
|
-disp(['BOTH, targ vs distractor: p=' num2str(p(3)) ...
|
|
|
- ' t = ' num2str(stats{3,3}.tstat) ', df = ' num2str(stats{3,3}.df) ...
|
|
|
- ' (unequal var p = ' num2str(vp(3)) ')']);
|
|
|
-
|
|
|
-
|
|
|
-%% save figure
|
|
|
-figure(f1)
|
|
|
-saveas(gcf,fullfile(savedir,'figure_neurotrace.svg'));
|