123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- function [datafit,Amps,freqs,Fval,sig]=fitlinesc(data,params,p,plt,f0)
- % fits significant sine waves to data (continuous data).
- %
- % Usage: [datafit,Amps,freqs,Fval,sig]=fitlinesc(data,params,p,plt,f0)
- %
- % Inputs:
- % Note that units of Fs, fpass have to be consistent.
- % data (data in [N,C] i.e. time x channels/trials or a single
- % vector) - required.
- % params structure containing parameters - params has the
- % following fields: tapers, Fs, fpass, pad
- % tapers : precalculated tapers from dpss or in the one of the following
- % forms:
- % (1) A numeric vector [TW K] where TW is the
- % time-bandwidth product and K is the number of
- % tapers to be used (less than or equal to
- % 2TW-1).
- % (2) A numeric vector [W T p] where W is the
- % bandwidth, T is the duration of the data and p
- % is an integer such that 2TW-p tapers are used. In
- % this form there is no default i.e. to specify
- % the bandwidth, you have to specify T and p as
- % well. Note that the units of W and T have to be
- % consistent: if W is in Hz, T must be in seconds
- % and vice versa. Note that these units must also
- % be consistent with the units of params.Fs: W can
- % be in Hz if and only if params.Fs is in Hz.
- % The default is to use form 1 with TW=3 and K=5
- %
- % Fs (sampling frequency) -- optional. Defaults to 1.
- % fpass (frequency band to be used in the calculation in the form
- % [fmin fmax])- optional.
- % Default all frequencies between 0 and Fs/2
- % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...).
- % -1 corresponds to no padding, 0 corresponds to padding
- % to the next highest power of 2 etc.
- % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
- % to 512 points, if pad=1, we pad to 1024 points etc.
- % Defaults to 0.
- % p (P-value to calculate error bars for) - optional.
- % Defaults to 0.05/N where N is data length.
- % plt (y/n for plot and no plot respectively) - plots the
- % Fratio at all frequencies if y
- % f0 frequencies at which you want to remove the
- % lines - if unspecified the program
- % will compute the significant lines
- %
- %
- % Outputs:
- % datafit (linear superposition of fitted sine waves)
- % Amps (amplitudes at significant frequencies)
- % freqs (significant frequencies)
- % Fval (Fstatistic at all frequencies)
- % sig (significance level for F distribution p value of p)
- data=change_row_to_column(data);
- [N,C]=size(data);
- if nargin < 2 || isempty(params); params=[]; end;
- [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
- clear pad fpass err trialave;
- if nargin < 3 || isempty(p);p=0.05/N;end;
- if nargin < 4 || isempty(plt); plt='n'; end;
- if nargin < 5; f0=[]; end;
- params.tapers=dpsschk(tapers,N,Fs); % calculate the tapers
- [Fval,A,f,sig] = ftestc(data,params,p,plt);
- if isempty(f0);
- fmax=findpeaks(Fval,sig);
- freqs=cell(1,C);
- Amps=cell(1,C);
- datafit=data;
- for ch=1:C;
- fsig=f(fmax(ch).loc);
- freqs{ch}=fsig;
- Amps{ch}=A(fmax(ch).loc,ch);
- Nf=length(fsig);
- % fprintf('The significant lines for channel %d and the amplitudes are \n',ch);
- % for nf=1:Nf;
- % fprintf('%12.8f\n',fsig(nf));
- % fprintf('%12.8f\n',real(A(fmax(ch).loc(nf),ch)));
- % fprintf('%12.8f\n',imag(A(fmax(ch).loc(nf),ch)));
- % fprintf('\n');
- % end;
- datafit(:,ch)=exp(i*2*pi*(0:N-1)'*fsig/Fs)*A(fmax(ch).loc,ch)+exp(-i*2*pi*(0:N-1)'*fsig/Fs)*conj(A(fmax(ch).loc,ch));
- end;
- else
- indx = zeros( length(f0) );
- for n=1:length(f0);
- [fsig,indx(n)]=min(abs(f-f0(n)));
- end;
- fsig=f(indx);
- for ch=1:C;
- freqs{ch}=fsig;
- Amps{ch}=A(indx,ch);
- Nf=length(fsig);
- % fprintf('For channel %d the amplitudes and the Fstatistic at f=%f are \n',ch,f0);
- % fprintf('Fstatistic = %12.8f Fthreshold = %12.8f\n',Fval(indx),sig);
- % fprintf('Real part of amplitude = %12.8f\n',real(A(indx,ch)));
- % fprintf('Imaginary part of amplitude = %12.8f\n',imag(A(indx,ch)));
- datafit(:,ch)=exp(i*2*pi*(0:N-1)'*fsig/Fs)*A(indx,ch)+exp(-i*2*pi*(0:N-1)'*fsig/Fs)*conj(A(indx,ch));
- end;
- end;
|