123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 |
- clear all;
- load ('R_W.mat');
- load ('RAW.mat');
- %get parameters
- BinBase=R_W.Param.BinBase;
- BinDura=R_W.Param.BinDura;
- bins=R_W.Param.bins;
- binint=R_W.Param.binint;
- binstart=R_W.Param.binstart;
- PStatBins=0.01; %using more stringent cutoff to reduce pre-delivery noise
- %which bins bound the area examined for reward-selectivity? (in seconds)
- Time1=0.4; %seconds
- Time2=3; %seconds
- Bin1=(((Time1-BinDura(2)/2)-binstart)/binint); %convert to bin name
- Bin2=(((Time2-BinDura(2)/2)-binstart)/binint); %convert to bin name
- %sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
- SortBinTime=1; %seconds
- SortBin=round((((SortBinTime-BinDura(2)/2)-binstart)/binint)); %convert to bin name
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- %% bins analysis
- %first and last bin aren't included because you can't compare to the previous/subsequent bin
- %this axis plots the bins on their centers
- xaxis=linspace(binstart+binint+BinDura(2)/2,binstart+(bins-2)*binint+BinDura(2)/2,bins-2);
- for i=2:(bins-1) %no including first or last bin because can't compare to previous/subsequent bin
-
- %finds out whether firing is stronger (high excitation or lower inhibition) for 1 or 2
- for k=1:length(R_W.Ninfo) %runs through neurons
- if R_W.BinStatRwrd{i,1}(k).IntSig < PStatBins %if neuron is significant for this bin
- if R_W.BinStatRwrd{i-1,1}(k).IntSig < PStatBins || R_W.BinStatRwrd{i+1,1}(k).IntSig < PStatBins %either previous or subsequent bin must be significant
- if R_W.BinStatRwrd{i,1}(k).R1Mean > R_W.BinStatRwrd{i,1}(k).R2Mean %if firing is greater on sucrose trials than maltodextrin
- R_W.BinRewPref{i,1}(k,1)=1;
- else
- R_W.BinRewPref{i,1}(k,1)=2; %otherwise maltodextrin must be greater than sucrose
- end
- else
- R_W.BinRewPref{i,1}(k,1)=0; %if not significant in 2 consecutive bins
- end
- else
- R_W.BinRewPref{i,1}(k,1)=0; %if no sig reward modulation
- end
-
- end
- %find how many NAc neurons have significant reward modulation in each bin
- NN1perBin(i,1)=sum(R_W.BinRewPref{i,1}(:,1)==1); %sucrose pref
- NN2perBin(i,1)=sum(R_W.BinRewPref{i,1}(:,1)==2); %malto pref
- NNperBin(i,1)=sum(R_W.BinRewPref{i,1}(:,1)>0); %either
- %normalize to number of neurons in population
- NN1norm=NN1perBin./sum(length(R_W.Ninfo));
- NN2norm=NN2perBin./sum(length(R_W.Ninfo));
- NNnorm=NNperBin./sum(length(R_W.Ninfo));
-
- end
- %Cumulative reward selectivity
- cumsel=zeros(length(R_W.Ninfo),bins); %set up result matrix
- cumsel1=zeros(length(R_W.Ninfo),bins); %set up result matrix for sucrose
- cumsel2=zeros(length(R_W.Ninfo),bins); %set up result matrix for maltodextrin
- %note, this has to be corrected to +1 because of the way the bin matrix is
- %layed out (bin 0 is the first column, not the 0th column)
- for i=1:length(R_W.Ninfo) %go through each neuron
- for j=2:bins-1 %look in each bin we did analysis on
- if R_W.BinRewPref{j,1}(i,1)>0 || cumsel(i,j-1)==1
- cumsel(i,j) = 1;
- end
- if R_W.BinRewPref{j,1}(i,1)==1 || cumsel1(i,j-1)==1
- cumsel1(i,j) = 1;
- end
- if R_W.BinRewPref{j,1}(i,1)==2 || cumsel2(i,j-1)==1
- cumsel2(i,j) = 1;
- end
- end
- end
- %plotting number of significantly modulated neurons across time
- subplot(3,2,2);
- hold on;
- plot(xaxis,NNnorm(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NN1norm(2:bins-1),'Color',water,'linewidth',1.5);
- plot(xaxis,NN2norm(2:bins-1),'Color',maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.7]);
- legend('Total','Wat > mal','Mal > wat','Location','northeast')
- ylabel('Fraction of population');
- title('Reward-selective neurons');
- xlabel('Seconds from RD');
- %% plotting maltodextrin-selective neurons
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %events we're looking at
- ev1=strcmp('RD1', R_W.Erefnames);
- ev2=strcmp('RD2', R_W.Erefnames);
- %setting up parameters
- Xaxis=[-2 5];
- inttime=find(R_W.Param.Tm>=Xaxis(1) & R_W.Param.Tm<=Xaxis(2));
- paramtime=R_W.Param.Tm(inttime);
- %find all neurons with greater firing for maltodextrin
- for i = 1:(Bin2-Bin1+1)
- %the added +1 is necessary because bin 20 is the 21st entry in the matrix
- Pref1(:,i)=R_W.BinRewPref{Bin1+i}==2; %get neurons that have greater firing for water in any of the bins bounded above
- Resp11(:,i)=Pref1(:,i)&cat(1,R_W.BinStatRwrd{Bin1+i,1}.WatRespDir)==-1; %get neurons with inhibition to water
- Resp12(:,i)=Pref1(:,i)&cat(1,R_W.BinStatRwrd{Bin1+i,1}.MalRespDir)==1;%get neurons with excitation to maltodextrin
- end
- Mel=sum(Pref1,2)>0; %all neurons selective for mal in any bin
- Mel2=sum(Resp11,2)>0; %all selective neurons water inhibited in any bin
- Mel3=sum(Resp12,2)>0; %all selective neurons malto excited in any bin
- subplot(9,40,[(15:23)+120 (15:23)+160]); %heatmap of maltodextrin preferring neurons' response to water
- Neurons=R_W.Ev(ev1).PSTHz(Mel,inttime); %get the firing rates of neurons of interest
- MalResp=cat(1,R_W.BinStatRwrd{SortBin+1,1}.R2Mean); %water responses
- TMP=MalResp(Mel); %find the magnitude of the excitations for water for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Mel,1)],Neurons,ClimE);
- title(['Water trials']);
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Mel)],':','color','k','linewidth',0.75);
- subplot(9,40,[(27:35)+120 (27:35)+160]); %heatmap of maltodextrin preferring neurons' response to maltodextrin
- Neurons=R_W.Ev(ev2).PSTHz(Mel,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Mel,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Mel)],':','color','k','linewidth',0.75);
- %plot water preferring neurons to water
- psth1=nanmean(R_W.Ev(ev1).PSTHz(Mel,inttime),1);
- sem1=nanste(R_W.Ev(ev1).PSTHz(Mel,inttime),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot water preferring neurons to malt
- psth2=nanmean(R_W.Ev(ev2).PSTHz(Mel,inttime),1);
- sem2=nanste(R_W.Ev(ev2).PSTHz(Mel,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(9,3,[10 13]);
- title(['Mal>wat (n=' num2str(sum(Mel)) ' of ' num2str(length(Mel)) ')'])
- hold on;
- plot(paramtime,psth1,'Color',water,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[up1,down1(end:-1:1)],water,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 10],':','color','k','linewidth',0.75);
- axis([-2 5 -1.5 3.5]);
- ylabel('Mean firing (z-score)');
- legend('Wat trials','Mal trials');
- xlabel('Seconds from RD');
- %display inhibitions and excitations
- both = sum(Mel2&Mel3);
- excite = sum(Mel3)-both;
- inhib = sum(Mel2)-both;
- subplot(9,40,[160 200]);
- b = bar([inhib both excite; 0 0 0],'stacked');
- b(1,1).FaceColor=water;
- b(1,2).FaceColor=total;
- b(1,3).FaceColor=maltodextrin;
- axis([1 1.2 0 both+excite+inhib]);
- ylabel('Inh / Both / Excited');
- set(gca,'xtick',[])
- %% emergence of maltodextrin and water responses
- %select which time point we're examining
- Window=[0.8 1.8]; %For looking at emergence of excitation
- NN=0; %neuron counter
- Sess=0; %session counter
- %plotting
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- %get firing rates on each trial
- for i=1:length(RAW) %loops through sessions
- if strcmp('WA',RAW(i).Type(1:2))
- Sess=Sess+1; %session counter
- SN{Sess}=0; %selective neuron counter
- ev1=strmatch('RD1',RAW(i).Einfo(:,2),'exact');
- ev2=strmatch('RD2',RAW(i).Einfo(:,2),'exact');
- for j= 1:size(RAW(i).Nrast,1) %Number of neurons within sessions
- NN=NN+1;
- if Mel(NN)==1
-
- SN{Sess}=SN{Sess}+1;
- Bcell1=0;
- Bcell2=0;
- Bcell=0;
- ev1spk=0;
- Ev2spk=0;
- %get mean baseline firing for all reward trials
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{ev1},BinBase,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- Bcell(1,y)=sum(Bcell1{1,y}>BinBase(1));
- end
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{ev2},BinBase,{2});% makes trial by trial rasters for baseline
- for z= 1:B2n
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>BinBase(1));
- end
- Bhz=Bcell/(BinBase(1,2)-BinBase(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for water trials
- [ev1cell,ev1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{ev1},Window,{2});% makes trial by trial rasters for event
- for y= 1:ev1n
- ev1spk(SN{Sess},y)=sum(ev1cell{1,y}>Window(1));
- end
- ev1hz=ev1spk(SN{Sess},:)/(Window(1,2)-Window(1,1));
- for x= 1:ev1n
- ev1norm{Sess}(SN{Sess},x)=((ev1hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for maltodextrin trials
- [ev2cell,ev2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{ev2},Window,{2});% makes trial by trial rasters for event
- for y= 1:ev2n
- ev2spk(1,y)=sum(ev2cell{1,y}>Window(1));
- end
- ev2hz=ev2spk/(Window(1,2)-Window(1,1));
- for x= 1:ev2n
- ev2norm{Sess}(SN{Sess},x)=((ev2hz(1,x)-Bmean)/Bstd);
- end
- end
- end %neurons in each session
-
- trialmeanz1{Sess}=NaN(2,1);
- trialmeanz2{Sess}=NaN(2,1);
- ind=0;
- order=0;
- [~,ind]=sort(cat(1,RAW(i).Erast{ev1},RAW(i).Erast{ev2}));
- for j=1:length(ind)
- order(j,1)=find(ind==j);
- end
- xaxis1{Sess}=order(1:length(ev1norm{Sess}(1,:)));
- xaxis2{Sess}=order(1+length(ev1norm{Sess}(1,:)):end);
- for k=1:length(ev1norm{Sess}(1,:))
- trialmeanz1{Sess}(1,k)=nanmean(ev1norm{Sess}(:,k));
- trialmeanz1{Sess}(2,k)=nanste(ev1norm{Sess}(:,k),1);
- end
- for k=1:length(ev2norm{Sess}(1,:))
- trialmeanz2{Sess}(1,k)=nanmean(ev2norm{Sess}(:,k));
- trialmeanz2{Sess}(2,k)=nanste(ev2norm{Sess}(:,k),1);
- end
-
- %stats checking for interaction between # of reward presentations
- %and reward on firing rate
- numtrials=min([length(xaxis1{Sess}) length(xaxis2{Sess})]); %number of trials for stats (fewest number of trials for the 2 outcomes)
- trials1=repmat(1:numtrials,length(ev1norm{Sess}(:,1)),1);
- trials2=repmat(1:numtrials,length(ev2norm{Sess}(:,1)),1);
- reward1=zeros(size(trials1));
- reward2=ones(size(trials2));
- data1=ev1norm{Sess}(:,1:numtrials);
- data2=ev2norm{Sess}(:,1:numtrials);
- [~,R_W.EmergenceStats{Sess,1},R_W.EmergenceStats{Sess,2}]=anovan(cat(1,data1(:),data2(:)),{cat(1,trials1(:),trials2(:)),cat(1,reward1(:),reward2(:))},'varnames',{'trials','reward'},'display','off','model','full');
- end %checking if a water session
-
-
-
- end %session
- %plotting
- for i=1:Sess
- subplot(3,2,4+i);
- hold on;
- errorbar(xaxis1{i},trialmeanz1{i}(1,:),trialmeanz1{i}(2,:),'*','Color',water,'linewidth',1.5);
- errorbar(xaxis2{i},trialmeanz2{i}(1,:),trialmeanz2{i}(2,:),'*','Color',maltodextrin,'linewidth',1.5);
- %plot(xaxis1,(cell2mat(ev1stat{i}(1,:))*13-16.9),'*','Color',water); %(12.5-trialmeanz242(1,1:trials1)-trialmeanz242(2,1:trials1))
- %plot(xaxis2,(cell2mat(ev2stat{i}(1,:))*13-16.7),'*','Color',maltodextrin); %(12.5-trialmeanz242(1,1:trials1)-trialmeanz242(2,1:trials1))
- %plot(xaxis1,(cell2mat(trialstat42(1,1:trials1))*13-17.1),'*','Color','k'); %(12.5-trialmeanz242(1,1:trials1)-trialmeanz242(2,1:trials1))
- plot([0 60],[0 0],':','color','k','linewidth',0.75);
- ylabel(['Mean firing ' num2str(Window(1,1)) '-' num2str(Window(1,2)) 's (z-score)']);
- title(['Rat ' num2str(i) ' (n=' num2str(SN{i}) ')']);
- axis([1 max([xaxis1{i};xaxis2{i}]) min(trialmeanz1{i}(1,:))*1.3 max(trialmeanz2{i}(1,:))*1.3]);
- xlabel('Trial #');
- legend('Wat','Mal','location','northwest');
- end
- %% conduct lick analysis
- global Dura Tm BSIZE Tbin
- path='C:\Users\dottenh2\Documents\MATLAB\David\2Rewards Nex Files\2RLick_paper.xls';
- %Main settings
- BSIZE=0.01; %Do not change
- Dura=[-22 20]; Tm=Dura(1):BSIZE:Dura(2);
- Tbin=-0.5:0.005:0.5; %window used to determine the optimal binsize
- MinNumTrials=5;
- Lick=[];Lick.Ninfo={};LL=0;Nlick=0;
- %Smoothing
- Smoothing=1; %0 for raw and 1 for smoothing
- SmoothTYPE='lowess'; %can change this between lowess and rlowess (more robust, ignores outliers more)
- SmoothSPAN=50; %percentage of total data points
- if Smoothing~=1, SmoothTYPE='NoSmoothing';SmoothSPAN=NaN; end
- % List of events to analyze and analysis windows EXTRACTED from excel file
- [~,Erefnames]=xlsread(path,'Windows','a3:a10'); % cell that contains the event names
- %Finds the total number of sessions
- for i=1:length(RAW)
- if strcmp('WA',RAW(i).Type(1:2))
- Nlick=Nlick+1;
- Lick.Linfo(i,1)=RAW(i).Ninfo(1,1);
- end
- end
- Lick.Erefnames= Erefnames;
- %preallocating the result matrix
- for k=1:length(Erefnames)
- Lick.Ev(k).PSTHraw(1:Nlick,1:length(Tm))=NaN(Nlick,length(Tm));
- Lick.Ev(k).BW(1:Nlick,1)=NaN;
- Lick.Ev(k).NumberTrials(1:Nlick,1)=NaN;
- end
- for i=1:length(RAW) %loops through sessions
- if strcmp('WA',RAW(i).Type(1:2))
- LL=LL+1; %lick session counter
- for k=1:length(Erefnames) %loops thorough the events
- EvInd=strcmp(Erefnames(k),RAW(i).Einfo(:,2)); %find the event id number from RAW
- LickInd=strcmp('Licks',RAW(i).Einfo(:,2)); %find the event id number from RAW
- if sum(EvInd)==0
- fprintf('HOWDY, CANT FIND EVENTS FOR ''%s''\n',Erefnames{k});
- end
- Lick.Ev(k).NumberTrials(LL,1)=length(RAW(i).Erast{EvInd});
- if ~isempty(EvInd) && Lick.Ev(k).NumberTrials(LL,1)>MinNumTrials %avoid analyzing sessions where that do not have enough trials
- [PSR1,N1]=MakePSR04(RAW(i).Erast(LickInd),RAW(i).Erast{EvInd},Dura,{1});% makes collpased rasters. PSR1 is a cell(neurons)
- if ~isempty(PSR1{1}) %to avoid errors, added on 12/28 2011
- %forcing 100ms bin size to keep it consistent across
- %sessions (no reason is should be different for licks)
- [PTH1,BW1,~]=MakePTH07(PSR1,repmat(N1, size(RAW(i).Erast{LickInd},1),1),{2,0,0.1});%these values force bin size to be 100ms
- PTH1=smooth(PTH1,SmoothSPAN,SmoothTYPE)';
- %------------- Fills the R.Ev(k) fields --------------
- Lick.Ev(k).BW(LL,1)=BW1;
- Lick.Ev(k).PSTHraw(LL,1:length(Tm))=PTH1;
- end
- end
- end
- end
- end
- Xaxis=[-2 12];
- Ishow=find(Tm>=Xaxis(1) & Tm<=Xaxis(2));
- time1=Tm(Ishow);
- c=[-1000 7500];ClimE=sign(c).*abs(c).^(1/4);%ColorMapExc
- colormap(jet);
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- Ev1=strcmp('RD1', Lick.Erefnames);
- Ev2=strcmp('RD2', Lick.Erefnames);
- psth1=nanmean(Lick.Ev(Ev1).PSTHraw(:,Ishow),1);
- sem1=nanste(Lick.Ev(Ev1).PSTHraw(:,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- psthE=nanmean(Lick.Ev(Ev2).PSTHraw(:,Ishow),1);
- semE=nanste(Lick.Ev(Ev2).PSTHraw(:,Ishow),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- %plotting
- subplot(3,2,1);
- hold on;
- plot(time1,psth1,'Color',water,'linewidth',1);
- plot(time1,psthE,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],water,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[upE,downE(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- title('Mean lick rate');
- %plot([-2 10],[0 0],':','color','k');
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- axis([-2 12 0 7.5]);
- xlabel('Seconds from reward delivery');
- ylabel('Licks/s');
- legend('Water trials','Maltodextrin trials');
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %% creating and saving new variables
- R_W.MalN=Mel;
- % proportion summary and chi squared test for reward selective neurons in
- % sucrose and water sessions in VP
- %find all reward-selective neurons
- for i = 1:(Bin2-Bin1+1)
- %the added +1 is necessary because bin 20 is the 21st entry in the matrix
- Selective(:,i)=R_W.BinRewPref{Bin1+i}>0; %get neurons that have greater firing for water in any of the bins bounded above
- end
- WSel=sum(Pref1,2)>0; %all neurons selective for mal in any bin
- %get reward selective neurons from these two rats
- load ('R_2R.mat');
- selection=(R_2R.SucN | R_2R.MalN); %selective neurons in suc vs mal sessions
- SSel=selection(strcmp('VP2',R_2R.Ninfo(:,4)) | strcmp('VP5',R_2R.Ninfo(:,4)),1);
- %get proportion and stats
- R_W.SucvsWatX2(1,1)=sum(SSel)/length(SSel); %selective neurons in maltodextrin sessions
- R_W.SucvsWatX2(1,2)=sum(WSel)/length(WSel); %how many selective neurons in water sessions
- [~,R_W.SucvsWatX2(2,1),R_W.SucvsWatX2(2,2)]=crosstab(cat(1,SSel,WSel),cat(1,ones(length(SSel),1),zeros(length(WSel),1))); %find chi squared value for this distribution
- save('R_W.mat','R_W');
|