123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- %plotting 3rewards data
- clear all;
- load ('R_3R.mat');
- load ('RAW.mat');
- %get parameters
- BinBase=R_3R.Param.BinBase;
- BinDura=R_3R.Param.BinDura;
- bins=R_3R.Param.bins;
- binint=R_3R.Param.binint;
- binstart=R_3R.Param.binstart;
- PStatBins=0.01; %using more stringent cutoff to reduce pre-delivery noise
- %which bins bound the area examined for reward-selectivity? (in seconds)
- Time1=0.4; %seconds
- Time2=3; %seconds
- Bin1=(((Time1-BinDura(2)/2)-binstart)/binint); %convert to bin name
- Bin2=(((Time2-BinDura(2)/2)-binstart)/binint); %convert to bin name
- %sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
- SortBinTime=1.1; %seconds
- SortBin=round((((SortBinTime-BinDura(2)/2)-binstart)/binint)); %convert to bin name
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- %% conduct lick analysis
- global Dura Tm BSIZE Tbin
- path='C:\Users\dottenh2\Documents\MATLAB\David\2Rewards Nex Files\3RLick_paper.xls';
- %Main settings
- BSIZE=0.01; %Do not change
- Dura=[-22 20]; Tm=Dura(1):BSIZE:Dura(2);
- Tbin=-0.5:0.005:0.5; %window used to determine the optimal binsize
- MinNumTrials=5;
- Lick=[];Lick.Ninfo={};LL=0;Nlick=0;
- %Smoothing
- Smoothing=1; %0 for raw and 1 for smoothing
- SmoothTYPE='lowess'; %can change this between lowess and rlowess (more robust, ignores outliers more)
- SmoothSPAN=50; %percentage of total data points
- if Smoothing~=1, SmoothTYPE='NoSmoothing';SmoothSPAN=NaN; end
- % List of events to analyze and analysis windows EXTRACTED from excel file
- [~,Erefnames]=xlsread(path,'Windows','a3:a8'); % cell that contains the event names
- %Finds the total number of sessions
- for i=1:length(RAW)
- if strcmp('TH',RAW(i).Type(1:2))
- Nlick=Nlick+1;
- Lick.Linfo(i,1)=RAW(i).Ninfo(1,1);
- end
- end
- Lick.Erefnames= Erefnames;
- %preallocating the result matrix
- for k=1:length(Erefnames)
- Lick.Ev(k).PSTHraw(1:Nlick,1:length(Tm))=NaN(Nlick,length(Tm));
- Lick.Ev(k).BW(1:Nlick,1)=NaN;
- Lick.Ev(k).NumberTrials(1:Nlick,1)=NaN;
- end
- for i=1:length(RAW) %loops through sessions
- if strcmp('TH',RAW(i).Type(1:2))
- LL=LL+1; %lick session counter
- for k=1:length(Erefnames) %loops thorough the events
- EvInd=strcmp(Erefnames(k),RAW(i).Einfo(:,2)); %find the event id number from RAW
- LickInd=strcmp('Licks',RAW(i).Einfo(:,2)); %find the event id number from RAW
- if sum(EvInd)==0
- fprintf('HOWDY, CANT FIND EVENTS FOR ''%s''\n',Erefnames{k});
- end
- Lick.Ev(k).NumberTrials(LL,1)=length(RAW(i).Erast{EvInd});
- if ~isempty(EvInd) && Lick.Ev(k).NumberTrials(LL,1)>MinNumTrials %avoid analyzing sessions where that do not have enough trials
- [PSR1,N1]=MakePSR04(RAW(i).Erast(LickInd),RAW(i).Erast{EvInd},Dura,{1});% makes collpased rasters. PSR1 is a cell(neurons)
- if ~isempty(PSR1{1}) %to avoid errors, added on 12/28 2011
- %forcing 100ms bin size to keep it consistent across
- %sessions (no reason is should be different for licks)
- [PTH1,BW1,~]=MakePTH07(PSR1,repmat(N1, size(RAW(i).Erast{LickInd},1),1),{2,0,0.1});%these values force bin size to be 100ms
- PTH1=smooth(PTH1,SmoothSPAN,SmoothTYPE)';
- %------------- Fills the R.Ev(k) fields --------------
- Lick.Ev(k).BW(LL,1)=BW1;
- Lick.Ev(k).PSTHraw(LL,1:length(Tm))=PTH1;
- end
- end
- end
- end
- end
- Xaxis=[-2 12];
- Ishow=find(Tm>=Xaxis(1) & Tm<=Xaxis(2));
- time1=Tm(Ishow);
- c=[-1000 7500];ClimE=sign(c).*abs(c).^(1/4);%ColorMapExc
- colormap(jet);
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- Ev1=strcmp('RD1', Lick.Erefnames);
- Ev2=strcmp('RD2', Lick.Erefnames);
- Ev3=strcmp('RD3', Lick.Erefnames);
- psth1=nanmean(Lick.Ev(Ev1).PSTHraw(:,Ishow),1);
- sem1=nanste(Lick.Ev(Ev1).PSTHraw(:,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- psthE=nanmean(Lick.Ev(Ev2).PSTHraw(:,Ishow),1);
- semE=nanste(Lick.Ev(Ev2).PSTHraw(:,Ishow),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- psth3=nanmean(Lick.Ev(Ev3).PSTHraw(:,Ishow),1);
- sem3=nanste(Lick.Ev(Ev3).PSTHraw(:,Ishow),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plotting
- subplot(2,3,1);
- hold on;
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psthE,'Color',maltodextrin,'linewidth',1);
- plot(time1,psth3,'Color',water,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[upE,downE(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up3,down3(end:-1:1)],water,'EdgeColor','none');alpha(0.5);
- title('Mean lick rate');
- %plot([-2 10],[0 0],':','color','k');
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- axis([-2 12 0 7.5]);
- xlabel('Seconds from reward delivery');
- ylabel('Licks/s');
- legend('Sucrose trials','Maltodextrin trials','Water trials');
- %% bins analysis
- %first and last bin aren't included because you can't compare to the previous/subsequent bin
- %this axis plots the bins on their centers
- xaxis=linspace(binstart+binint+BinDura(2)/2,binstart+(bins-2)*binint+BinDura(2)/2,bins-2);
- for i=2:(bins-1) %no including first or last bin because can't compare to previous/subsequent bin
-
- %finds out whether firing is stronger (high excitation or lower inhibition) for 1 or 2
- for k=1:length(R_3R.Ninfo) %runs through neurons
- if R_3R.BinStatRwrd{i,1}(k).IntSig < PStatBins %if neuron is significant for this bin
- if R_3R.BinStatRwrd{i-1,1}(k).IntSig < PStatBins || R_3R.BinStatRwrd{i+1,1}(k).IntSig < PStatBins %either previous or subsequent bin must be significant
- if R_3R.BinStatRwrd{i,1}(k).R1Mean >= R_3R.BinStatRwrd{i,1}(k).R2Mean && R_3R.BinStatRwrd{i,1}(k).R1Mean >= R_3R.BinStatRwrd{i,1}(k).R3Mean %if firing is greater on sucrose trials than maltodextrin and water. if there's a tie, make it sucrose (this is highly unlikely)
- R_3R.BinRewPref{i,1}(k,1)=1; %sucrose preferring
- elseif R_3R.BinStatRwrd{i,1}(k).R2Mean > R_3R.BinStatRwrd{i,1}(k).R1Mean && R_3R.BinStatRwrd{i,1}(k).R2Mean >= R_3R.BinStatRwrd{i,1}(k).R3Mean %if mal is greater than suc and water
- R_3R.BinRewPref{i,1}(k,1)=2; %maltodextrin preferring
- else
- R_3R.BinRewPref{i,1}(k,1)=3; %water preferring
- end
- else
- R_3R.BinRewPref{i,1}(k,1)=0; %if not significant in 2 consecutive bins
- end
- else
- R_3R.BinRewPref{i,1}(k,1)=0; %if no sig reward modulation
- end
-
- end
- %find how many NAc neurons have significant reward modulation in each bin
- NN1perBin(i,1)=sum(R_3R.BinRewPref{i,1}(:,1)==1); %sucrose pref
- NN2perBin(i,1)=sum(R_3R.BinRewPref{i,1}(:,1)==2); %malto pref
- NN3perBin(i,1)=sum(R_3R.BinRewPref{i,1}(:,1)==3); %malto pref
- NNperBin(i,1)=sum(R_3R.BinRewPref{i,1}(:,1)>0); %any
- %normalize to number of neurons in population
- NN1norm=NN1perBin./length(R_3R.Ninfo);
- NN2norm=NN2perBin./length(R_3R.Ninfo);
- NN3norm=NN3perBin./length(R_3R.Ninfo);
- NNnorm=NNperBin./length(R_3R.Ninfo);
-
- end
- %plotting number of significantly modulated neurons across time
- %NAc
- subplot(2,3,2);
- hold on;
- plot(xaxis,NNnorm(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NN1norm(2:bins-1),'Color',sucrose,'linewidth',1.5);
- plot(xaxis,NN2norm(2:bins-1),'Color',maltodextrin,'linewidth',1.5);
- plot(xaxis,NN3norm(2:bins-1),'Color',water,'linewidth',1.5);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.85]);
- legend('Total','Suc > mal & wat','Mal > suc & wat','Water > suc & mal','Location','northeast')
- ylabel('Fraction of population');
- xlabel('Seconds from RD');
- title('Reward-selective neurons');
- %% plotting sucrose-selective neurons
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %events we're looking at
- RD1=strcmp('RD1', R_3R.Erefnames);
- RD2=strcmp('RD2', R_3R.Erefnames);
- RD3=strcmp('RD3', R_3R.Erefnames);
- %setting up parameters
- Xaxis=[-2 5];
- inttime=find(R_3R.Param.Tm>=Xaxis(1) & R_3R.Param.Tm<=Xaxis(2));
- paramtime=R_3R.Param.Tm(inttime);
- %find all neurons with greater firing for sucrose
- for i = 1:(Bin2-Bin1+1)
- %the added +1 is necessary because bin 20 is the 21st entry in the matrix
- Pref1(:,i)=R_3R.BinRewPref{Bin1+i}==1; %get neurons that have greater firing for sucrose in any of the bins bounded above
- Resp11(:,i)=Pref1(:,i)&cat(1,R_3R.BinStatRwrd{Bin1+i,1}.SucRespDir)==1; %get neurons with excitation to sucrose
- Resp12(:,i)=Pref1(:,i)&cat(1,R_3R.BinStatRwrd{Bin1+i,1}.MalRespDir)==1;%get neurons with inhibition to maltodextrin
- Resp13(:,i)=Pref1(:,i)&cat(1,R_3R.BinStatRwrd{Bin1+i,1}.WatRespDir)==-1;%get neurons with inhibition to maltodextrin
- end
- Sel=sum(Pref1,2)>0; %all neurons selective in any bin
- Sel1=sum(Resp11,2)>0; %all selective neurons sucrose excited in any bin
- Sel3=sum(Resp12,2)>0; %all selective neurons malto inhibited in any bin
- Sel6=sum(Resp13,2)>0; %all selective neurons malto inhibited in any bin
- subplot(2,4,5); %heatmap of suc preferring neurons' response to sucrose
- Neurons=R_3R.Ev(RD1).PSTHz(Sel,inttime); %get the firing rates of neurons of interest
- SucResp=cat(1,R_3R.BinStatRwrd{SortBin+1,1}.R1Mean); %sucrose responses
- TMP=SucResp(Sel); %find the magnitude of the excitations for water for this binTMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Sel,1)],Neurons,ClimE);
- title(['Sucrose trials']);
- xlabel('Seconds from RD');
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- subplot(2,4,6); %heatmap of suc preferring neurons' response to maltodextrin
- Neurons=R_3R.Ev(RD2).PSTHz(Sel,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Sel,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- subplot(2,4,7); %heatmap of suc preferring neurons' response to water
- Neurons=R_3R.Ev(RD3).PSTHz(Sel,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Sel,1)],Neurons,ClimE);
- title(['Water trials']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %plot suc preferring neurons to suc
- psthE=nanmean(R_3R.Ev(RD1).PSTHz(Sel,inttime),1);
- semE=nanste(R_3R.Ev(RD1).PSTHz(Sel,inttime),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- %plot suc preferring neurons to malt
- psth2=nanmean(R_3R.Ev(RD2).PSTHz(Sel,inttime),1);
- sem2=nanste(R_3R.Ev(RD2).PSTHz(Sel,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plot suc preferring neurons to water
- psth3=nanmean(R_3R.Ev(RD3).PSTHz(Sel,inttime),1);
- sem3=nanste(R_3R.Ev(RD3).PSTHz(Sel,inttime),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plotting
- subplot(2,3,3);
- hold on;
- plot(paramtime,psthE,'Color',sucrose,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- plot(paramtime,psth3,'Color',water,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[upE,downE(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up3,down3(end:-1:1)],water,'EdgeColor','none');alpha(0.5);
- legend('Suc trials','Mal trials','Wat trials');
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- axis([-2 5 -2 4.7]);
- ylabel('Mean firing (z-score)');
- title(['Suc>mal&wat (n=' num2str(sum(Sel)) ' of ' num2str(length(Sel)) ')'])
- xlabel('Seconds from RD');
- G = sum(Sel1&Sel3&Sel6);
- F = sum(Sel3&Sel6);
- E = sum(Sel1&Sel6);
- D = sum(Sel1&Sel3);
- A = sum(Sel1);
- B = sum(Sel3);
- C = sum(Sel6);
- %vertical venn diagram
- x = [0 0 1 1];
- y1 = [C-E C-E+A C-E+A C-E];
- y2 = [C-F C-F+B C-F+B C-F];
- y3 = [0 C C 0];
- subplot(2,35,64);
- hold on;
- s = patch(x,y1,sucrose);
- m = patch(x,y2,maltodextrin);
- w = patch(x,y3,water);
- alpha(s,0.7);
- alpha(w,0.5);
- alpha(m,0.5);
- set(gca,'xtick',[]);
- ylabel('Distribution of neurons');
- axis([0 1 0 C-E+A]);
- %% stats on reward firing averaged together
- %for simplicity, just looking at average activity in sort bin
- %because I already have that data collected
- SucResp=cat(1,R_3R.BinStatRwrd{SortBin+1,1}.R1Mean); %suc responses
- MalResp=cat(1,R_3R.BinStatRwrd{SortBin+1,1}.R2Mean); %mal responses
- WatResp=cat(1,R_3R.BinStatRwrd{SortBin+1,1}.R3Mean); %wat responses
- [~,R_3R.RewRespStat{1,1},R_3R.RewRespStat{1,2}]=anovan(cat(1,SucResp(Sel),MalResp(Sel),WatResp(Sel)),{cat(1,zeros(sum(Sel),1),ones(sum(Sel),1),2*ones(sum(Sel),1)),cat(1,R_3R.Ninfo(Sel,4),R_3R.Ninfo(Sel,4),R_3R.Ninfo(Sel,4))},'varnames',{'Reward','Subject'},'random',2,'Display','off','model','full');
- R_3R.RewRespStat{1,3}=multcompare(R_3R.RewRespStat{1,2},'display','off');
- save('R_3R.mat','R_3R');
|