123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- %decodes trial identity from spiking across bins for neurons pooled across sessions
- %also does this for only selective and non-selective neurons
- %need to run A, B, and D first
- clear all;
- load ('R_2R.mat');
- load ('RAW.mat');
- %NAc is 1, VP is 2
- region={'NA';'VP'};
- %decoding parameters
- NumNeurons=[10 25 50 100 150]; %matrix of how many neurons to use on each iteration
- repetitions=20; %how many times to run the analysis
- folds = 5; %number of times cross-validated:
- shuffs = 1; %number of shuffled models created
- %load parameters
- BinDura=R_2R.Param.BinDura;
- bins=R_2R.Param.bins;
- binint=R_2R.Param.binint;
- binstart=R_2R.Param.binstart;
- %Need to keep number of trials used in VP and NAc constant, so have to pick
- %minimum number across all sessions in both regions. Right now with
- %existing sessions it's 20 Ev1s and 20 Ev2s
- Ev1s=20;
- Ev2s=20;
- %find number of trials in each session
- for i=1:length(RAW)
-
- %events being compared
- Ev1=strcmp('RD1', RAW(i).Einfo(:,2));
- Ev2=strcmp('RD2', RAW(i).Einfo(:,2));
-
- Ev1perSess(i)=length(RAW(i).Erast{Ev1,1});
- Ev2perSess(i)=length(RAW(i).Erast{Ev2,1});
- end
- %setup variables
- PoolDec=[];
- NN = 0;
- for e=1:3 %different selections of neurons
-
- %pick which set of neurons: all, reward-specific, or non-reward specific
- if e==1 selection=R_2R.Ninfo; end %all neurons
- if e==2 selection=R_2R.RSinfo; end %reward-selective neurons
- if e==3 selection=R_2R.RNSinfo; end %reward-nonselective neurons
-
- for f=1:2 %region
- TotalNeurons = 0;
- %total number of neurons in all sessions and events per session
- for i=1:length(RAW)
- if strcmp(region(f),RAW(i).Type(1:2))
- TotalNeurons=TotalNeurons+size(RAW(i).Nrast,1);
- end
- end
- for l=1:bins
- DecodeSpikes=NaN(1,1);
- AllSpikes=NaN(1,1);
- NN = 0;
- for i=1:length(RAW) %loops through sessions
- if strcmp(region(f),RAW(i).Type(1:2)) && Ev1perSess(i)>=20 && Ev2perSess(i)>=20
-
- %events being compared
- Ev1=strcmp('RD1', RAW(i).Einfo(:,2));
- Ev2=strcmp('RD2', RAW(i).Einfo(:,2));
-
- for j= 1:size(RAW(i).Nrast,1) %Number of neurons per session
- if sum(strcmp(RAW(i).Ninfo(j,1),selection(:,1)) & strcmp(RAW(i).Ninfo(j,2),selection(:,2)))==1 %check if this neuron is on the selection list
- NN=NN+1; %neuron counter
- Ev1Spikes=NaN(1,1);
- Ev2Spikes=NaN(1,1);
- %get number of spikes for this neuron in this bin for all
- %Ev1 trials
- [PSR1,N1]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Ev1},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
- for m=1:length(PSR1)
- Ev1Spikes(m,1)=sum(PSR1{1,m}>(binstart));
- end
- %pick which trials get used for decoding
- SetupTrials=cat(1,ones(Ev1s,1),zeros(length(PSR1)-Ev1s,1));
- Trials=(SetupTrials(randperm(length(SetupTrials)))==1);
- %put spikes from those trials in a matrix
- AllSpikes(1:Ev1s,NN)=Ev1Spikes(Trials,1);
- %get all the spikes from reward 1p2 trials
- [PSR2,N2]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Ev2},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
- for n=1:length(PSR2)
- Ev2Spikes(n,1)=sum(PSR2{1,n}>(binstart));
- end
- %pick which trials get used for decoding
- SetupTrials2=cat(1,ones(Ev2s,1),zeros(length(PSR2)-Ev2s,1));
- Trials2=(SetupTrials2(randperm(length(SetupTrials2)))==1);
- %put spikes from those trials in a matrix
- AllSpikes((Ev1s+1):(Ev1s+Ev2s),NN)=Ev2Spikes(Trials2,1);
- end
- end %neurons
- end %checking if enough events in that session
- end %sessions
- TotalNeurons=NN;
-
- %do the decoding
- for v = 1:length(NumNeurons)
- if TotalNeurons>NumNeurons(v)
- for u=1:repetitions
- LowHz=zeros(1,NumNeurons(v)); %reset the lowHz identifier
- %pick which neurons to use
- SetupSel=cat(1,ones(NumNeurons(v),1),zeros(TotalNeurons-NumNeurons(v),1));
- Sel=(SetupSel(randperm(length(SetupSel)))==1);
- %setup the event identity matrix for decoding
- %DecodeRs=zeros(Ev1s+Ev2s,NumNeurons(v));
- DecodeRs(1:Ev1s,1)=1;
- %DecodeRs(1:Ev1s,end)=1;
- %DecodeRs((Ev1s+1):(Ev1s+Ev2s),2:end-1)=1;
- DecodeRs((Ev1s+1):(Ev1s+Ev2s),1)=0;
-
- %setup decode spike matrix
- DecodeSpikes=AllSpikes(:,Sel);
-
- %find neurons with too few spikes
- for t=1:NumNeurons(v)
- if sum(DecodeSpikes(1:Ev1s,t))<7 || sum(DecodeSpikes((1+Ev1s):(Ev1s+Ev2s),t))<7
- LowHz(1,t)=1;
- end
- end
- %remove neurons with too few spikes
- if sum(LowHz)>0
- Sel2=LowHz<1;
- DecodeSpikes=DecodeSpikes(:,Sel2);
- end
- %set up validation result matrices
- CVacc = NaN(folds,1);
- CVaccSh = NaN(folds,1);
- %normal model
- for r = 1:folds
- Partitions = cvpartition(DecodeRs,'KFold',folds);
- SVMModel = fitcdiscr(DecodeSpikes(Partitions.training(r),:),DecodeRs(Partitions.training(r)));
- prediction = predict(SVMModel,DecodeSpikes(Partitions.test(r),:));
- actual = DecodeRs(Partitions.test(r));
- correct = prediction - actual;
- CVacc(r) = sum(correct==0) / length(correct);
- end
- %shuffled model
- for q=1:shuffs
- DecodeRsSh=DecodeRs(randperm(length(DecodeRs)));
- PartitionsSh = cvpartition(DecodeRsSh,'KFold',folds);
- for s = 1:folds
- SVMModelSh = fitcdiscr(DecodeSpikes(PartitionsSh.training(s),:),DecodeRsSh(PartitionsSh.training(s)));
- predictionSh = predict(SVMModelSh,DecodeSpikes(PartitionsSh.test(s),:));
- actualSh = DecodeRsSh(PartitionsSh.test(s));
- correctSh = predictionSh - actualSh;
- CVaccSh(s) = sum(correctSh==0) / length(correctSh);
- end
- AccShuff(q,1) = nanmean(CVaccSh);
- end
- PoolDec{e,f}.True{v,1}(u,l) = nanmean(CVacc);
- PoolDec{e,f}.Shuff{v,1}(u,l) = nanmean(AccShuff);
-
- end %repetitions
- fprintf(['Selection #' num2str(e) ', Region #' num2str(f) ', Bin #' num2str(l) ', Condition #' num2str(v) '\n']);
- else
- PoolDec{e,f}.True{v,1} = NaN;
- PoolDec{e,f}.Shuff{v,1} = NaN;
- fprintf(['Selection #' num2str(e) ', Region #' num2str(f) ', Bin #' num2str(l) ', Condition #' num2str(v) '\n']);
- end %checking if there are enough neurons
- end %conditions (number of neurons)
- end %bins
- end %region
- end %selections
- save('PoolDec_2R.mat','PoolDec');
- R_2R.Param.NumNeurons=NumNeurons;
- save('R_2R.mat','R_2R');
|