123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- %Looking at the average firing rate for a given window in each of 4
- %current/previous reward conditions
- clear all;
- load ('R_2R.mat');
- load ('RAW.mat');
- %run linear model and stats? 1 is yes, 0 is no
- runanalysis=1;
- %divide neurons up by region
- NAneurons=strcmp(R_2R.Ninfo(:,3),'NA');
- VPneurons=strcmp(R_2R.Ninfo(:,3),'VP');
- %get parameters
- trialsback=6; %how many trials back to look
- Baseline=R_2R.Param.BinBase; %For normalizing activity
- Window=[0.8 1.3]; %what window of activity is analyzed
- BinDura=R_2R.Param.BinDura;
- bins=R_2R.Param.bins;
- binint=R_2R.Param.binint;
- binstart=R_2R.Param.binstart;
- %sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
- SortBinTime=1; %seconds
- SortBin=(((SortBinTime-BinDura(2)/2)-binstart)/binint); %convert to bin name
- %reset
- NN=0;
- EvMeanz=0;
- if runanalysis==1
- for i=1:length(RAW) %loops through sessions
- if strcmp('NA',RAW(i).Type(1:2)) | strcmp('VP',RAW(i).Type(1:2))
- %events
- EV1=strmatch('RD1P2',RAW(i).Einfo(:,2),'exact');
- EV2=strmatch('RD1P1',RAW(i).Einfo(:,2),'exact');
- EV3=strmatch('RD2P2',RAW(i).Einfo(:,2),'exact');
- EV4=strmatch('RD2P1',RAW(i).Einfo(:,2),'exact');
- RD=strmatch('RD',RAW(i).Einfo(:,2),'exact');
- R1=strmatch('Reward1Deliv',RAW(i).Einfo(:,2),'exact');
- R2=strmatch('Reward2Deliv',RAW(i).Einfo(:,2),'exact');
- %% linear model for impact of previous rewards
- %reset
- X=[];
- Y=[];
- %set up the matrix with outcome identity for each session
- rewards1=cat(2,RAW(i).Erast{R1,1}(:,1),ones(length(RAW(i).Erast{R1,1}(:,1)),1));
- rewards2=cat(2,RAW(i).Erast{R2,1}(:,1),zeros(length(RAW(i).Erast{R2,1}(:,1)),1));
- rewards=cat(1,rewards1,rewards2);
- [rewards(:,1),ind]=sort(rewards(:,1));
- rewards(:,2)=rewards(ind,2);
- for k=trialsback+1:length(RAW(i).Erast{RD,1}(:,1))
- time=RAW(i).Erast{RD,1}(k,1);
- entry=find(rewards(:,1)==time);
- for m=1:trialsback+1
- X(k-trialsback,m)=rewards(entry+1-m,2);
- end
- end
- for j= 1:length(RAW(i).Nrast) %Number of neurons within sessions
- NN=NN+1;
- rewspk=0;
- basespk=0;
- %get mean baseline firing for all reward trials
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD},Baseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- basespk(1,y)=sum(Bcell1{1,y}>Baseline(1));
- end
- Bhz=basespk/(Baseline(1,2)-Baseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for all reward trials
- [EVcell,EVn]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD},Window,{2});% makes trial by trial rasters for event
- for y= 1:EVn
- rewspk(y,1)=sum(EVcell{1,y}>Window(1));
- end
- Y=((rewspk(trialsback+1:end,1)/(Window(1,2)-Window(1,1)))-Bmean)/Bstd; %normalize the activity to baseline
- %true data
- linmdl{NN,1}=fitlm(X,Y);
- R_2R.RewHist.LinMdlWeights(NN,1:trialsback+1)=linmdl{NN,1}.Coefficients.Estimate(2:trialsback+2)';
- R_2R.RewHist.LinMdlPVal(NN,1:trialsback+1)=linmdl{NN,1}.Coefficients.pValue(2:trialsback+2)';
- %shuffled
- YSh=Y(randperm(length(Y)));
- linmdlSh{NN,1}=fitlm(X,YSh);
- R_2R.RewHist.LinMdlWeightsSh(NN,1:trialsback+1)=linmdlSh{NN,1}.Coefficients.Estimate(2:trialsback+2)';
- R_2R.RewHist.LinMdlPValSh(NN,1:trialsback+1)=linmdlSh{NN,1}.Coefficients.pValue(2:trialsback+2)';
- %% stats comparing effect of current and previous reward
- %resetting
- Bcell=0;
- EV1spk=0;
- EV2spk=0;
- EV3spk=0;
- EV4spk=0;
- EV1norm=0;
- EV2norm=0;
- EV3norm=0;
- EV4norm=0;
- %get mean baseline firing for all reward trials
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},Baseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- Bcell(1,y)=sum(Bcell1{1,y}>Baseline(1));
- end
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},Baseline,{2});% makes trial by trial rasters for baseline
- for z= 1:B2n
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>Baseline(1));
- end
- [Bcell3,B3n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},Baseline,{2});% makes trial by trial rasters for baseline
- for z= 1:B3n
- Bcell(1,z+B1n+B2n)=sum(Bcell3{1,z}>Baseline(1));
- end
- [Bcell4,B4n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},Baseline,{2});% makes trial by trial rasters for baseline
- for z= 1:B4n
- Bcell(1,z+B1n+B2n+B3n)=sum(Bcell4{1,z}>Baseline(1));
- end
- Bhz=Bcell/(Baseline(1,2)-Baseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for suc/mal trials
- [EV1cell,EV1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},Window,{2});% makes trial by trial rasters for event
- for y= 1:EV1n
- EV1spk(1,y)=sum(EV1cell{1,y}>Window(1));
- end
- EV1hz=EV1spk/(Window(1,2)-Window(1,1));
- for x= 1:EV1n
- EV1norm(1,x)=((EV1hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for suc/suc trials
- [EV2cell,EV2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},Window,{2});% makes trial by trial rasters for event
- for y= 1:EV2n
- EV2spk(1,y)=sum(EV2cell{1,y}>Window(1));
- end
- EV2hz=EV2spk/(Window(1,2)-Window(1,1));
- for x= 1:EV2n
- EV2norm(1,x)=((EV2hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for mal/mal trials
- [EV3cell,EV3n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},Window,{2});% makes trial by trial rasters for event
- for y= 1:EV3n
- EV3spk(1,y)=sum(EV3cell{1,y}>Window(1));
- end
- EV3hz=EV3spk/(Window(1,2)-Window(1,1));
- for x= 1:EV3n
- EV3norm(1,x)=((EV3hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for mal/suc trials
- [EV4cell,EV4n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},Window,{2});% makes trial by trial rasters for event
- for y= 1:EV4n
- EV4spk(1,y)=sum(EV4cell{1,y}>Window(1));
- end
- EV4hz=EV4spk/(Window(1,2)-Window(1,1));
- for x= 1:EV4n
- EV4norm(1,x)=((EV4hz(1,x)-Bmean)/Bstd);
- end
- EvMeanz(NN,1)=nanmean(EV1norm);
- EvMeanz(NN,2)=nanmean(EV2norm);
- EvMeanz(NN,3)=nanmean(EV3norm);
- EvMeanz(NN,4)=nanmean(EV4norm);
- R_2R.RewHist.PrevRewMeanz=EvMeanz;
- fprintf('Neuron # %d\n',NN);
- end
- end
- end
- end
- %% which neurons to look at for stats and plotting?
- % Sel=R_2R.SucN | R_2R.MalN; %only look at reward-selective neurons
- Sel=NAneurons | VPneurons; %look at all neurons
- %Sel=R_2R.RewHist.LinMdlPVal(:,2)<0.1; %only neurons with significant impact of previous trial
- %Sel=R_2R.RewHist.LinMdlWeights(:,2)<-1; %only neurons with strong negative impact of previous trial
- %% ANOVAs
- %setup and run ANOVA for effects of current reward, previous reward, and region on reward firing
- CurrRew=cat(2,zeros(length(NAneurons),2),ones(length(NAneurons),2));
- PrevRew=cat(2,zeros(length(NAneurons),1),ones(length(NAneurons),1),zeros(length(NAneurons),1),ones(length(NAneurons),1));
- Region=cat(2,NAneurons,NAneurons,NAneurons,NAneurons);
- %to look at a specific selection of cells
- EvMeanz=R_2R.RewHist.PrevRewMeanz(Sel,:);
- CurrRew=CurrRew(Sel,:);
- PrevRew=PrevRew(Sel,:);
- Region=Region(Sel,:);
- [~,R_2R.RewHist.PrevRewStats{1,1},R_2R.RewHist.PrevRewStats{1,2}]=anovan(EvMeanz(:),{CurrRew(:),PrevRew(:),Region(:)},'varnames',{'Current Reward','Previous Reward','Region'},'display','off','model','full');
- %setup and run ANOVA for effects of shuffle, trial, and region on coefficient
- Trial=[];
- Region=[];
- for i=1:trialsback+1
- Trial=cat(2,Trial,i*ones(length(NAneurons),1));
- Region=cat(2,Region,NAneurons);
- end
- Trial=cat(2,Trial,Trial);
- Region=cat(2,Region,Region);
- Shuffd=cat(2,zeros(length(NAneurons),trialsback+1),ones(length(NAneurons),trialsback+1));
- Coeffs=cat(2,R_2R.RewHist.LinMdlWeights(:,1:trialsback+1),R_2R.RewHist.LinMdlWeightsSh(:,1:trialsback+1));
- [~,R_2R.RewHist.LinCoeffStats{1,1},R_2R.RewHist.LinCoeffStats{1,2}]=anovan(Coeffs(:),{Shuffd(:),Region(:),Trial(:)},'varnames',{'Shuffd','Region','Trial'},'display','off','model','full');
- %% plotting
- Xaxis=[-0.5 3];
- Ishow=find(R_2R.Param.Tm>=Xaxis(1) & R_2R.Param.Tm<=Xaxis(2));
- time1=R_2R.Param.Tm(Ishow);
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %colors
- sucrose=[.95 0.55 0.15];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- inh=[0.1 0.021154 0.6];
- exc=[0.9 0.75 0.205816];
- NAc=[0.5 0.1 0.8];
- VP=[0.3 0.7 0.1];
- %extra colors to make a gradient
- sucrosem=[.98 0.8 0.35];
- sucrosel=[1 1 0.4];
- maltodextrinm=[1 0.75 1];
- maltodextrinl=[1 0.8 1];
- RD1P1=strcmp('RD1P1', R_2R.Erefnames);
- RD1P2=strcmp('RD1P2', R_2R.Erefnames);
- RD2P1=strcmp('RD2P1', R_2R.Erefnames);
- RD2P2=strcmp('RD2P2', R_2R.Erefnames);
- %% Get mean firing according to previous trial and then plot
- %NAc
- %plot suc after suc
- psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1);
- sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot suc after malt
- psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1);
- sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plot malt after suc
- psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ishow),1);
- sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plot malt after malt
- psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ishow),1);
- sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up4=psth4+sem4;
- down4=psth4-sem4;
- %make the plot
- subplot(2,4,1);
- hold on;
- title(['Reward response, current/prev reward'])
- plot(time1,psth2,'Color',sucrosem,'linewidth',1);
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psth4,'Color',maltodextrinm,'linewidth',1);
- plot(time1,psth3,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],sucrosem,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up3,down3(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up4,down4(end:-1:1)],maltodextrinm,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([Window(1) Window(1)],[-2 8],'color','b','linewidth',0.85);
- plot([Window(2) Window(2)],[-2 8],'color','b','linewidth',0.85);
- axis([Xaxis(1) Xaxis(2) min(down3)-0.15 max(up2)+0.2]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc/mal','Suc/suc','Mal/mal','Mal/suc','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStats{1,1}(3,7))<0.05
- plot(Window(1)+(Window(2)-Window(1))/4,max(up2)+0.1,'*','color','b','markersize',13);
- end
- %VP
- %plot suc after suc
- psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1);
- sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot suc after malt
- psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1);
- sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plot malt after suc
- psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ishow),1);
- sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plot malt after malt
- psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ishow),1);
- sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up4=psth4+sem4;
- down4=psth4-sem4;
- %make the plot
- subplot(2,4,5);
- hold on;
- title(['Reward response, current/prev reward'])
- plot(time1,psth2,'Color',sucrosem,'linewidth',1);
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psth4,'Color',maltodextrinm,'linewidth',1);
- plot(time1,psth3,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],sucrosem,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up3,down3(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up4,down4(end:-1:1)],maltodextrinm,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([Window(1) Window(1)],[-2 8],'color','b','linewidth',0.85);
- plot([Window(2) Window(2)],[-2 8],'color','b','linewidth',0.85);
- axis([Xaxis(1) Xaxis(2) min(down3)-0.3 max(up2)+0.3]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc/mal','Suc/suc','Mal/mal','Mal/suc','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStats{1,1}(3,7))<0.05
- plot(Window(1)+(Window(2)-Window(1))/4,max(up2)+0.15,'*','color','b','markersize',13);
- end
- if cell2mat(R_2R.RewHist.PrevRewStats{1,1}(7,7))<0.05
- plot(Window(1)+3*(Window(2)-Window(1))/4,max(up2)+0.15,'*','color','r','markersize',13);
- end
- %% Plotting heatmaps of each condition
- %NAc
- %sucrose responses following sucrose
- subplot(2,24,[10 11]); %heatmap of water preferring neurons' response to water
- Neurons=R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow); %get the firing rates of neurons of interest
- SucResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R1Mean); %sucrose responses
- TMP=SucResp(Sel&NAneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(time1,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Suc after suc']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %following maltodextrin
- subplot(2,24,[7 8]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(time1,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Suc after mal']);
- ylabel('All neurons plotted individually');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %maltodextrin responses following sucrose
- subplot(2,24,[16 17]); %heatmap of water preferring neurons' response to water
- Neurons=R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons as before
- imagesc(time1,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Mal after suc']);
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %following maltodextrin
- subplot(2,24,[13 14]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(time1,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Mal after mal']);
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %VP
- %sucrose responses following sucrose
- subplot(2,24,[34 35]); %heatmap of water preferring neurons' response to water
- Neurons=R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow); %get the firing rates of neurons of interest
- SucResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R1Mean); %sucrose responses
- TMP=SucResp(Sel&VPneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(time1,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Suc after suc']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %following maltodextrin
- subplot(2,24,[31 32]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(time1,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Suc after mal']);
- ylabel('All neurons plotted individually');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %maltodextrin responses following sucrose
- subplot(2,24,[40 41]); %heatmap of water preferring neurons' response to water
- Neurons=R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons as before
- imagesc(time1,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Mal after suc']);
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %following maltodextrin
- subplot(2,24,[37 38]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ishow); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(time1,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Mal after mal']);
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %% plot linear model coefficients
- %Plot all neurons
- Sel=NAneurons<2;
- %coefficients for each trial
- subplot(2,4,4);
- hold on;
- errorbar(0:trialsback,nanmean(R_2R.RewHist.LinMdlWeights(Sel&NAneurons,1:trialsback+1),1),nanste(R_2R.RewHist.LinMdlWeights(Sel&NAneurons,1:trialsback+1),1),'color',NAc,'linewidth',1);
- errorbar(0:trialsback,nanmean(R_2R.RewHist.LinMdlWeights(Sel&VPneurons,1:trialsback+1),1),nanste(R_2R.RewHist.LinMdlWeights(Sel&VPneurons,1:trialsback+1),1),'color',VP,'linewidth',1);
- errorbar(0:trialsback,nanmean(R_2R.RewHist.LinMdlWeightsSh(Sel&NAneurons,1:trialsback+1),1),nanste(R_2R.RewHist.LinMdlWeights(Sel&NAneurons,1:trialsback+1),1),'color','k','linewidth',1);
- errorbar(0:trialsback,nanmean(R_2R.RewHist.LinMdlWeightsSh(Sel&VPneurons,1:trialsback+1),1),nanste(R_2R.RewHist.LinMdlWeights(Sel&VPneurons,1:trialsback+1),1),'color','k','linewidth',1);
- xlabel('Trials back');
- ylabel('Mean coefficient weight');
- title('Linear model coefficients');
- legend('NAc','VP','Shuff');
- axis([-1 trialsback+1 -1 2.8]);
- plot([-1 trialsback+1],[0 0],':','color','k','linewidth',0.75);
- %stats to check if VP is greater than NAc
- R_2R.RewHist.LinCoeffMultComp=[];
- [c,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStats{1,2},'dimension',[1,2,3],'display','off');
- for i=1:trialsback+1
- %NAc vs VP
- Cel=c(:,1)==4*(i-1)+1 & c(:,2)==4*(i-1)+3;
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffMultComp(i,1)=1; else R_2R.RewHist.LinCoeffMultComp(i,1)=0; end
- R_2R.RewHist.LinCoeffMultComp(i,2)=c(Cel,6);
- %VP vs shuff
- Cel=c(:,1)==4*(i-1)+1 & c(:,2)==4*(i-1)+2;
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffMultComp(i,3)=1; else R_2R.RewHist.LinCoeffMultComp(i,3)=0; end
- R_2R.RewHist.LinCoeffMultComp(i,4)=c(Cel,6);
- %NAc vs shuff
- Cel=c(:,1)==4*(i-1)+3 & c(:,2)==4*(i-1)+4;
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffMultComp(i,5)=1; else R_2R.RewHist.LinCoeffMultComp(i,5)=0; end
- R_2R.RewHist.LinCoeffMultComp(i,6)=c(Cel,6);
- end
- subplot(2,4,4);
- hold on;
- plot([0:trialsback]-0.15,(R_2R.RewHist.LinCoeffMultComp(:,3)-0.5)*5,'*','color',VP); %VP vs shuff
- plot([0:trialsback],(R_2R.RewHist.LinCoeffMultComp(:,5)-0.5)*5,'*','color',NAc); %NAc vs shuff
- plot([0:trialsback]+0.15,(R_2R.RewHist.LinCoeffMultComp(:,1)-0.5)*5,'*','color','k'); %VP vs NAc
- %number of neurons with significant weights
- subplot(2,4,8);
- hold on;
- plot(0:trialsback,sum(R_2R.RewHist.LinMdlPVal(Sel&NAneurons,1:trialsback+1)<0.05,1)/sum(Sel&NAneurons),'color',NAc,'linewidth',1);
- plot(0:trialsback,sum(R_2R.RewHist.LinMdlPVal(Sel&VPneurons,1:trialsback+1)<0.05,1)/sum(Sel&VPneurons),'color',VP,'linewidth',1);
- plot(0:trialsback,sum(R_2R.RewHist.LinMdlPValSh(Sel&NAneurons,1:trialsback+1)<0.05,1)/sum(Sel&NAneurons),'color',NAc/3,'linewidth',1);
- plot(0:trialsback,sum(R_2R.RewHist.LinMdlPValSh(Sel&VPneurons,1:trialsback+1)<0.05,1)/sum(Sel&VPneurons),'color',VP/3,'linewidth',1);
- axis([-1 trialsback+1 0 0.5]);
- xlabel('Trials back');
- ylabel('Fraction of the population');
- title('Outcome-modulated neurons');
- %Chi squared stat for each trial
- R_2R.RewHist.LinMdlX2all=[];
- R_2R.RewHist.LinMdlX2region=[];
- for i=1:trialsback+1
- [~,R_2R.RewHist.LinMdlX2all(i,1),R_2R.RewHist.LinMdlX2all(i,2)]=crosstab(cat(1,R_2R.RewHist.LinMdlPVal(Sel,i)<0.05,R_2R.RewHist.LinMdlPValSh(Sel,i)<0.05),cat(1,VPneurons,VPneurons+2));
- [~,R_2R.RewHist.LinMdlX2region(i,1),R_2R.RewHist.LinMdlX2region(i,2)]=crosstab(R_2R.RewHist.LinMdlPVal(Sel,i)<0.05,VPneurons);
- end
- %plot([0:trialsback]-0.1,(R_2R.LinMdlX2all(:,2)<0.05)-0.52,'*','color',NAc);
- plot([0:trialsback],(R_2R.RewHist.LinMdlX2region(:,2)<0.05&R_2R.RewHist.LinMdlX2all(:,2)<0.05)-0.52,'*','color','k');
- save('R_2R.mat','R_2R');
|