12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- %decodes trial identity from spiking across bins for each individual neuron
- clear all;
- load ('R_2R.mat');
- load ('RAW.mat');
- folds = 5; %number of times cross-validated:
- shuffs = 1; %number of shuffled models created
- %load parameters
- BinDura=R_2R.Param.BinDura;
- bins=R_2R.Param.bins;
- binint=R_2R.Param.binint;
- binstart=R_2R.Param.binstart;
- %setup variables
- UnitDec=[];
- NN = 0;
- for i=1:length(RAW) %loops through sessions
- if strcmp('NA',RAW(i).Type(1:2)) | strcmp('VP',RAW(i).Type(1:2)) %check if it's a suc vs mal session
- %events being compared
- RD1=strcmp('RD1', RAW(i).Einfo(:,2));
- RD2=strcmp('RD2', RAW(i).Einfo(:,2));
- for j= 1:size(RAW(i).Nrast,1) %Number of neurons per session
- NN=NN+1; %neuron counter
- for l=1:bins
- LowHz=zeros(1,1);
- DecodeSpikes=NaN(1,1);
- DecodeRs=NaN(1,1);
- [PSR1,N1]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD1},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
- for m=1:length(PSR1)
- DecodeSpikes(m,1)=sum(PSR1{1,m}>(binstart));
- DecodeRs(m,1)=1;
- end
- %get all the spikes from reward 1p2 trials
- [PSR2,N2]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD2},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
- for n=1:length(PSR2)
- DecodeSpikes(n+m,1)=sum(PSR2{1,n}>(binstart));
- DecodeRs(n+m,1)=2;
- end
- if sum(DecodeSpikes(1:N1,1))<7 || sum(DecodeSpikes((1+N1):(N1+N2),1))<7 %prevents errors with LDA on conditions with no variance
- LowHz(1,1)=1;
- end
- %if one neuron or more has too few spikes, so LDA has error because not
- %enough variance, this removes those neurons from the analysis
- if sum(LowHz)==0
- %creating models
- CVacc = NaN(folds,1);
- CVaccSh = NaN(folds,1);
- %normal model
- for r = 1:folds
- Partitions = cvpartition(DecodeRs,'KFold',folds);
- LDAModel = fitcdiscr(DecodeSpikes(Partitions.training(r),:),DecodeRs(Partitions.training(r)));
- prediction = predict(LDAModel,DecodeSpikes(Partitions.test(r),:));
- actual = DecodeRs(Partitions.test(r));
- correct = prediction - actual;
- CVacc(r) = sum(correct==0) / length(correct);
- end
- %shuffled model
- for q=1:shuffs
- DecodeRsSh=DecodeRs(randperm(length(DecodeRs)));
- PartitionsSh = cvpartition(DecodeRsSh,'KFold',folds);
- for s = 1:folds
- LDAModelSh = fitcdiscr(DecodeSpikes(PartitionsSh.training(s),:),DecodeRsSh(PartitionsSh.training(s)));
- predictionSh = predict(LDAModelSh,DecodeSpikes(PartitionsSh.test(s),:));
- actualSh = DecodeRsSh(PartitionsSh.test(s));
- correctSh = predictionSh - actualSh;
- CVaccSh(s) = sum(correctSh==0) / length(correctSh);
- end
- AccShuff(q,1) = nanmean(CVaccSh);
- end
- UnitDec.True(NN,l) = nanmean(CVacc);
- UnitDec.Shuff(NN,l) = nanmean(AccShuff);
- else
- UnitDec.True(NN,l) = NaN;
- UnitDec.Shuff(NN,l) = NaN;
- end
- end
- fprintf('Neuron ID # %d\n',NN);
- end %neurons: FOR j= 1:size(RAW(i).Nrast,1)
- end %checking if the right session type
- end %sessions: FOR i=1:length(RAW)
- save('UnitDec_2R.mat','UnitDec');
|