123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848 |
- clear all;
- load ('R_2R.mat');
- %get parameters
- BinBase=R_2R.Param.BinBase;
- BinDura=R_2R.Param.BinDura;
- bins=R_2R.Param.bins;
- binint=R_2R.Param.binint;
- binstart=R_2R.Param.binstart;
- PStatBins=0.01; %using more stringent cutoff to reduce pre-delivery noise
- %divide neurons up by region
- NAneurons=strcmp(R_2R.Ninfo(:,3),'NA');
- VPneurons=strcmp(R_2R.Ninfo(:,3),'VP');
- %which bins bound the area examined for reward-selectivity? (in seconds)
- Time1=0.4; %seconds
- Time2=3; %seconds
- Bin1=(((Time1-BinDura(2)/2)-binstart)/binint); %convert to bin name
- Bin2=(((Time2-BinDura(2)/2)-binstart)/binint); %convert to bin name
- %sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
- SortBinTime=1.1; %seconds
- SortBin=round((((SortBinTime-BinDura(2)/2)-binstart)/binint)); %convert to bin name
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- %% bins analysis
- %first and last bin aren't included because you can't compare to the previous/subsequent bin
- %this axis plots the bins on their centers
- xaxis=linspace(binstart+binint+BinDura(2)/2,binstart+(bins-2)*binint+BinDura(2)/2,bins-2);
- for i=2:(bins-1) %no including first or last bin because can't compare to previous/subsequent bin
-
- %finds out whether firing is stronger (high excitation or lower inhibition) for 1 or 2
- for k=1:length(R_2R.Ninfo) %runs through neurons
- if R_2R.BinStatRwrd{i,1}(k).IntSig < PStatBins %if neuron is significant for this bin
- if R_2R.BinStatRwrd{i-1,1}(k).IntSig < PStatBins || R_2R.BinStatRwrd{i+1,1}(k).IntSig < PStatBins %either previous or subsequent bin must be significant
- if R_2R.BinStatRwrd{i,1}(k).R1Mean > R_2R.BinStatRwrd{i,1}(k).R2Mean %if firing is greater on sucrose trials than maltodextrin
- R_2R.BinRewPref{i,1}(k,1)=1;
- else
- R_2R.BinRewPref{i,1}(k,1)=2; %otherwise maltodextrin must be greater than sucrose
- end
- else
- R_2R.BinRewPref{i,1}(k,1)=0; %if not significant in 2 consecutive bins
- end
- else
- R_2R.BinRewPref{i,1}(k,1)=0; %if no sig reward modulation
- end
-
- end
- %find how many NAc neurons have significant reward modulation in each bin
- NN1perBin(i,1)=sum(R_2R.BinRewPref{i,1}(NAneurons,1)==1); %sucrose pref
- NN2perBin(i,1)=sum(R_2R.BinRewPref{i,1}(NAneurons,1)==2); %malto pref
- NNperBin(i,1)=sum(R_2R.BinRewPref{i,1}(NAneurons,1)>0); %either
- %normalize to number of neurons in population
- NN1norm=NN1perBin./sum(NAneurons);
- NN2norm=NN2perBin./sum(NAneurons);
- NNnorm=NNperBin./sum(NAneurons);
-
- %find how many VP neurons have significant reward modulation in each bin
- NV1perBin(i,1)=sum(R_2R.BinRewPref{i,1}(VPneurons,1)==1); %sucrose pref
- NV2perBin(i,1)=sum(R_2R.BinRewPref{i,1}(VPneurons,1)==2); %malto pref
- NVperBin(i,1)=sum(R_2R.BinRewPref{i,1}(VPneurons,1)>0); %either
- %normalize to number of neurons in population
- NV1norm=NV1perBin./sum(VPneurons);
- NV2norm=NV2perBin./sum(VPneurons);
- NVnorm=NVperBin./sum(VPneurons);
-
- end
- %Cumulative reward selectivity
- cumsel=zeros(length(R_2R.Ninfo),bins); %set up result matrix
- cumsel1=zeros(length(R_2R.Ninfo),bins); %set up result matrix for sucrose
- cumsel2=zeros(length(R_2R.Ninfo),bins); %set up result matrix for maltodextrin
- %note, this has to be corrected to +1 because of the way the bin matrix is
- %layed out (bin 0 is the first column, not the 0th column)
- for i=1:length(R_2R.Ninfo) %go through each neuron
- for j=2:bins-1 %look in each bin we did analysis on
- if R_2R.BinRewPref{j,1}(i,1)>0 || cumsel(i,j-1)==1
- cumsel(i,j) = 1;
- end
- if R_2R.BinRewPref{j,1}(i,1)==1 || cumsel1(i,j-1)==1
- cumsel1(i,j) = 1;
- end
- if R_2R.BinRewPref{j,1}(i,1)==2 || cumsel2(i,j-1)==1
- cumsel2(i,j) = 1;
- end
- end
- end
- %plotting number of significantly modulated neurons across time
- %NAc
- subplot(2,3,1);
- hold on;
- plot(xaxis,NNnorm(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NN1norm(2:bins-1),'Color',sucrose,'linewidth',1.5);
- plot(xaxis,NN2norm(2:bins-1),'Color',maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.4]);
- legend('Total','Suc > mal','Mal > suc','Location','northeast')
- ylabel('Fraction of population');
- title('NAc reward-selective neurons');
- %VP
- subplot(2,3,2);
- hold on;
- plot(xaxis,NVnorm(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NV1norm(2:bins-1),'Color',sucrose,'linewidth',1.5);
- plot(xaxis,NV2norm(2:bins-1),'Color',maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.4]);
- legend('Total','Suc > mal','Mal > suc','Location','northeast')
- ylabel('Fraction of population');
- title('VP reward-selective neurons');
- %plotting cumulative selectivity in each region
- %NAc
- subplot(2,3,4);
- hold on;
- plot(xaxis,sum(cumsel(NAneurons,2:bins-1),1)/sum(NAneurons),'Color', total,'linewidth',1.5);
- plot(xaxis,sum(cumsel1(NAneurons,2:bins-1),1)/sum(NAneurons),'Color', sucrose,'linewidth',1.5);
- plot(xaxis,sum(cumsel2(NAneurons,2:bins-1),1)/sum(NAneurons),'Color', maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[0 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[0 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.75]);
- xlabel('Seconds from reward delivery');
- ylabel('Cumulative fraction');
- %VP
- subplot(2,3,5);
- hold on;
- plot(xaxis,sum(cumsel(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', total,'linewidth',1.5);
- plot(xaxis,sum(cumsel1(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', sucrose,'linewidth',1.5);
- plot(xaxis,sum(cumsel2(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[0 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[0 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) 0 0.75]);
- xlabel('Seconds from RD');
- ylabel('Cumulative fraction');
- %plot difference between the two regions for each measure
- %reward selective neurons per bin
- subplot(2,3,3);
- hold on;
- plot(xaxis,NNnorm(2:bins-1)-NVnorm(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NN1norm(2:bins-1)-NV1norm(2:bins-1),'Color',sucrose,'linewidth',1.5);
- plot(xaxis,NN2norm(2:bins-1)-NV2norm(2:bins-1),'Color',maltodextrin,'linewidth',1.5);
- axis([xaxis(1) xaxis(end) -0.3 0.3]);
- plot([xaxis(1) xaxis(end)],[0 0],'color','k','linewidth',0.75);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- legend('Total','Suc > mal','Mal > suc','Location','northeast')
- title('Difference (NAc - VP)');
- ylabel('Fraction of population');
- %cumulative selectivity
- subplot(2,3,6);
- hold on;
- plot(xaxis,sum(cumsel(NAneurons,2:bins-1),1)/sum(NAneurons)-sum(cumsel(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', total,'linewidth',1.5);
- plot(xaxis,sum(cumsel1(NAneurons,2:bins-1),1)/sum(NAneurons)-sum(cumsel1(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', sucrose,'linewidth',1.5);
- plot(xaxis,sum(cumsel2(NAneurons,2:bins-1),1)/sum(NAneurons)-sum(cumsel2(VPneurons,2:bins-1),1)/sum(VPneurons),'Color', maltodextrin,'linewidth',1.5);
- plot([Time1 Time1],[-1 1],':','color','k','linewidth',0.75);
- plot([Time2 Time2],[-1 1],':','color','k','linewidth',0.75);
- axis([xaxis(1) xaxis(end) -Time1 Time1]);
- plot([xaxis(1) xaxis(end)],[0 0],'color','k','linewidth',0.75);
- xlabel('Seconds from RD');
- ylabel('Cumulative fraction');
- %% individual rat data
- figure;
- %split data up into individual rats
- for i=1:length(R_2R.Ninfo)
- A=char(R_2R.Ninfo(i,4));
- Rats(i,:)=cellstr(A);
- end
- C=unique(Rats);
- for i=1:length(C)
- Sel=strcmp(C(i),Rats);
- for j=2:bins-1
- NRat1(j,1)=sum(R_2R.BinRewPref{j,1}(Sel,1)==1)/sum(Sel);
- NRat2(j,1)=sum(R_2R.BinRewPref{j,1}(Sel,1)==2)/sum(Sel);
- NRat(j,1)=sum(R_2R.BinRewPref{j,1}(Sel,1)>0)/sum(Sel);
- end
-
- %graphing
- subplot(4,3,i);
- hold on;
- plot(xaxis,NRat(2:bins-1),'Color', total,'linewidth',1.5);
- plot(xaxis,NRat1(2:65),'Color',sucrose,'linewidth',1.5);
- plot(xaxis,NRat2(2:65),'Color',maltodextrin,'linewidth',1.5);
- xlabel('Seconds from reward delivery');
- title([cell2mat(C(i)) ' (n=' num2str(sum(Sel)) ')'])
- axis([xaxis(1) xaxis(end) 0 0.5]);
- legend('Total neurons','Suc > mal Hz','Mal > suc Hz','Location','northeast')
- ylabel('Fraction of total population');
- end
- %% plotting sucrose-selective neurons
- figure;
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %events we're looking at
- ev1=strcmp('RD1', R_2R.Erefnames);
- ev2=strcmp('RD2', R_2R.Erefnames);
- %setting up parameters
- Xaxis=[-2 5];
- inttime=find(R_2R.Param.Tm>=Xaxis(1) & R_2R.Param.Tm<=Xaxis(2));
- paramtime=R_2R.Param.Tm(inttime);
- %find all neurons with greater firing for sucrose
- for i = 1:(Bin2-Bin1+1)
- %the added +1 is necessary because bin 20 is the 21st entry in the matrix
- Pref1(:,i)=R_2R.BinRewPref{Bin1+i}==1; %get neurons that have greater firing for sucrose in any of the bins bounded above
- Resp11(:,i)=Pref1(:,i)&cat(1,R_2R.BinStatRwrd{Bin1+i,1}.SucRespDir)==1; %get neurons with excitation to sucrose
- Resp12(:,i)=Pref1(:,i)&cat(1,R_2R.BinStatRwrd{Bin1+i,1}.MalRespDir)==-1;%get neurons with inhibition to maltodextrin
- end
- Sel=sum(Pref1,2)>0; %all neurons selective for sucrose in any bin
- Sel2=sum(Resp11,2)>0; %all selective neurons sucrose excited in any bin
- Sel3=sum(Resp12,2)>0; %all selective neurons malto inhibited in any bin
- %-----------------NAc--------------------------------------------
- subplot(4,40,[15:23]); %heatmap of sucrose preferring neurons' response to sucrose
- Neurons=R_2R.Ev(ev1).PSTHz(Sel&NAneurons,inttime); %get the firing rates of neurons of interest
- SucResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R1Mean); %sucrose responses
- TMP=SucResp(Sel&NAneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Sucrose trials']);
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Sel&NAneurons)],':','color','k','linewidth',0.75);
- subplot(4,40,[27:35]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(ev2).PSTHz(Sel&NAneurons,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Sel&NAneurons,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- hold on;
- plot([0 0],[0 sum(Sel&NAneurons)],':','color','k','linewidth',0.75);
- %plot sucrose preferring neurons to sucrose
- psth1=nanmean(R_2R.Ev(ev1).PSTHz(Sel&NAneurons,inttime),1);
- sem1=nanste(R_2R.Ev(ev1).PSTHz(Sel&NAneurons,inttime),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot sucrose preferring neurons to malt
- psth2=nanmean(R_2R.Ev(ev2).PSTHz(Sel&NAneurons,inttime),1);
- sem2=nanste(R_2R.Ev(ev2).PSTHz(Sel&NAneurons,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,3,1);
- title(['Suc>mal (n=' num2str(sum(Sel&NAneurons)) ' of ' num2str(sum(NAneurons)) ')'])
- hold on;
- plot(paramtime,psth1,'Color',sucrose,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-1 10],':','color','k','linewidth',0.75);
- axis([-2 5 -1 4]);
- ylabel('Mean firing (z-score)');
- legend('Suc trials','Mal trials');
- %display inhibitions and excitations
- both = sum(Sel2&Sel3&NAneurons);
- excite = sum(Sel2&NAneurons)-both;
- inhib = sum(Sel3&NAneurons)-both;
- subplot(4,40,40);
- b = bar([inhib both excite; 0 0 0],'stacked');
- b(1,1).FaceColor=maltodextrin;
- b(1,2).FaceColor=total;
- b(1,3).FaceColor=sucrose;
- axis([1 1.2 0 both+excite+inhib]);
- ylabel('Inh / Both / Excited');
- set(gca,'xtick',[])
- %----------------VP----------------
- subplot(4,40,[80+15:80+23]); %heatmap of sucrose preferring neurons' response to sucrose
- Neurons=R_2R.Ev(ev1).PSTHz(Sel&VPneurons,inttime); %get the firing rates of neurons of interest
- SucResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R1Mean); %sucrose responses
- TMP=SucResp(Sel&VPneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Sucrose trials']);
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Sel&VPneurons)],':','color','k','linewidth',0.75);
- subplot(4,40,[80+27:80+35]); %heatmap of sucrose preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(ev2).PSTHz(Sel&VPneurons,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Sel&VPneurons,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- hold on;
- plot([0 0],[0 sum(Sel&VPneurons)],':','color','k','linewidth',0.75);
- %plot sucrose preferring neurons to sucrose
- psth1=nanmean(R_2R.Ev(ev1).PSTHz(Sel&VPneurons,inttime),1);
- sem1=nanste(R_2R.Ev(ev1).PSTHz(Sel&VPneurons,inttime),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot sucrose preferring neurons to malt
- psth2=nanmean(R_2R.Ev(ev2).PSTHz(Sel&VPneurons,inttime),1);
- sem2=nanste(R_2R.Ev(ev2).PSTHz(Sel&VPneurons,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,3,7);
- title(['Suc>mal (n=' num2str(sum(Sel&VPneurons)) ' of ' num2str(sum(VPneurons)) ')'])
- hold on;
- plot(paramtime,psth1,'Color',sucrose,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-1 10],':','color','k','linewidth',0.75);
- axis([-2 5 -0.6 4]);
- ylabel('Mean firing (z-score)');
- legend('Suc trials','Mal trials');
- %display inhibitions and excitations
- both = sum(Sel2&Sel3&VPneurons);
- excite = sum(Sel2&VPneurons)-both;
- inhib = sum(Sel3&VPneurons)-both;
- subplot(4,40,120);
- b = bar([inhib both excite; 0 0 0],'stacked');
- b(1,1).FaceColor=maltodextrin;
- b(1,2).FaceColor=total;
- b(1,3).FaceColor=sucrose;
- axis([1 1.2 0 both+excite+inhib]);
- ylabel('Inh / Both / Excited');
- set(gca,'xtick',[])
- %% plotting maltodextrin-selective neurons
- %find all neurons with greater firing for maltodextrin
- for i = 1:(Bin2-Bin1+1)
- %the added +1 is necessary because bin 20 is the 21st entry in the matrix
- Pref2(:,i)=R_2R.BinRewPref{Bin1+i}==2; %get neurons that have greater firing for maltodextrin in any of the bins bounded above
- Resp21(:,i)=Pref2(:,i)&cat(1,R_2R.BinStatRwrd{Bin1+i,1}.SucRespDir)==-1; %get neurons with inhibition to sucrose
- Resp22(:,i)=Pref2(:,i)&cat(1,R_2R.BinStatRwrd{Bin1+i,1}.MalRespDir)==1;%get neurons with excitation to maltodextrin
- end
- Mel=sum(Pref2,2)>0; %all neurons selective for malotdextrin in any bin
- Mel2=sum(Resp21,2)>0; %all selective neurons sucrose inhibited in any bin
- Mel3=sum(Resp22,2)>0; %all selective neurons malto excited in any bin
- %-----------------NAc--------------------------------------------
- subplot(4,40,[40+15:40+23]); %heatmap of maltodextrin preferring neurons' response to sucrose
- Neurons=R_2R.Ev(ev1).PSTHz(Mel&NAneurons,inttime); %get the firing rates of neurons of interest
- MalResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R2Mean); %sucrose responses
- TMP=MalResp(Mel&NAneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Mel&NAneurons,1)],Neurons,ClimE);
- title(['Sucrose trials']);
- xlabel('Seconds from RD');
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Mel&NAneurons)],':','color','k','linewidth',0.75);
- subplot(4,40,[40+27:40+35]); %heatmap of maltodextrin preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(ev2).PSTHz(Mel&NAneurons,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Mel&NAneurons,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Mel&NAneurons)],':','color','k','linewidth',0.75);
- %plot sucrose preferring neurons to sucrose
- psth1=nanmean(R_2R.Ev(ev1).PSTHz(Mel&NAneurons,inttime),1);
- sem1=nanste(R_2R.Ev(ev1).PSTHz(Mel&NAneurons,inttime),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot sucrose preferring neurons to malt
- psth2=nanmean(R_2R.Ev(ev2).PSTHz(Mel&NAneurons,inttime),1);
- sem2=nanste(R_2R.Ev(ev2).PSTHz(Mel&NAneurons,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,3,4);
- title(['Mal>suc (n=' num2str(sum(Mel&NAneurons)) ' of ' num2str(sum(NAneurons)) ')'])
- hold on;
- plot(paramtime,psth1,'Color',sucrose,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 7],':','color','k','linewidth',0.75);
- axis([-2 5 -1.2 3]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc trials','Mal trials','Location','northeast');
- %display inhibitions and excitations
- both = sum(Mel2&Mel3&NAneurons);
- excite = sum(Mel3&NAneurons)-both;
- inhib = sum(Mel2&NAneurons)-both;
- subplot(4,40,80);
- b = bar([inhib both excite; 0 0 0],'stacked');
- b(1,1).FaceColor=sucrose;
- b(1,2).FaceColor=total;
- b(1,3).FaceColor=maltodextrin;
- axis([1 1.2 0 both+excite+inhib]);
- ylabel('Inh / Both / Excited');
- set(gca,'xtick',[]);
- %----------------VP----------------
- subplot(4,40,[120+15:120+23]); %heatmap of maltodextrin preferring neurons' response to sucrose
- Neurons=R_2R.Ev(ev1).PSTHz(Mel&VPneurons,inttime); %get the firing rates of neurons of interest
- MalResp=cat(1,R_2R.BinStatRwrd{SortBin+1,1}.R2Mean); %sucrose responses
- TMP=MalResp(Mel&VPneurons); %find the magnitude of the excitations for sucrose for this bin
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- imagesc(paramtime,[1,sum(Mel&VPneurons,1)],Neurons,ClimE);
- title(['Sucrose trials']);
- xlabel('Seconds from RD');
- ylabel('Individual neurons');
- hold on;
- plot([0 0],[0 sum(Mel&VPneurons)],':','color','k','linewidth',0.75);
- subplot(4,40,[120+27:120+35]); %heatmap of maltodextrin preferring neurons' response to maltodextrin
- Neurons=R_2R.Ev(ev2).PSTHz(Mel&VPneurons,inttime); %get the firing rates of neurons of interest
- Neurons=Neurons(SORTimg,:); %sort the neurons same as before
- imagesc(paramtime,[1,sum(Mel&VPneurons,1)],Neurons,ClimE);
- title(['Maltodextrin trials']);
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Mel&VPneurons)],':','color','k','linewidth',0.75);
- %plot maltodextrin preferring neurons to sucrose
- psth1=nanmean(R_2R.Ev(ev1).PSTHz(Mel&VPneurons,inttime),1);
- sem1=nanste(R_2R.Ev(ev1).PSTHz(Mel&VPneurons,inttime),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot malt preferring neurons to malt
- psth2=nanmean(R_2R.Ev(ev2).PSTHz(Mel&VPneurons,inttime),1);
- sem2=nanste(R_2R.Ev(ev2).PSTHz(Mel&VPneurons,inttime),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,3,10);
- title(['Mal>suc (n=' num2str(sum(Mel&VPneurons)) ' of ' num2str(sum(VPneurons)) ')'])
- hold on;
- plot(paramtime,psth1,'Color',sucrose,'linewidth',1);
- plot(paramtime,psth2,'Color',maltodextrin,'linewidth',1);
- patch([paramtime,paramtime(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([paramtime,paramtime(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 7],':','color','k','linewidth',0.75);
- axis([-2 5 -1.5 2.5]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc trials','Mal trials','Location','northeast');
- %display inhibitions and excitations
- both = sum(Mel2&Mel3&VPneurons);
- excite = sum(Mel3&VPneurons)-both;
- inhib = sum(Mel2&VPneurons)-both;
- subplot(4,40,160);
- b = bar([inhib both excite; 0 0 0],'stacked');
- b(1,1).FaceColor=sucrose;
- b(1,2).FaceColor=total;
- b(1,3).FaceColor=maltodextrin;
- axis([1 1.2 0 both+excite+inhib]);
- ylabel('Inh / Both / Excited');
- set(gca,'xtick',[]);
- %% creating and saving new variables
- R_2R.RSinfo=R_2R.Ninfo(Sel|Mel,1:2); %reward-selective neurons
- R_2R.RNSinfo=R_2R.Ninfo(Sel==0 & Mel==0,1:2); %reward-nonselective neurons
- R_2R.SucN=Sel;
- R_2R.MalN=Mel;
- % proportion summary and chi squared test for reward selective neurons
- R_2R.RegSelX2(1,1)=sum((Sel | Mel) & NAneurons)/sum(NAneurons); %how many selective NAc neurons
- R_2R.RegSelX2(1,2)=sum((Sel | Mel) & VPneurons)/sum(VPneurons); %how many selective VP neurons
- [~,R_2R.RegSelX2(2,1),R_2R.RegSelX2(2,2)]=crosstab(Sel | Mel,NAneurons);
- % proportion summary and chi squared test for max neurons in any bin
- R_2R.RegMaxSelX2(1,1)=max(NNnorm); %how many selective NAc neurons
- R_2R.RegMaxSelX2(1,2)=max(NVnorm); %how many selective VP neurons
- [~,R_2R.RegMaxSelX2(2,1),R_2R.RegMaxSelX2(2,2)]=crosstab(cat(1,ones(max(NNperBin),1),zeros(sum(NAneurons)-max(NNperBin),1),ones(max(NVperBin),1),zeros(sum(VPneurons)-max(NVperBin),1)),NAneurons);
- save('R_2R.mat','R_2R');
- %divide neurons up by region
- NAneurons=strcmp(R_2R.Ninfo(:,3),'NA');
- VPneurons=strcmp(R_2R.Ninfo(:,3),'VP');
- Xaxis=[-1 2];
- Ishow=find(R_2R.Param.Tm>=Xaxis(1) & R_2R.Param.Tm<=Xaxis(2));
- time1=R_2R.Param.Tm(Ishow);
- Xaxis2=[-2 2];
- Ushow=find(R_2R.Param.Tm>=Xaxis2(1) & R_2R.Param.Tm<=Xaxis2(2));
- time2=R_2R.Param.Tm(Ushow);
- inh=[0.1 0.021154 0.6];
- exc=[0.9 0.75 0.205816];
- Cue=strcmp('Cue', R_2R.Erefnames);
- PE=strcmp('PECue', R_2R.Erefnames);
- RD=strcmp('RD', R_2R.Erefnames); %should this be LickR or RD?
- %% Plotting heatmaps of all neurons to each event
- figure;
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- for i=1:2
-
- if i==1 Reg=NAneurons; end %1 is NAc
- if i==2 Reg=VPneurons; end %2 is VP
-
- Sel=Reg&R_2R.Ev(Cue).RespDir<2; %gets all neurons
- %sort cue heatmap by magnitude of response
- Neurons=R_2R.Ev(Cue).PSTHz(Sel,Ishow); %get the firing rates of neurons of interest
- TMP=R_2R.Ev(Cue).Meanz(Sel); %find the magnitude of the inhibitions for this event
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- %heatmap
- subplot(4,6,[1 7]+(i-1)*12);
- imagesc(time1,[1,sum(Sel,1)],Neurons,ClimE); title('Cue responses');
- xlabel('Seconds post cue');
- ylabel('Individual neurons sorted by response strength');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %sort PE heatmap by magnitude of response
- Neurons=R_2R.Ev(PE).PSTHz(Sel,Ushow); %get the firing rates of neurons of interest
- TMP=R_2R.Ev(PE).Meanz(Sel); %find the magnitude of the inhibitions for this event
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- %heatmap
- subplot(4,6,[3 9]+(i-1)*12);
- imagesc(time2,[1,sum(Sel,1)],Neurons,ClimE); title('PE responses');
- xlabel('Seconds post PE');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %sort RD heatmap by magnitude of response
- Neurons=R_2R.Ev(RD).PSTHz(Sel,Ushow); %get the firing rates of neurons of interest
- TMP=R_2R.Ev(RD).Meanz(Sel); %find the magnitude of the inhibitions for this event
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- %heatmap
- subplot(4,6,[5 11]+(i-1)*12);
- imagesc(time2,[1,sum(Sel,1)],Neurons,ClimE); title('Reward responses');
- xlabel('Seconds post RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %% Plotting neurons that respond to the cue
- %inhibitions
- Sel=Reg&R_2R.Ev(Cue).RespDir<0; %Find neurons that have an inhibitory response to this event
- %average firing rate
- subplot(4,6,2+(i-1)*12);
- psthI=nanmean(R_2R.Ev(Cue).PSTHz(Sel,Ishow),1); %find the average firing rate of the neurons at the time of the event
- semI=nanste(R_2R.Ev(Cue).PSTHz(Sel,Ishow),1); %calculate standard error of the mean
- upI=psthI+semI;
- downI=psthI-semI;
- hold on;
- patch([time1,time1(end:-1:1)],[upI,downI(end:-1:1)],inh,'EdgeColor','none');alpha(0.5);
- plot(time1,psthI,'Color',inh,'linewidth',1); title('Mean firing (z-score)'); %create plot of avg firing rate
- plot([-1 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 2 min(downI)-0.2 max(upI)+0.2]);
- title(['Cue inhibitions (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- %excitation
- Sel=Reg&R_2R.Ev(Cue).RespDir>0; %Find neurons that have an excitatory response to this event
- %average firing rate
- subplot(4,6,8+(i-1)*12);
- psthE=nanmean(R_2R.Ev(Cue).PSTHz(Sel,Ishow),1);
- semE=nanste(R_2R.Ev(Cue).PSTHz(Sel,Ishow),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- hold on;
- patch([time1,time1(end:-1:1)],[upE,downE(end:-1:1)],exc,'EdgeColor','none');alpha(0.5);
- plot(time1,psthE,'Color',exc,'linewidth',1);
- plot([-1 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 2 min(downE)-0.2 max(upE)+0.3]);
- title(['Cue excitations (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- %% Plotting neurons that respond to PE
- %inhibitions
- Sel=Reg&R_2R.Ev(PE).RespDir<0; %Find neurons that have an inhibitory response to this event
- %average firing rate
- subplot(4,6,4+(i-1)*12);
- psthI=nanmean(R_2R.Ev(PE).PSTHz(Sel,Ushow),1); %find the average firing rate of the neurons at the time of the event
- semI=nanste(R_2R.Ev(PE).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- upI=psthI+semI;
- downI=psthI-semI;
- hold on;
- patch([time2,time2(end:-1:1)],[upI,downI(end:-1:1)],inh,'EdgeColor','none');alpha(0.5);
- plot(time2,psthI,'Color',inh,'linewidth',1); title('Mean firing (z-score)'); %create plot of avg firing rate
- plot([-2 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-2 2 min(downI)-0.2 max(upI)+0.2]);
- title(['PE inhibitions (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- %excitation
- Sel=Reg&R_2R.Ev(PE).RespDir>0; %Find neurons that have an excitatory response to this event
- %average firing rate
- subplot(4,6,10+(i-1)*12);
- psthE=nanmean(R_2R.Ev(PE).PSTHz(Sel,Ushow),1);
- semE=nanste(R_2R.Ev(PE).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- hold on;
- patch([time2,time2(end:-1:1)],[upE,downE(end:-1:1)],exc,'EdgeColor','none');alpha(0.5);
- plot(time2,psthE,'Color',exc,'linewidth',1);
- plot([-2 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-2 2 min(downE)-0.2 max(upE)+0.3]);
- title(['PE excitations (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- %% Plotting neurons that respond to reward
- %inhibitions
- Sel=Reg&R_2R.Ev(RD).RespDir<0; %Find neurons that have an inhibitory response to this event
- %average firing rate
- subplot(4,6,6+(i-1)*12);
- psthI=nanmean(R_2R.Ev(RD).PSTHz(Sel,Ushow),1); %find the average firing rate of the neurons at the time of the event
- semI=nanste(R_2R.Ev(RD).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- upI=psthI+semI;
- downI=psthI-semI;
- hold on;
- patch([time2,time2(end:-1:1)],[upI,downI(end:-1:1)],inh,'EdgeColor','none');alpha(0.5);
- plot(time2,psthI,'Color',inh,'linewidth',1); title('Mean firing (z-score)'); %create plot of avg firing rate
- plot([-1 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 2 min(downI)-0.2 max(upI)+0.2]);
- title(['RD inhibitions (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- %excitation
- Sel=Reg&R_2R.Ev(RD).RespDir>0; %Find neurons that have an excitatory response to this event
- %average firing rate
- subplot(4,6,12+(i-1)*12);
- psthE=nanmean(R_2R.Ev(RD).PSTHz(Sel,Ushow),1);
- semE=nanste(R_2R.Ev(RD).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- upE=psthE+semE;
- downE=psthE-semE;
- hold on;
- patch([time2,time2(end:-1:1)],[upE,downE(end:-1:1)],exc,'EdgeColor','none');alpha(0.5);
- plot(time2,psthE,'Color',exc,'linewidth',1);
- plot([-1 2],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 2 min(downE)-0.2 max(upE)+0.3]);
- title(['RD excitations (' num2str(round(100*sum(Sel)/sum(Reg))) '%)'])
- ylabel('Z-score');
- end
- %% plotting firing rate on sucrose and maltodextrin trials
- figure;
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- Xaxis=[-1 4];
- Ishow=find(R_2R.Param.Tm>=Xaxis(1) & R_2R.Param.Tm<=Xaxis(2));
- time1=R_2R.Param.Tm(Ishow);
- Xaxis2=[-1 4];
- Ushow=find(R_2R.Param.Tm>=Xaxis2(1) & R_2R.Param.Tm<=Xaxis2(2));
- time2=R_2R.Param.Tm(Ushow);
- sucrose=[1 0.6 0.1];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- exc=[0 113/255 188/255];
- inh=[240/255 0 50/255];
- RD=strcmp('RD', R_2R.Erefnames);
- RD1=strcmp('RD1', R_2R.Erefnames);
- RD2=strcmp('RD2', R_2R.Erefnames);
- for i=1:2
-
- if i==1 Reg=NAneurons; end %1 is NAc
- if i==2 Reg=VPneurons; end %2 is VP
- %% Plotting heatmaps of sucrose and maltodextrin response
- Sel=Reg&R_2R.Ev(RD).RespDir<2; %gets all neurons
- %sort RD1 heatmap by magnitude of response
- Neurons=R_2R.Ev(RD1).PSTHz(Sel,Ushow); %get the firing rates of neurons of interest
- TMP=R_2R.Ev(RD).Meanz(Sel); %find the magnitude of the inhibitions for this event
- TMP(isnan(TMP))=0; %To place the neurons with no onset/duration/peak at the top of the color-coded map
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- %heatmap
- subplot(2,40,[1:9]+(i-1)*40);
- imagesc(time2,[1,sum(Sel,1)],Neurons,ClimE); title('Sucrose trials');
- ylabel('Individual neurons sorted by RD response');
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %sort RD2 heatmap the same way
- Neurons=R_2R.Ev(RD2).PSTHz(Sel,Ushow); %get the firing rates of neurons of interest
- [~,SORTimg]=sort(TMP);
- Neurons=Neurons(SORTimg,:); %sort the neurons by magnitude
- xlabel('Seconds from RD');
- %heatmap
- subplot(2,40,[13:21]+(i-1)*40);
- imagesc(time2,[1,sum(Sel,1)],Neurons,ClimE); title('Maltodextrin trials');
- xlabel('Seconds from RD');
- hold on;
- plot([0 0],[0 sum(Sel)],':','color','k','linewidth',0.75);
- %% Plotting average firing rate of reward excitations
- Sel=Reg&(R_2R.Ev(RD).RespDir>0); %| R_2R.Ev(LickR1).RespDir>0 | R_2R.Ev(LickR2).RespDir>0); %Find neurons that have an inhibitory response to this event
- %average firing rate to sucrose
- psth1=nanmean(R_2R.Ev(RD1).PSTHz(Sel,Ishow),1);
- sem1=nanste(R_2R.Ev(RD1).PSTHz(Sel,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %average firing rate to maltodextrin
- psth2=nanmean(R_2R.Ev(RD2).PSTHz(Sel,Ishow),1);
- sem2=nanste(R_2R.Ev(RD2).PSTHz(Sel,Ishow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,5,[9 10]+(i-1)*10);
- hold on;
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psth2,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-1 4],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 4 min(down1)-0.2 max(up1)+0.3]);
- title(['Reward-excited (n=' num2str(sum(Sel)) ')'])
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc trials','Mal trials');
- % %onset
- % subplot(2,4,4);
- % cumul(R_2R.Ev(38).Onsets(Sel,1),[R_2R.Param.RespWin(1,1):0.04:R_2R.Param.RespWin(38,2)],2,maltodextrin);
- %% Plotting average firing rate of reward inhibitions
- Sel=Reg&(R_2R.Ev(RD).RespDir<0); %| R_2R.Ev(LickR1).RespDir<0 | R_2R.Ev(LickR2).RespDir<0); %Find neurons that have an inhibitory response to this event
- %avg firing rate to sucrose
- psth1=nanmean(R_2R.Ev(12).PSTHz(Sel,Ushow),1);
- sem1=nanste(R_2R.Ev(12).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %avg firing rate to maltodextrin
- psth2=nanmean(R_2R.Ev(13).PSTHz(Sel,Ushow),1);
- sem2=nanste(R_2R.Ev(13).PSTHz(Sel,Ushow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %plotting
- subplot(4,5,[4 5]+(i-1)*10);
- hold on;
- plot(time2,psth1,'Color',sucrose,'linewidth',1);
- plot(time2,psth2,'Color',maltodextrin,'linewidth',1);
- patch([time2,time2(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time2,time2(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- plot([-1 4],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-3 9],':','color','k','linewidth',0.75);
- axis([-1 4 min(down1)-0.2 max(up1)+0.2]);
- title(['Reward-inhibited (n=' num2str(sum(Sel)) ')'])
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from RD');
- legend('Suc trials','Mal trials','location','southeast');
- end
|