123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624 |
- %look at impact of previous trials on Cue and PE
- %Looking at the average firing rate for a given window in each of 4
- %current/previous reward conditions
- clear all;
- load ('R_2R.mat');
- load ('RAW.mat');
- %run linear model and stats? 1 is yes, 0 is no
- runanalysis=0;
- %divide neurons up by region
- NAneurons=strcmp(R_2R.Ninfo(:,3),'NA');
- VPneurons=strcmp(R_2R.Ninfo(:,3),'VP');
- %get parameters
- trialsback=6; %how many trials back to look
- PEBaseline=R_2R.Param.BinBase+0.5; %For normalizing activity
- CueBaseline=[-11 -1];
- CueWindow=[0 0.5]; %what window of activity is analyzed
- PEWindow=[-0.6 0.7];
- BinDura=R_2R.Param.BinDura;
- bins=R_2R.Param.bins;
- binint=R_2R.Param.binint;
- binstart=R_2R.Param.binstart;
- %sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
- SortBinTime=1; %seconds
- SortBin=(((SortBinTime-BinDura(2)/2)-binstart)/binint); %convert to bin name
- %reset
- NN=0;
- PEEvMeanz=0;
- if runanalysis==1
- for i=1:length(RAW) %loops through sessions
- if strcmp('NA',RAW(i).Type(1:2)) | strcmp('VP',RAW(i).Type(1:2)) %only look at suc v mal sessions
- %events
- EV3=strmatch('CueP1',RAW(i).Einfo(:,2),'exact');
- EV4=strmatch('CueP2',RAW(i).Einfo(:,2),'exact');
- EV1=strmatch('PEP1',RAW(i).Einfo(:,2),'exact');
- EV2=strmatch('PEP2',RAW(i).Einfo(:,2),'exact');
- Cue=strmatch('Cue',RAW(i).Einfo(:,2),'exact');
- PE=strmatch('PECue',RAW(i).Einfo(:,2),'exact');
- R1=strmatch('Reward1Deliv',RAW(i).Einfo(:,2),'exact');
- R2=strmatch('Reward2Deliv',RAW(i).Einfo(:,2),'exact');
- %% linear model for impact of previous rewards
- %reset
- Xcue=[];
- Xpe=[];
- Y=[];
- %set up the matrix with outcome identity for each session
- rewards1=cat(2,RAW(i).Erast{R1,1}(:,1),ones(length(RAW(i).Erast{R1,1}(:,1)),1));
- rewards2=cat(2,RAW(i).Erast{R2,1}(:,1),zeros(length(RAW(i).Erast{R2,1}(:,1)),1));
- rewards=cat(1,rewards1,rewards2);
- [rewards(:,1),ind]=sort(rewards(:,1));
- rewards(:,2)=rewards(ind,2);
- %cue
- firstcue=find(RAW(i).Erast{Cue,1}==min(RAW(i).Erast{Cue,1}(RAW(i).Erast{Cue,1}(:,1)>rewards(trialsback),1))); %find first cue with at least 5 rewards prior
- for k=firstcue+1:length(RAW(i).Erast{Cue,1}(:,1))
- time=RAW(i).Erast{Cue,1}(k,1);
- entry=find(rewards==max(rewards(rewards(:,1)<time)));
- for m=1:trialsback
- Xcue(k-trialsback,m)=rewards(entry+1-m,2);
- end
- end
- %PE
- for k=trialsback+1:length(RAW(i).Erast{PE,1}(:,1))
- time=RAW(i).Erast{PE,1}(k,1);
- entry=find(rewards==max(rewards(rewards(:,1)<time)));
- for m=1:trialsback
- Xpe(k-trialsback,m)=rewards(entry+1-m,2);
- end
- end
- for j= 1:length(RAW(i).Nrast) %Number of neurons within sessions
- NN=NN+1;
- %cue
- rewspk=0;
- basespk=0;
- %get mean baseline firing for all cues
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Cue},CueBaseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- basespk(1,y)=sum(Bcell1{1,y}>CueBaseline(1));
- end
- Bhz=basespk/(CueBaseline(1,2)-CueBaseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for all cue trials
- [EVcell,EVn]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Cue},CueWindow,{2});% makes trial by trial rasters for event
- for y= 1:EVn
- rewspk(y,1)=sum(EVcell{1,y}>CueWindow(1));
- end
- Y=((rewspk(trialsback+1:end,1)/(CueWindow(1,2)-CueWindow(1,1)))-Bmean)/Bstd; %normalize the activity to baseline
- %true data
- linmdl{NN,1}=fitlm(Xcue,Y);
- R_2R.RewHist.LinMdlCueWeights(NN,1:trialsback)=linmdl{NN,1}.Coefficients.Estimate(2:trialsback+1)';
- R_2R.RewHist.LinMdlCuePVal(NN,1:trialsback)=linmdl{NN,1}.Coefficients.pValue(2:trialsback+1)';
- %shuffled
- YSh=Y(randperm(length(Y)));
- linmdlSh{NN,1}=fitlm(Xcue,YSh);
- R_2R.RewHist.LinMdlCueWeightsSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.Estimate(2:trialsback+1)';
- R_2R.RewHist.LinMdlCuePValSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.pValue(2:trialsback+1)';
- %PE
- rewspk=0;
- basespk=0;
- %get mean baseline firing for all PEs
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{PE},PEBaseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- basespk(1,y)=sum(Bcell1{1,y}>PEBaseline(1));
- end
- Bhz=basespk/(PEBaseline(1,2)-PEBaseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for all PE trials
- [EVcell,EVn]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{PE},PEWindow,{2});% makes trial by trial rasters for event
- for y= 1:EVn
- rewspk(y,1)=sum(EVcell{1,y}>PEWindow(1));
- end
- Y=((rewspk(trialsback+1:end,1)/(PEWindow(1,2)-PEWindow(1,1)))-Bmean)/Bstd; %normalize the activity to baseline
- %true data
- linmdl{NN,1}=fitlm(Xpe,Y);
- R_2R.RewHist.LinMdlPEWeights(NN,1:trialsback)=linmdl{NN,1}.Coefficients.Estimate(2:trialsback+1)';
- R_2R.RewHist.LinMdlPEPVal(NN,1:trialsback)=linmdl{NN,1}.Coefficients.pValue(2:trialsback+1)';
- %shuffled
- YSh=Y(randperm(length(Y)));
- linmdlSh{NN,1}=fitlm(Xpe,YSh);
- R_2R.RewHist.LinMdlPEWeightsSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.Estimate(2:trialsback+1)';
- R_2R.RewHist.LinMdlPEPValSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.pValue(2:trialsback+1)';
- %% stats comparing effect of current and previous reward on PE
- %resetting
- Bcell=0;
- EV1spk=0;
- EV2spk=0;
- EV1norm=0;
- EV2norm=0;
- %get mean baseline firing for all PE trials
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},PEBaseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- Bcell(1,y)=sum(Bcell1{1,y}>PEBaseline(1));
- end
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},PEBaseline,{2});% makes trial by trial rasters for baseline
- for z= 1:B2n
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>PEBaseline(1));
- end
- Bhz=Bcell/(PEBaseline(1,2)-PEBaseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for post suc trials
- [EV1cell,EV1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},CueWindow,{2});% makes trial by trial rasters for event
- for y= 1:EV1n
- EV1spk(1,y)=sum(EV1cell{1,y}>CueWindow(1));
- end
- EV1hz=EV1spk/(CueWindow(1,2)-CueWindow(1,1));
- for x= 1:EV1n
- EV1norm(1,x)=((EV1hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for post mal trials
- [EV2cell,EV2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},CueWindow,{2});% makes trial by trial rasters for event
- for y= 1:EV2n
- EV2spk(1,y)=sum(EV2cell{1,y}>CueWindow(1));
- end
- EV2hz=EV2spk/(CueWindow(1,2)-CueWindow(1,1));
- for x= 1:EV2n
- EV2norm(1,x)=((EV2hz(1,x)-Bmean)/Bstd);
- end
- PEEvMeanz(NN,1)=nanmean(EV1norm);
- PEEvMeanz(NN,2)=nanmean(EV2norm);
- %% stats comparing effect of current and previous reward on cue
- %resetting
- Bcell=0;
- EV1spk=0;
- EV2spk=0;
- EV1norm=0;
- EV2norm=0;
- %get mean baseline firing for all cue trials
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},CueBaseline,{2});% makes trial by trial rasters for baseline
- for y= 1:B1n
- Bcell(1,y)=sum(Bcell1{1,y}>CueBaseline(1));
- end
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},CueBaseline,{2});% makes trial by trial rasters for baseline
- for z= 1:B2n
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>CueBaseline(1));
- end
- Bhz=Bcell/(CueBaseline(1,2)-CueBaseline(1,1));
- Bmean=nanmean(Bhz);
- Bstd=nanstd(Bhz);
- %get trial by trial firing rate for post suc trials
- [EV1cell,EV1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},CueWindow,{2});% makes trial by trial rasters for event
- for y= 1:EV1n
- EV1spk(1,y)=sum(EV1cell{1,y}>CueWindow(1));
- end
- EV1hz=EV1spk/(CueWindow(1,2)-CueWindow(1,1));
- for x= 1:EV1n
- EV1norm(1,x)=((EV1hz(1,x)-Bmean)/Bstd);
- end
- %get trial by trial firing rate for post mal trials
- [EV2cell,EV2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},CueWindow,{2});% makes trial by trial rasters for event
- for y= 1:EV2n
- EV2spk(1,y)=sum(EV2cell{1,y}>CueWindow(1));
- end
- EV2hz=EV2spk/(CueWindow(1,2)-CueWindow(1,1));
- for x= 1:EV2n
- EV2norm(1,x)=((EV2hz(1,x)-Bmean)/Bstd);
- end
- CueEvMeanz(NN,1)=nanmean(EV1norm);
- CueEvMeanz(NN,2)=nanmean(EV2norm);
- fprintf('Neuron # %d\n',NN);
- end
- end
- R_2R.RewHist.PrevRewPEMeanz=PEEvMeanz;
- R_2R.RewHist.PrevRewCueMeanz=CueEvMeanz;
- end
- end
- %% which neurons to look at for stats and plotting?
- % Sel=R_2R.SucN | R_2R.MalN; %only look at reward-selective neurons
- Sel=NAneurons | VPneurons; %look at all neurons
- %Sel=R_2R.RewHist.LinMdlPVal(:,2)<0.1; %only neurons with significant impact of previous trial
- %Sel=R_2R.RewHist.LinMdlPEWeights(:,2)<-1; %only neurons with strong negative impact of previous trial
- %% ANOVAs
- %setup and run ANOVA for effects of current reward, previous reward, and region on reward firing
- PrevRew=cat(2,zeros(length(NAneurons),1),ones(length(NAneurons),1));
- Region=cat(2,NAneurons,NAneurons);
- Rat=cat(2,R_2R.Ninfo(:,4),R_2R.Ninfo(:,4));
- %to look at a specific selection of cells
- PEEvMeanz=R_2R.RewHist.PrevRewPEMeanz(Sel,:);
- CueEvMeanz=R_2R.RewHist.PrevRewCueMeanz(Sel,:);
- PrevRew=PrevRew(Sel,:);
- Region=Region(Sel,:);
- Rat=Rat(Sel,:);
- %cue
- %each region individually
- [~,R_2R.RewHist.PrevRewStatsCueVPSubj{1,1},R_2R.RewHist.PrevRewStatsCueVPSubj{1,2}]=anovan(reshape(CueEvMeanz(VPneurons,:),[sum(VPneurons)*2 1]),{reshape(PrevRew(VPneurons,:),[sum(VPneurons)*2 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
- [~,R_2R.RewHist.PrevRewStatsCueNASubj{1,1},R_2R.RewHist.PrevRewStatsCueNASubj{1,2}]=anovan(reshape(CueEvMeanz(NAneurons,:),[sum(NAneurons)*2 1]),{reshape(PrevRew(NAneurons,:),[sum(NAneurons)*2 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
- %region comparison
- [~,R_2R.RewHist.PrevRewStatsCueSubj{1,1},R_2R.RewHist.PrevRewStatsCueSubj{1,2}]=anovan(CueEvMeanz(:),{PrevRew(:),Region(:),Rat(:)},'varnames',{'Previous Reward','Region','Rat'},'random',[3],'nested',[0 0 0;0 0 0;0 1 0],'display','off','model','full');
- %pe
- %each region individually
- [~,R_2R.RewHist.PrevRewStatsPEVPSubj{1,1},R_2R.RewHist.PrevRewStatsPEVPSubj{1,2}]=anovan(reshape(PEEvMeanz(VPneurons,:),[sum(VPneurons)*2 1]),{reshape(PrevRew(VPneurons,:),[sum(VPneurons)*2 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
- [~,R_2R.RewHist.PrevRewStatsPENASubj{1,1},R_2R.RewHist.PrevRewStatsPENASubj{1,2}]=anovan(reshape(PEEvMeanz(NAneurons,:),[sum(NAneurons)*2 1]),{reshape(PrevRew(NAneurons,:),[sum(NAneurons)*2 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
- %region comparison
- [~,R_2R.RewHist.PrevRewStatsPESubj{1,1},R_2R.RewHist.PrevRewStatsPESubj{1,2}]=anovan(PEEvMeanz(:),{PrevRew(:),Region(:),Rat(:)},'varnames',{'Previous Reward','Region','Rat'},'random',[3],'nested',[0 0 0;0 0 0;0 1 0],'display','off','model','full');
- %setup and run ANOVA for effects of shuffle, trial, and region on coefficient
- Trial=[];
- Region=[];
- Rat=[];
- for i=1:trialsback
- Trial=cat(2,Trial,i*ones(length(NAneurons),1));
- Region=cat(2,Region,NAneurons);
- Rat=cat(2,Rat,R_2R.Ninfo(:,4));
- end
- Trial=cat(2,Trial,Trial);
- Region=cat(2,Region,Region);
- Rat=cat(2,Rat,Rat);
- Shuffd=cat(2,zeros(length(NAneurons),trialsback),ones(length(NAneurons),trialsback));
- %Cue
- Coeffs=cat(2,R_2R.RewHist.LinMdlCueWeights(:,1:trialsback),R_2R.RewHist.LinMdlCueWeightsSh(:,1:trialsback));
- [~,R_2R.RewHist.LinCoeffStatsCueVPSubj{1,1},R_2R.RewHist.LinCoeffStatsCueVPSubj{1,2}]=anovan(reshape(Coeffs(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),{reshape(Shuffd(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Trial(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
- [~,R_2R.RewHist.LinCoeffStatsCueNASubj{1,1},R_2R.RewHist.LinCoeffStatsCueNASubj{1,2}]=anovan(reshape(Coeffs(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),{reshape(Shuffd(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Trial(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
- %PE
- Coeffs=cat(2,R_2R.RewHist.LinMdlPEWeights(:,1:trialsback),R_2R.RewHist.LinMdlPEWeightsSh(:,1:trialsback));
- [~,R_2R.RewHist.LinCoeffStatsPEVPSubj{1,1},R_2R.RewHist.LinCoeffStatsPEVPSubj{1,2}]=anovan(reshape(Coeffs(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),{reshape(Shuffd(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Trial(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
- [~,R_2R.RewHist.LinCoeffStatsPENASubj{1,1},R_2R.RewHist.LinCoeffStatsPENASubj{1,2}]=anovan(reshape(Coeffs(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),{reshape(Shuffd(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Trial(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
- %% plotting
- XaxisCue=[-0.5 1];
- XaxisPE=[-1 2];
- Ishow=find(R_2R.Param.Tm>=XaxisCue(1) & R_2R.Param.Tm<=XaxisCue(2));
- Ushow=find(R_2R.Param.Tm>=XaxisPE(1) & R_2R.Param.Tm<=XaxisPE(2));
- time1=R_2R.Param.Tm(Ishow);
- time2=R_2R.Param.Tm(Ushow);
- %color map
- [magma,inferno,plasma,viridis]=colormaps;
- colormap(plasma);
- c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
- %colors
- sucrose=[.95 0.55 0.15];
- maltodextrin=[.9 0.3 .9];
- water=[0.00 0.75 0.75];
- total=[0.3 0.1 0.8];
- inh=[0.1 0.021154 0.6];
- exc=[0.9 0.75 0.205816];
- NAc=[0.5 0.1 0.8];
- VP=[0.3 0.7 0.1];
- %extra colors to make a gradient
- sucrosem=[.98 0.8 0.35];
- sucrosel=[1 1 0.4];
- maltodextrinm=[1 0.75 1];
- maltodextrinl=[1 0.8 1];
- RD1P1=strcmp('CueP1', R_2R.Erefnames);
- RD1P2=strcmp('CueP2', R_2R.Erefnames);
- RD2P1=strcmp('PEP1', R_2R.Erefnames);
- RD2P2=strcmp('PEP2', R_2R.Erefnames);
- %% Get mean firing according to previous trial and then plot
- %NAc
- %plot suc after suc
- psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1);
- sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot suc after malt
- psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1);
- sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %make the plot
- subplot(2,4,1);
- hold on;
- title(['Cue response, NAc'])
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psth2,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([CueWindow(1) CueWindow(1)],[-2 8],'color','b','linewidth',0.85);
- plot([CueWindow(2) CueWindow(2)],[-2 8],'color','b','linewidth',0.85);
- axis([XaxisCue(1) XaxisCue(2) min(down2)-0.15 max(up1)+0.2]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from cue');
- legend('Post-suc','Post-mal','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStatsCueNASubj{1,1}(2,7))<0.05
- plot(CueWindow(1)+(CueWindow(2)-CueWindow(1))/2,max(up2)+0.1,'*','color','k','markersize',13);
- end
- subplot(2,4,5);
- hold on;
- title('PE response, NAc');
- %plot malt after suc
- psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ushow),1);
- sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ushow),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plot malt after malt
- psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ushow),1);
- sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ushow),1); %calculate standard error of the mean
- up4=psth4+sem4;
- down4=psth4-sem4;
- plot(time2,psth3,'Color',sucrose,'linewidth',1);
- plot(time2,psth4,'Color',maltodextrin,'linewidth',1);
- patch([time2,time2(end:-1:1)],[up3,down3(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time2,time2(end:-1:1)],[up4,down4(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([PEWindow(1) PEWindow(1)],[-2 8],'color','b','linewidth',0.85);
- plot([PEWindow(2) PEWindow(2)],[-2 8],'color','b','linewidth',0.85);
- axis([XaxisPE(1) XaxisPE(2) min(down3)-0.2 max(up4)+0.2]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from PE');
- legend('Post-suc','Post-mal','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStatsPENASubj{1,1}(2,7))<0.05
- plot(PEWindow(1)+(PEWindow(2)-PEWindow(1))/2,max(up3)+0.1,'*','color','k','markersize',13);
- end
- %VP
- %plot suc after suc
- psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1);
- sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up1=psth1+sem1;
- down1=psth1-sem1;
- %plot suc after malt
- psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1);
- sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
- up2=psth2+sem2;
- down2=psth2-sem2;
- %make the plot
- subplot(2,4,2);
- title(['Cue response, VP'])
- hold on;
- plot(time1,psth1,'Color',sucrose,'linewidth',1);
- plot(time1,psth2,'Color',maltodextrin,'linewidth',1);
- patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([CueWindow(1) CueWindow(1)],[-2 8],'color','b','linewidth',0.85);
- plot([CueWindow(2) CueWindow(2)],[-2 8],'color','b','linewidth',0.85);
- axis([XaxisCue(1) XaxisCue(2) min(down2)-0.3 max(up1)+0.3]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from cue');
- legend('Post-suc','Post-mal','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStatsCueVPSubj{1,1}(2,7))<0.05
- plot(CueWindow(1)+(CueWindow(2)-CueWindow(1))/2,max(up2)+0.1,'*','color','k','markersize',13);
- end
- subplot(2,4,6);
- title('PE response, VP');
- hold on;
- %plot malt after suc
- psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ushow),1);
- sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ushow),1); %calculate standard error of the mean
- up3=psth3+sem3;
- down3=psth3-sem3;
- %plot malt after malt
- psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ushow),1);
- sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ushow),1); %calculate standard error of the mean
- up4=psth4+sem4;
- down4=psth4-sem4;
- plot(time2,psth3,'Color',sucrose,'linewidth',1);
- plot(time2,psth4,'Color',maltodextrin,'linewidth',1);
- patch([time2,time2(end:-1:1)],[up3,down3(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
- patch([time2,time2(end:-1:1)],[up4,down4(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
- plot([-2 5],[0 0],':','color','k','linewidth',0.75);
- plot([0 0],[-2 8],':','color','k','linewidth',0.75);
- plot([PEWindow(1) PEWindow(1)],[-2 8],'color','b','linewidth',0.85);
- plot([PEWindow(2) PEWindow(2)],[-2 8],'color','b','linewidth',0.85);
- axis([XaxisPE(1) XaxisPE(2) min(down4)-0.3 max(up3)+0.3]);
- ylabel('Mean firing (z-score)');
- xlabel('Seconds from PE');
- legend('Post-suc','Post-mal','location','northeast');
- if cell2mat(R_2R.RewHist.PrevRewStatsPEVPSubj{1,1}(2,7))<0.05
- plot(PEWindow(1)+(PEWindow(2)-PEWindow(1))/2,max(up3)+0.1,'*','color','k','markersize',13);
- end
- %% plot linear model coefficients
- %Plot all neurons
- Sel=NAneurons<2;
- %coefficients for each trial
- subplot(2,4,3);
- hold on;
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),'color',NAc);
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),'color',VP);
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeightsSh(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),'color','k');
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeightsSh(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),'color','k');
- xlabel('Trials back');
- ylabel('Mean coefficient weight');
- title('Linear model coefficients');
- axis([0 trialsback+1 -0.5 1]);
- plot([-1 trialsback+1],[0 0],':','color','k','linewidth',0.75);
- legend('NAc','VP','Shuff');
- %stats to check if VP and NAc are greater than chance
- R_2R.RewHist.LinCoeffCueMultComp=[];
- [c,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsCueNASubj{1,2},'dimension',[1,2],'display','off');
- [d,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsCueVPSubj{1,2},'dimension',[1,2],'display','off');
- for i=1:trialsback
- %NAc vs shuff
- Cel=c(:,1)==2*(i-1)+1 & c(:,2)==2*(i-1)+2;
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffCueMultComp(i,1)=1; else R_2R.RewHist.LinCoeffCueMultComp(i,1)=0; end
- R_2R.RewHist.LinCoeffCueMultComp(i,2)=c(Cel,2);
- %VP vs shuff
- Cel=d(:,1)==2*(i-1)+1 & d(:,2)==2*(i-1)+2;
- if d(Cel,6)<0.05 R_2R.RewHist.LinCoeffCueMultComp(i,3)=1; else R_2R.RewHist.LinCoeffCueMultComp(i,3)=0; end
- R_2R.RewHist.LinCoeffCueMultComp(i,4)=d(Cel,4);
- end
- plot([1:trialsback]-0.1,(R_2R.RewHist.LinCoeffCueMultComp(:,1)-0.5)*1.3,'*','color',NAc); %VP vs shuff
- plot([1:trialsback]+0.1,(R_2R.RewHist.LinCoeffCueMultComp(:,3)-0.5)*1.3,'*','color',VP); %NAc vs shuff
- %number of neurons with significant weights
- subplot(2,4,4);
- hold on;
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePVal(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePVal(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePValSh(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc/3);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePValSh(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP/3);
- axis([0 trialsback+1 0 0.5]);
- xlabel('Trials back');
- ylabel('Fraction of the population');
- title('Outcome-modulated cue resp');
- legend('NAc','VP','Shuff');
- %Chi squared stat for each trial
- for i=1:trialsback
- [~,R_2R.RewHist.LinMdlCue2all(i,1),R_2R.RewHist.LinMdlCue2all(i,2)]=crosstab(cat(1,R_2R.RewHist.LinMdlCuePVal(Sel,i)<0.05,R_2R.RewHist.LinMdlCuePValSh(Sel,i)<0.05),cat(1,VPneurons,VPneurons+2));
- [~,R_2R.RewHist.LinMdlCue2region(i,1),R_2R.RewHist.LinMdlCue2region(i,2)]=crosstab(R_2R.RewHist.LinMdlCuePVal(Sel,i)<0.05,VPneurons);
- end
- %plot([1:trialsback]-0.1,(R_2R.RewHist.LinMdlCue2all(:,2)<0.05)-0.52,'*','color',NAc);
- plot([1:trialsback],(R_2R.RewHist.LinMdlCue2region(:,2)<0.05&R_2R.RewHist.LinMdlCue2all(:,2)<0.05)-0.52,'*','color','k');
- %% PE
- %coefficients for each trial
- subplot(2,4,7);
- hold on;
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),'color',NAc);
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),'color',VP);
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeightsSh(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),'color','k');
- errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeightsSh(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),'color','k');
- xlabel('Trials back');
- ylabel('Mean coefficient weight');
- title('Linear model coefficients');
- axis([0 trialsback+1 -0.5 1]);
- plot([-1 trialsback+1],[0 0],':','color','k','linewidth',0.75);
- legend('NAc','VP','Shuff');
- %stats to check if VP and NAc are greater than chance
- R_2R.RewHist.LinCoeffPEMultComp=[];
- [c,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsPENASubj{1,2},'dimension',[1,2],'display','off');
- [d,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsPEVPSubj{1,2},'dimension',[1,2],'display','off');
- for i=1:trialsback
- %NAc vs shuff
- Cel=c(:,1)==2*(i-1)+1 & c(:,2)==2*(i-1)+2;
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffPEMultComp(i,1)=1; else R_2R.RewHist.LinCoeffPEMultComp(i,1)=0; end
- R_2R.RewHist.LinCoeffPEMultComp(i,2)=c(Cel,2);
- %VP vs shuff
- Cel=d(:,1)==2*(i-1)+1 & d(:,2)==2*(i-1)+2;
- if d(Cel,6)<0.05 R_2R.RewHist.LinCoeffPEMultComp(i,3)=1; else R_2R.RewHist.LinCoeffPEMultComp(i,3)=0; end
- R_2R.RewHist.LinCoeffPEMultComp(i,4)=d(Cel,4);
- end
- plot([1:trialsback]-0.1,(R_2R.RewHist.LinCoeffPEMultComp(:,1)-0.5)*1.3,'*','color',NAc); %VP vs shuff
- plot([1:trialsback]+0.1,(R_2R.RewHist.LinCoeffPEMultComp(:,3)-0.5)*1.3,'*','color',VP); %NAc vs shuff
- %number of neurons with significant weights
- subplot(2,4,8);
- hold on;
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPVal(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPVal(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPValSh(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc/3);
- plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPValSh(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP/3);
- axis([0 trialsback+1 0 0.5]);
- xlabel('Trials back');
- ylabel('Fraction of the population');
- title('Outcome-modulated PE resp');
- legend('NAc','VP','Shuff');
- %Chi squared stat for each trial
- for i=1:trialsback
- [~,R_2R.RewHist.LinMdlPEX2all(i,1),R_2R.RewHist.LinMdlPEX2all(i,2)]=crosstab(cat(1,R_2R.RewHist.LinMdlPEPVal(Sel,i)<0.05,R_2R.RewHist.LinMdlPEPValSh(Sel,i)<0.05),cat(1,VPneurons,VPneurons+2));
- [~,R_2R.RewHist.LinMdlPEX2region(i,1),R_2R.RewHist.LinMdlPEX2region(i,2)]=crosstab(R_2R.RewHist.LinMdlPEPVal(Sel,i)<0.05,VPneurons);
- end
- %plot([0:trialsback]-0.1,(R_2R.RewHist.LinMdlPE2all(:,2)<0.05)-0.52,'*','color',NAc);
- plot([1:trialsback],(R_2R.RewHist.LinMdlPEX2region(:,2)<0.05&R_2R.RewHist.LinMdlPEX2all(:,2)<0.05)-0.52,'*','color','k');
- %% stats comparing PE coefficient weight in first 2 trials in selective and non-selective neurons in VP
- Sel=R_2R.SucN | R_2R.MalN;
- NSel=(R_2R.SucN | R_2R.MalN) == 0;
- [~,R_2R.RewHist.SelectiveHistory{1,1},R_2R.RewHist.SelectiveHistory{1,2}]=anovan(cat(1,R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1),R_2R.RewHist.LinMdlPEWeights(NSel&VPneurons,1),R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,2),R_2R.RewHist.LinMdlPEWeights(NSel&VPneurons,2)),...
- {cat(1,ones(sum(Sel&VPneurons),1),zeros(sum(NSel&VPneurons),1),ones(sum(Sel&VPneurons),1),zeros(sum(NSel&VPneurons),1)),cat(1,ones(sum(VPneurons),1),zeros(sum(VPneurons),1)),...
- cat(1,R_2R.Ninfo(Sel&VPneurons,4),R_2R.Ninfo(NSel&VPneurons,4),R_2R.Ninfo(Sel&VPneurons,4),R_2R.Ninfo(NSel&VPneurons,4))},'varnames',{'Selective','Trial','Subject'},'random',3,'model','full','display','off');
- save('R_2R.mat','R_2R');
|