|
@@ -1,624 +0,0 @@
|
|
|
-%look at impact of previous trials on Cue and PE
|
|
|
-
|
|
|
-%Looking at the average firing rate for a given window in each of 4
|
|
|
-%current/previous reward conditions
|
|
|
-
|
|
|
-clear all;
|
|
|
-load ('R_2R.mat');
|
|
|
-load ('RAW.mat');
|
|
|
-
|
|
|
-%run linear model and stats? 1 is yes, 0 is no
|
|
|
-runanalysis=0;
|
|
|
-
|
|
|
-%divide neurons up by region
|
|
|
-NAneurons=strcmp(R_2R.Ninfo(:,3),'NA');
|
|
|
-VPneurons=strcmp(R_2R.Ninfo(:,3),'VP');
|
|
|
-
|
|
|
-%get parameters
|
|
|
-trialsback=6; %how many trials back to look
|
|
|
-PEBaseline=R_2R.Param.BinBase+0.5; %For normalizing activity
|
|
|
-CueBaseline=[-11 -1];
|
|
|
-CueWindow=[0 0.5]; %what window of activity is analyzed
|
|
|
-PEWindow=[-0.6 0.7];
|
|
|
-BinDura=R_2R.Param.BinDura;
|
|
|
-bins=R_2R.Param.bins;
|
|
|
-binint=R_2R.Param.binint;
|
|
|
-binstart=R_2R.Param.binstart;
|
|
|
-
|
|
|
-
|
|
|
-%sorting bin -- which bin the neurons' activity is sorted on for heatmap(in seconds)
|
|
|
-SortBinTime=1; %seconds
|
|
|
-SortBin=(((SortBinTime-BinDura(2)/2)-binstart)/binint); %convert to bin name
|
|
|
-
|
|
|
-%reset
|
|
|
-NN=0;
|
|
|
-PEEvMeanz=0;
|
|
|
-
|
|
|
-
|
|
|
-if runanalysis==1
|
|
|
- for i=1:length(RAW) %loops through sessions
|
|
|
- if strcmp('NA',RAW(i).Type(1:2)) | strcmp('VP',RAW(i).Type(1:2)) %only look at suc v mal sessions
|
|
|
- %events
|
|
|
- EV3=strmatch('CueP1',RAW(i).Einfo(:,2),'exact');
|
|
|
- EV4=strmatch('CueP2',RAW(i).Einfo(:,2),'exact');
|
|
|
- EV1=strmatch('PEP1',RAW(i).Einfo(:,2),'exact');
|
|
|
- EV2=strmatch('PEP2',RAW(i).Einfo(:,2),'exact');
|
|
|
- Cue=strmatch('Cue',RAW(i).Einfo(:,2),'exact');
|
|
|
- PE=strmatch('PECue',RAW(i).Einfo(:,2),'exact');
|
|
|
- R1=strmatch('Reward1Deliv',RAW(i).Einfo(:,2),'exact');
|
|
|
- R2=strmatch('Reward2Deliv',RAW(i).Einfo(:,2),'exact');
|
|
|
-
|
|
|
- %% linear model for impact of previous rewards
|
|
|
- %reset
|
|
|
- Xcue=[];
|
|
|
- Xpe=[];
|
|
|
- Y=[];
|
|
|
-
|
|
|
- %set up the matrix with outcome identity for each session
|
|
|
- rewards1=cat(2,RAW(i).Erast{R1,1}(:,1),ones(length(RAW(i).Erast{R1,1}(:,1)),1));
|
|
|
- rewards2=cat(2,RAW(i).Erast{R2,1}(:,1),zeros(length(RAW(i).Erast{R2,1}(:,1)),1));
|
|
|
- rewards=cat(1,rewards1,rewards2);
|
|
|
- [rewards(:,1),ind]=sort(rewards(:,1));
|
|
|
- rewards(:,2)=rewards(ind,2);
|
|
|
-
|
|
|
- %cue
|
|
|
- firstcue=find(RAW(i).Erast{Cue,1}==min(RAW(i).Erast{Cue,1}(RAW(i).Erast{Cue,1}(:,1)>rewards(trialsback),1))); %find first cue with at least 5 rewards prior
|
|
|
- for k=firstcue+1:length(RAW(i).Erast{Cue,1}(:,1))
|
|
|
- time=RAW(i).Erast{Cue,1}(k,1);
|
|
|
- entry=find(rewards==max(rewards(rewards(:,1)<time)));
|
|
|
- for m=1:trialsback
|
|
|
- Xcue(k-trialsback,m)=rewards(entry+1-m,2);
|
|
|
- end
|
|
|
- end
|
|
|
-
|
|
|
- %PE
|
|
|
- for k=trialsback+1:length(RAW(i).Erast{PE,1}(:,1))
|
|
|
- time=RAW(i).Erast{PE,1}(k,1);
|
|
|
- entry=find(rewards==max(rewards(rewards(:,1)<time)));
|
|
|
- for m=1:trialsback
|
|
|
- Xpe(k-trialsback,m)=rewards(entry+1-m,2);
|
|
|
- end
|
|
|
- end
|
|
|
-
|
|
|
- for j= 1:length(RAW(i).Nrast) %Number of neurons within sessions
|
|
|
-
|
|
|
- NN=NN+1;
|
|
|
-
|
|
|
- %cue
|
|
|
- rewspk=0;
|
|
|
- basespk=0;
|
|
|
-
|
|
|
- %get mean baseline firing for all cues
|
|
|
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Cue},CueBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for y= 1:B1n
|
|
|
- basespk(1,y)=sum(Bcell1{1,y}>CueBaseline(1));
|
|
|
- end
|
|
|
-
|
|
|
- Bhz=basespk/(CueBaseline(1,2)-CueBaseline(1,1));
|
|
|
- Bmean=nanmean(Bhz);
|
|
|
- Bstd=nanstd(Bhz);
|
|
|
-
|
|
|
- %get trial by trial firing rate for all cue trials
|
|
|
- [EVcell,EVn]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{Cue},CueWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EVn
|
|
|
- rewspk(y,1)=sum(EVcell{1,y}>CueWindow(1));
|
|
|
- end
|
|
|
- Y=((rewspk(trialsback+1:end,1)/(CueWindow(1,2)-CueWindow(1,1)))-Bmean)/Bstd; %normalize the activity to baseline
|
|
|
-
|
|
|
- %true data
|
|
|
- linmdl{NN,1}=fitlm(Xcue,Y);
|
|
|
- R_2R.RewHist.LinMdlCueWeights(NN,1:trialsback)=linmdl{NN,1}.Coefficients.Estimate(2:trialsback+1)';
|
|
|
- R_2R.RewHist.LinMdlCuePVal(NN,1:trialsback)=linmdl{NN,1}.Coefficients.pValue(2:trialsback+1)';
|
|
|
-
|
|
|
- %shuffled
|
|
|
- YSh=Y(randperm(length(Y)));
|
|
|
- linmdlSh{NN,1}=fitlm(Xcue,YSh);
|
|
|
- R_2R.RewHist.LinMdlCueWeightsSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.Estimate(2:trialsback+1)';
|
|
|
- R_2R.RewHist.LinMdlCuePValSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.pValue(2:trialsback+1)';
|
|
|
-
|
|
|
- %PE
|
|
|
- rewspk=0;
|
|
|
- basespk=0;
|
|
|
-
|
|
|
- %get mean baseline firing for all PEs
|
|
|
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{PE},PEBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for y= 1:B1n
|
|
|
- basespk(1,y)=sum(Bcell1{1,y}>PEBaseline(1));
|
|
|
- end
|
|
|
-
|
|
|
- Bhz=basespk/(PEBaseline(1,2)-PEBaseline(1,1));
|
|
|
- Bmean=nanmean(Bhz);
|
|
|
- Bstd=nanstd(Bhz);
|
|
|
-
|
|
|
- %get trial by trial firing rate for all PE trials
|
|
|
- [EVcell,EVn]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{PE},PEWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EVn
|
|
|
- rewspk(y,1)=sum(EVcell{1,y}>PEWindow(1));
|
|
|
- end
|
|
|
- Y=((rewspk(trialsback+1:end,1)/(PEWindow(1,2)-PEWindow(1,1)))-Bmean)/Bstd; %normalize the activity to baseline
|
|
|
-
|
|
|
- %true data
|
|
|
- linmdl{NN,1}=fitlm(Xpe,Y);
|
|
|
- R_2R.RewHist.LinMdlPEWeights(NN,1:trialsback)=linmdl{NN,1}.Coefficients.Estimate(2:trialsback+1)';
|
|
|
- R_2R.RewHist.LinMdlPEPVal(NN,1:trialsback)=linmdl{NN,1}.Coefficients.pValue(2:trialsback+1)';
|
|
|
-
|
|
|
- %shuffled
|
|
|
- YSh=Y(randperm(length(Y)));
|
|
|
- linmdlSh{NN,1}=fitlm(Xpe,YSh);
|
|
|
- R_2R.RewHist.LinMdlPEWeightsSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.Estimate(2:trialsback+1)';
|
|
|
- R_2R.RewHist.LinMdlPEPValSh(NN,1:trialsback)=linmdlSh{NN,1}.Coefficients.pValue(2:trialsback+1)';
|
|
|
-
|
|
|
- %% stats comparing effect of current and previous reward on PE
|
|
|
- %resetting
|
|
|
- Bcell=0;
|
|
|
- EV1spk=0;
|
|
|
- EV2spk=0;
|
|
|
- EV1norm=0;
|
|
|
- EV2norm=0;
|
|
|
-
|
|
|
- %get mean baseline firing for all PE trials
|
|
|
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},PEBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for y= 1:B1n
|
|
|
- Bcell(1,y)=sum(Bcell1{1,y}>PEBaseline(1));
|
|
|
- end
|
|
|
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},PEBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for z= 1:B2n
|
|
|
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>PEBaseline(1));
|
|
|
- end
|
|
|
-
|
|
|
- Bhz=Bcell/(PEBaseline(1,2)-PEBaseline(1,1));
|
|
|
- Bmean=nanmean(Bhz);
|
|
|
- Bstd=nanstd(Bhz);
|
|
|
-
|
|
|
- %get trial by trial firing rate for post suc trials
|
|
|
- [EV1cell,EV1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV1},CueWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EV1n
|
|
|
- EV1spk(1,y)=sum(EV1cell{1,y}>CueWindow(1));
|
|
|
- end
|
|
|
- EV1hz=EV1spk/(CueWindow(1,2)-CueWindow(1,1));
|
|
|
- for x= 1:EV1n
|
|
|
- EV1norm(1,x)=((EV1hz(1,x)-Bmean)/Bstd);
|
|
|
- end
|
|
|
-
|
|
|
- %get trial by trial firing rate for post mal trials
|
|
|
- [EV2cell,EV2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV2},CueWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EV2n
|
|
|
- EV2spk(1,y)=sum(EV2cell{1,y}>CueWindow(1));
|
|
|
- end
|
|
|
- EV2hz=EV2spk/(CueWindow(1,2)-CueWindow(1,1));
|
|
|
- for x= 1:EV2n
|
|
|
- EV2norm(1,x)=((EV2hz(1,x)-Bmean)/Bstd);
|
|
|
- end
|
|
|
-
|
|
|
-
|
|
|
- PEEvMeanz(NN,1)=nanmean(EV1norm);
|
|
|
- PEEvMeanz(NN,2)=nanmean(EV2norm);
|
|
|
-
|
|
|
- %% stats comparing effect of current and previous reward on cue
|
|
|
- %resetting
|
|
|
- Bcell=0;
|
|
|
- EV1spk=0;
|
|
|
- EV2spk=0;
|
|
|
- EV1norm=0;
|
|
|
- EV2norm=0;
|
|
|
-
|
|
|
- %get mean baseline firing for all cue trials
|
|
|
- [Bcell1,B1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},CueBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for y= 1:B1n
|
|
|
- Bcell(1,y)=sum(Bcell1{1,y}>CueBaseline(1));
|
|
|
- end
|
|
|
- [Bcell2,B2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},CueBaseline,{2});% makes trial by trial rasters for baseline
|
|
|
- for z= 1:B2n
|
|
|
- Bcell(1,z+B1n)=sum(Bcell2{1,z}>CueBaseline(1));
|
|
|
- end
|
|
|
-
|
|
|
- Bhz=Bcell/(CueBaseline(1,2)-CueBaseline(1,1));
|
|
|
- Bmean=nanmean(Bhz);
|
|
|
- Bstd=nanstd(Bhz);
|
|
|
-
|
|
|
- %get trial by trial firing rate for post suc trials
|
|
|
- [EV1cell,EV1n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV3},CueWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EV1n
|
|
|
- EV1spk(1,y)=sum(EV1cell{1,y}>CueWindow(1));
|
|
|
- end
|
|
|
- EV1hz=EV1spk/(CueWindow(1,2)-CueWindow(1,1));
|
|
|
- for x= 1:EV1n
|
|
|
- EV1norm(1,x)=((EV1hz(1,x)-Bmean)/Bstd);
|
|
|
- end
|
|
|
-
|
|
|
- %get trial by trial firing rate for post mal trials
|
|
|
- [EV2cell,EV2n]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{EV4},CueWindow,{2});% makes trial by trial rasters for event
|
|
|
- for y= 1:EV2n
|
|
|
- EV2spk(1,y)=sum(EV2cell{1,y}>CueWindow(1));
|
|
|
- end
|
|
|
- EV2hz=EV2spk/(CueWindow(1,2)-CueWindow(1,1));
|
|
|
- for x= 1:EV2n
|
|
|
- EV2norm(1,x)=((EV2hz(1,x)-Bmean)/Bstd);
|
|
|
- end
|
|
|
-
|
|
|
-
|
|
|
- CueEvMeanz(NN,1)=nanmean(EV1norm);
|
|
|
- CueEvMeanz(NN,2)=nanmean(EV2norm);
|
|
|
-
|
|
|
- fprintf('Neuron # %d\n',NN);
|
|
|
- end
|
|
|
- end
|
|
|
- R_2R.RewHist.PrevRewPEMeanz=PEEvMeanz;
|
|
|
- R_2R.RewHist.PrevRewCueMeanz=CueEvMeanz;
|
|
|
-
|
|
|
- end
|
|
|
-end
|
|
|
-
|
|
|
-%% which neurons to look at for stats and plotting?
|
|
|
-
|
|
|
-% Sel=R_2R.SucN | R_2R.MalN; %only look at reward-selective neurons
|
|
|
-Sel=NAneurons | VPneurons; %look at all neurons
|
|
|
-%Sel=R_2R.RewHist.LinMdlPVal(:,2)<0.1; %only neurons with significant impact of previous trial
|
|
|
-%Sel=R_2R.RewHist.LinMdlPEWeights(:,2)<-1; %only neurons with strong negative impact of previous trial
|
|
|
-
|
|
|
-%% ANOVAs
|
|
|
-
|
|
|
-%setup and run ANOVA for effects of current reward, previous reward, and region on reward firing
|
|
|
-PrevRew=cat(2,zeros(length(NAneurons),1),ones(length(NAneurons),1));
|
|
|
-Region=cat(2,NAneurons,NAneurons);
|
|
|
-Rat=cat(2,R_2R.Ninfo(:,4),R_2R.Ninfo(:,4));
|
|
|
-
|
|
|
-%to look at a specific selection of cells
|
|
|
-PEEvMeanz=R_2R.RewHist.PrevRewPEMeanz(Sel,:);
|
|
|
-CueEvMeanz=R_2R.RewHist.PrevRewCueMeanz(Sel,:);
|
|
|
-PrevRew=PrevRew(Sel,:);
|
|
|
-Region=Region(Sel,:);
|
|
|
-Rat=Rat(Sel,:);
|
|
|
-
|
|
|
-%cue
|
|
|
-%each region individually
|
|
|
-[~,R_2R.RewHist.PrevRewStatsCueVPSubj{1,1},R_2R.RewHist.PrevRewStatsCueVPSubj{1,2}]=anovan(reshape(CueEvMeanz(VPneurons,:),[sum(VPneurons)*2 1]),{reshape(PrevRew(VPneurons,:),[sum(VPneurons)*2 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
|
|
|
-[~,R_2R.RewHist.PrevRewStatsCueNASubj{1,1},R_2R.RewHist.PrevRewStatsCueNASubj{1,2}]=anovan(reshape(CueEvMeanz(NAneurons,:),[sum(NAneurons)*2 1]),{reshape(PrevRew(NAneurons,:),[sum(NAneurons)*2 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
|
|
|
-
|
|
|
-%region comparison
|
|
|
-[~,R_2R.RewHist.PrevRewStatsCueSubj{1,1},R_2R.RewHist.PrevRewStatsCueSubj{1,2}]=anovan(CueEvMeanz(:),{PrevRew(:),Region(:),Rat(:)},'varnames',{'Previous Reward','Region','Rat'},'random',[3],'nested',[0 0 0;0 0 0;0 1 0],'display','off','model','full');
|
|
|
-
|
|
|
-%pe
|
|
|
-%each region individually
|
|
|
-[~,R_2R.RewHist.PrevRewStatsPEVPSubj{1,1},R_2R.RewHist.PrevRewStatsPEVPSubj{1,2}]=anovan(reshape(PEEvMeanz(VPneurons,:),[sum(VPneurons)*2 1]),{reshape(PrevRew(VPneurons,:),[sum(VPneurons)*2 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
|
|
|
-[~,R_2R.RewHist.PrevRewStatsPENASubj{1,1},R_2R.RewHist.PrevRewStatsPENASubj{1,2}]=anovan(reshape(PEEvMeanz(NAneurons,:),[sum(NAneurons)*2 1]),{reshape(PrevRew(NAneurons,:),[sum(NAneurons)*2 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2 1])},'varnames',{'Previous Reward','Rat'},'random',[2],'display','off','model','full');
|
|
|
-
|
|
|
-%region comparison
|
|
|
-[~,R_2R.RewHist.PrevRewStatsPESubj{1,1},R_2R.RewHist.PrevRewStatsPESubj{1,2}]=anovan(PEEvMeanz(:),{PrevRew(:),Region(:),Rat(:)},'varnames',{'Previous Reward','Region','Rat'},'random',[3],'nested',[0 0 0;0 0 0;0 1 0],'display','off','model','full');
|
|
|
-
|
|
|
-
|
|
|
-%setup and run ANOVA for effects of shuffle, trial, and region on coefficient
|
|
|
-Trial=[];
|
|
|
-Region=[];
|
|
|
-Rat=[];
|
|
|
-for i=1:trialsback
|
|
|
- Trial=cat(2,Trial,i*ones(length(NAneurons),1));
|
|
|
- Region=cat(2,Region,NAneurons);
|
|
|
- Rat=cat(2,Rat,R_2R.Ninfo(:,4));
|
|
|
-end
|
|
|
-Trial=cat(2,Trial,Trial);
|
|
|
-Region=cat(2,Region,Region);
|
|
|
-Rat=cat(2,Rat,Rat);
|
|
|
-Shuffd=cat(2,zeros(length(NAneurons),trialsback),ones(length(NAneurons),trialsback));
|
|
|
-
|
|
|
-%Cue
|
|
|
-Coeffs=cat(2,R_2R.RewHist.LinMdlCueWeights(:,1:trialsback),R_2R.RewHist.LinMdlCueWeightsSh(:,1:trialsback));
|
|
|
-[~,R_2R.RewHist.LinCoeffStatsCueVPSubj{1,1},R_2R.RewHist.LinCoeffStatsCueVPSubj{1,2}]=anovan(reshape(Coeffs(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),{reshape(Shuffd(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Trial(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
|
|
|
-[~,R_2R.RewHist.LinCoeffStatsCueNASubj{1,1},R_2R.RewHist.LinCoeffStatsCueNASubj{1,2}]=anovan(reshape(Coeffs(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),{reshape(Shuffd(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Trial(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-%PE
|
|
|
-Coeffs=cat(2,R_2R.RewHist.LinMdlPEWeights(:,1:trialsback),R_2R.RewHist.LinMdlPEWeightsSh(:,1:trialsback));
|
|
|
-[~,R_2R.RewHist.LinCoeffStatsPEVPSubj{1,1},R_2R.RewHist.LinCoeffStatsPEVPSubj{1,2}]=anovan(reshape(Coeffs(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),{reshape(Shuffd(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Trial(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1]),reshape(Rat(VPneurons,:),[sum(VPneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
|
|
|
-[~,R_2R.RewHist.LinCoeffStatsPENASubj{1,1},R_2R.RewHist.LinCoeffStatsPENASubj{1,2}]=anovan(reshape(Coeffs(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),{reshape(Shuffd(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Trial(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1]),reshape(Rat(NAneurons,:),[sum(NAneurons)*2*(trialsback) 1])},'varnames',{'Shuffd','Trial','Subject'},'random',[3],'display','off','model','full');
|
|
|
-
|
|
|
-
|
|
|
-%% plotting
|
|
|
-XaxisCue=[-0.5 1];
|
|
|
-XaxisPE=[-1 2];
|
|
|
-Ishow=find(R_2R.Param.Tm>=XaxisCue(1) & R_2R.Param.Tm<=XaxisCue(2));
|
|
|
-Ushow=find(R_2R.Param.Tm>=XaxisPE(1) & R_2R.Param.Tm<=XaxisPE(2));
|
|
|
-time1=R_2R.Param.Tm(Ishow);
|
|
|
-time2=R_2R.Param.Tm(Ushow);
|
|
|
-
|
|
|
-%color map
|
|
|
-[magma,inferno,plasma,viridis]=colormaps;
|
|
|
-colormap(plasma);
|
|
|
-c=[-100 2000];ClimE=sign(c).*abs(c).^(1/4);%colormap
|
|
|
-
|
|
|
-%colors
|
|
|
-sucrose=[.95 0.55 0.15];
|
|
|
-maltodextrin=[.9 0.3 .9];
|
|
|
-water=[0.00 0.75 0.75];
|
|
|
-total=[0.3 0.1 0.8];
|
|
|
-inh=[0.1 0.021154 0.6];
|
|
|
-exc=[0.9 0.75 0.205816];
|
|
|
-NAc=[0.5 0.1 0.8];
|
|
|
-VP=[0.3 0.7 0.1];
|
|
|
-
|
|
|
-%extra colors to make a gradient
|
|
|
-sucrosem=[.98 0.8 0.35];
|
|
|
-sucrosel=[1 1 0.4];
|
|
|
-maltodextrinm=[1 0.75 1];
|
|
|
-maltodextrinl=[1 0.8 1];
|
|
|
-
|
|
|
-RD1P1=strcmp('CueP1', R_2R.Erefnames);
|
|
|
-RD1P2=strcmp('CueP2', R_2R.Erefnames);
|
|
|
-RD2P1=strcmp('PEP1', R_2R.Erefnames);
|
|
|
-RD2P2=strcmp('PEP2', R_2R.Erefnames);
|
|
|
-
|
|
|
-%% Get mean firing according to previous trial and then plot
|
|
|
-
|
|
|
-%NAc
|
|
|
-
|
|
|
-%plot suc after suc
|
|
|
-psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1);
|
|
|
-sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
|
|
|
-up1=psth1+sem1;
|
|
|
-down1=psth1-sem1;
|
|
|
-
|
|
|
-%plot suc after malt
|
|
|
-psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1);
|
|
|
-sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&NAneurons,Ishow),1); %calculate standard error of the mean
|
|
|
-up2=psth2+sem2;
|
|
|
-down2=psth2-sem2;
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-%make the plot
|
|
|
-subplot(2,4,1);
|
|
|
-hold on;
|
|
|
-title(['Cue response, NAc'])
|
|
|
-plot(time1,psth1,'Color',sucrose,'linewidth',1);
|
|
|
-plot(time1,psth2,'Color',maltodextrin,'linewidth',1);
|
|
|
-
|
|
|
-patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
|
|
|
-patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
|
|
|
-
|
|
|
-plot([-2 5],[0 0],':','color','k','linewidth',0.75);
|
|
|
-plot([0 0],[-2 8],':','color','k','linewidth',0.75);
|
|
|
-plot([CueWindow(1) CueWindow(1)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-plot([CueWindow(2) CueWindow(2)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-axis([XaxisCue(1) XaxisCue(2) min(down2)-0.15 max(up1)+0.2]);
|
|
|
-ylabel('Mean firing (z-score)');
|
|
|
-xlabel('Seconds from cue');
|
|
|
-legend('Post-suc','Post-mal','location','northeast');
|
|
|
-
|
|
|
-if cell2mat(R_2R.RewHist.PrevRewStatsCueNASubj{1,1}(2,7))<0.05
|
|
|
- plot(CueWindow(1)+(CueWindow(2)-CueWindow(1))/2,max(up2)+0.1,'*','color','k','markersize',13);
|
|
|
-end
|
|
|
-
|
|
|
-
|
|
|
-subplot(2,4,5);
|
|
|
-hold on;
|
|
|
-title('PE response, NAc');
|
|
|
-%plot malt after suc
|
|
|
-psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ushow),1);
|
|
|
-sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&NAneurons,Ushow),1); %calculate standard error of the mean
|
|
|
-up3=psth3+sem3;
|
|
|
-down3=psth3-sem3;
|
|
|
-
|
|
|
-%plot malt after malt
|
|
|
-psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ushow),1);
|
|
|
-sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&NAneurons,Ushow),1); %calculate standard error of the mean
|
|
|
-up4=psth4+sem4;
|
|
|
-down4=psth4-sem4;
|
|
|
-plot(time2,psth3,'Color',sucrose,'linewidth',1);
|
|
|
-plot(time2,psth4,'Color',maltodextrin,'linewidth',1);
|
|
|
-patch([time2,time2(end:-1:1)],[up3,down3(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
|
|
|
-patch([time2,time2(end:-1:1)],[up4,down4(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
|
|
|
-
|
|
|
-plot([-2 5],[0 0],':','color','k','linewidth',0.75);
|
|
|
-plot([0 0],[-2 8],':','color','k','linewidth',0.75);
|
|
|
-plot([PEWindow(1) PEWindow(1)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-plot([PEWindow(2) PEWindow(2)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-axis([XaxisPE(1) XaxisPE(2) min(down3)-0.2 max(up4)+0.2]);
|
|
|
-ylabel('Mean firing (z-score)');
|
|
|
-xlabel('Seconds from PE');
|
|
|
-legend('Post-suc','Post-mal','location','northeast');
|
|
|
-
|
|
|
-if cell2mat(R_2R.RewHist.PrevRewStatsPENASubj{1,1}(2,7))<0.05
|
|
|
- plot(PEWindow(1)+(PEWindow(2)-PEWindow(1))/2,max(up3)+0.1,'*','color','k','markersize',13);
|
|
|
-end
|
|
|
-
|
|
|
-
|
|
|
-%VP
|
|
|
-
|
|
|
-%plot suc after suc
|
|
|
-psth1=nanmean(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1);
|
|
|
-sem1=nanste(R_2R.Ev(RD1P1).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
|
|
|
-up1=psth1+sem1;
|
|
|
-down1=psth1-sem1;
|
|
|
-
|
|
|
-%plot suc after malt
|
|
|
-psth2=nanmean(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1);
|
|
|
-sem2=nanste(R_2R.Ev(RD1P2).PSTHz(Sel&VPneurons,Ishow),1); %calculate standard error of the mean
|
|
|
-up2=psth2+sem2;
|
|
|
-down2=psth2-sem2;
|
|
|
-
|
|
|
-%make the plot
|
|
|
-subplot(2,4,2);
|
|
|
-title(['Cue response, VP'])
|
|
|
-hold on;
|
|
|
-plot(time1,psth1,'Color',sucrose,'linewidth',1);
|
|
|
-plot(time1,psth2,'Color',maltodextrin,'linewidth',1);
|
|
|
-
|
|
|
-patch([time1,time1(end:-1:1)],[up2,down2(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
|
|
|
-patch([time1,time1(end:-1:1)],[up1,down1(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
|
|
|
-
|
|
|
-plot([-2 5],[0 0],':','color','k','linewidth',0.75);
|
|
|
-plot([0 0],[-2 8],':','color','k','linewidth',0.75);
|
|
|
-plot([CueWindow(1) CueWindow(1)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-plot([CueWindow(2) CueWindow(2)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-axis([XaxisCue(1) XaxisCue(2) min(down2)-0.3 max(up1)+0.3]);
|
|
|
-ylabel('Mean firing (z-score)');
|
|
|
-xlabel('Seconds from cue');
|
|
|
-legend('Post-suc','Post-mal','location','northeast');
|
|
|
-
|
|
|
-if cell2mat(R_2R.RewHist.PrevRewStatsCueVPSubj{1,1}(2,7))<0.05
|
|
|
- plot(CueWindow(1)+(CueWindow(2)-CueWindow(1))/2,max(up2)+0.1,'*','color','k','markersize',13);
|
|
|
-end
|
|
|
-
|
|
|
-subplot(2,4,6);
|
|
|
-title('PE response, VP');
|
|
|
-hold on;
|
|
|
-%plot malt after suc
|
|
|
-psth3=nanmean(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ushow),1);
|
|
|
-sem3=nanste(R_2R.Ev(RD2P1).PSTHz(Sel&VPneurons,Ushow),1); %calculate standard error of the mean
|
|
|
-up3=psth3+sem3;
|
|
|
-down3=psth3-sem3;
|
|
|
-
|
|
|
-%plot malt after malt
|
|
|
-psth4=nanmean(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ushow),1);
|
|
|
-sem4=nanste(R_2R.Ev(RD2P2).PSTHz(Sel&VPneurons,Ushow),1); %calculate standard error of the mean
|
|
|
-up4=psth4+sem4;
|
|
|
-down4=psth4-sem4;
|
|
|
-
|
|
|
-plot(time2,psth3,'Color',sucrose,'linewidth',1);
|
|
|
-plot(time2,psth4,'Color',maltodextrin,'linewidth',1);
|
|
|
-patch([time2,time2(end:-1:1)],[up3,down3(end:-1:1)],sucrose,'EdgeColor','none');alpha(0.5);
|
|
|
-patch([time2,time2(end:-1:1)],[up4,down4(end:-1:1)],maltodextrin,'EdgeColor','none');alpha(0.5);
|
|
|
-
|
|
|
-plot([-2 5],[0 0],':','color','k','linewidth',0.75);
|
|
|
-plot([0 0],[-2 8],':','color','k','linewidth',0.75);
|
|
|
-plot([PEWindow(1) PEWindow(1)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-plot([PEWindow(2) PEWindow(2)],[-2 8],'color','b','linewidth',0.85);
|
|
|
-axis([XaxisPE(1) XaxisPE(2) min(down4)-0.3 max(up3)+0.3]);
|
|
|
-ylabel('Mean firing (z-score)');
|
|
|
-xlabel('Seconds from PE');
|
|
|
-legend('Post-suc','Post-mal','location','northeast');
|
|
|
-
|
|
|
-if cell2mat(R_2R.RewHist.PrevRewStatsPEVPSubj{1,1}(2,7))<0.05
|
|
|
- plot(PEWindow(1)+(PEWindow(2)-PEWindow(1))/2,max(up3)+0.1,'*','color','k','markersize',13);
|
|
|
-end
|
|
|
-
|
|
|
-
|
|
|
-%% plot linear model coefficients
|
|
|
-
|
|
|
-%Plot all neurons
|
|
|
-Sel=NAneurons<2;
|
|
|
-
|
|
|
-%coefficients for each trial
|
|
|
-subplot(2,4,3);
|
|
|
-hold on;
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),'color',NAc);
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),'color',VP);
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeightsSh(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&NAneurons,1:trialsback),1),'color','k');
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlCueWeightsSh(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlCueWeights(Sel&VPneurons,1:trialsback),1),'color','k');
|
|
|
-xlabel('Trials back');
|
|
|
-ylabel('Mean coefficient weight');
|
|
|
-title('Linear model coefficients');
|
|
|
-axis([0 trialsback+1 -0.5 1]);
|
|
|
-plot([-1 trialsback+1],[0 0],':','color','k','linewidth',0.75);
|
|
|
-legend('NAc','VP','Shuff');
|
|
|
-
|
|
|
-%stats to check if VP and NAc are greater than chance
|
|
|
-R_2R.RewHist.LinCoeffCueMultComp=[];
|
|
|
-[c,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsCueNASubj{1,2},'dimension',[1,2],'display','off');
|
|
|
-[d,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsCueVPSubj{1,2},'dimension',[1,2],'display','off');
|
|
|
-for i=1:trialsback
|
|
|
-
|
|
|
- %NAc vs shuff
|
|
|
- Cel=c(:,1)==2*(i-1)+1 & c(:,2)==2*(i-1)+2;
|
|
|
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffCueMultComp(i,1)=1; else R_2R.RewHist.LinCoeffCueMultComp(i,1)=0; end
|
|
|
- R_2R.RewHist.LinCoeffCueMultComp(i,2)=c(Cel,2);
|
|
|
-
|
|
|
- %VP vs shuff
|
|
|
- Cel=d(:,1)==2*(i-1)+1 & d(:,2)==2*(i-1)+2;
|
|
|
- if d(Cel,6)<0.05 R_2R.RewHist.LinCoeffCueMultComp(i,3)=1; else R_2R.RewHist.LinCoeffCueMultComp(i,3)=0; end
|
|
|
- R_2R.RewHist.LinCoeffCueMultComp(i,4)=d(Cel,4);
|
|
|
-end
|
|
|
-plot([1:trialsback]-0.1,(R_2R.RewHist.LinCoeffCueMultComp(:,1)-0.5)*1.3,'*','color',NAc); %VP vs shuff
|
|
|
-plot([1:trialsback]+0.1,(R_2R.RewHist.LinCoeffCueMultComp(:,3)-0.5)*1.3,'*','color',VP); %NAc vs shuff
|
|
|
-
|
|
|
-
|
|
|
-%number of neurons with significant weights
|
|
|
-subplot(2,4,4);
|
|
|
-hold on;
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePVal(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePVal(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePValSh(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc/3);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlCuePValSh(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP/3);
|
|
|
-axis([0 trialsback+1 0 0.5]);
|
|
|
-xlabel('Trials back');
|
|
|
-ylabel('Fraction of the population');
|
|
|
-title('Outcome-modulated cue resp');
|
|
|
-legend('NAc','VP','Shuff');
|
|
|
-
|
|
|
-%Chi squared stat for each trial
|
|
|
-for i=1:trialsback
|
|
|
- [~,R_2R.RewHist.LinMdlCue2all(i,1),R_2R.RewHist.LinMdlCue2all(i,2)]=crosstab(cat(1,R_2R.RewHist.LinMdlCuePVal(Sel,i)<0.05,R_2R.RewHist.LinMdlCuePValSh(Sel,i)<0.05),cat(1,VPneurons,VPneurons+2));
|
|
|
- [~,R_2R.RewHist.LinMdlCue2region(i,1),R_2R.RewHist.LinMdlCue2region(i,2)]=crosstab(R_2R.RewHist.LinMdlCuePVal(Sel,i)<0.05,VPneurons);
|
|
|
-end
|
|
|
-%plot([1:trialsback]-0.1,(R_2R.RewHist.LinMdlCue2all(:,2)<0.05)-0.52,'*','color',NAc);
|
|
|
-plot([1:trialsback],(R_2R.RewHist.LinMdlCue2region(:,2)<0.05&R_2R.RewHist.LinMdlCue2all(:,2)<0.05)-0.52,'*','color','k');
|
|
|
-
|
|
|
-%% PE
|
|
|
-
|
|
|
-%coefficients for each trial
|
|
|
-subplot(2,4,7);
|
|
|
-hold on;
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),'color',NAc);
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),'color',VP);
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeightsSh(Sel&NAneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&NAneurons,1:trialsback),1),'color','k');
|
|
|
-errorbar(1:trialsback,nanmean(R_2R.RewHist.LinMdlPEWeightsSh(Sel&VPneurons,1:trialsback),1),nanste(R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1:trialsback),1),'color','k');
|
|
|
-xlabel('Trials back');
|
|
|
-ylabel('Mean coefficient weight');
|
|
|
-title('Linear model coefficients');
|
|
|
-axis([0 trialsback+1 -0.5 1]);
|
|
|
-plot([-1 trialsback+1],[0 0],':','color','k','linewidth',0.75);
|
|
|
-legend('NAc','VP','Shuff');
|
|
|
-
|
|
|
-
|
|
|
-%stats to check if VP and NAc are greater than chance
|
|
|
-R_2R.RewHist.LinCoeffPEMultComp=[];
|
|
|
-[c,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsPENASubj{1,2},'dimension',[1,2],'display','off');
|
|
|
-[d,~,~,~]=multcompare(R_2R.RewHist.LinCoeffStatsPEVPSubj{1,2},'dimension',[1,2],'display','off');
|
|
|
-for i=1:trialsback
|
|
|
-
|
|
|
- %NAc vs shuff
|
|
|
- Cel=c(:,1)==2*(i-1)+1 & c(:,2)==2*(i-1)+2;
|
|
|
- if c(Cel,6)<0.05 R_2R.RewHist.LinCoeffPEMultComp(i,1)=1; else R_2R.RewHist.LinCoeffPEMultComp(i,1)=0; end
|
|
|
- R_2R.RewHist.LinCoeffPEMultComp(i,2)=c(Cel,2);
|
|
|
-
|
|
|
- %VP vs shuff
|
|
|
- Cel=d(:,1)==2*(i-1)+1 & d(:,2)==2*(i-1)+2;
|
|
|
- if d(Cel,6)<0.05 R_2R.RewHist.LinCoeffPEMultComp(i,3)=1; else R_2R.RewHist.LinCoeffPEMultComp(i,3)=0; end
|
|
|
- R_2R.RewHist.LinCoeffPEMultComp(i,4)=d(Cel,4);
|
|
|
-end
|
|
|
-plot([1:trialsback]-0.1,(R_2R.RewHist.LinCoeffPEMultComp(:,1)-0.5)*1.3,'*','color',NAc); %VP vs shuff
|
|
|
-plot([1:trialsback]+0.1,(R_2R.RewHist.LinCoeffPEMultComp(:,3)-0.5)*1.3,'*','color',VP); %NAc vs shuff
|
|
|
-
|
|
|
-
|
|
|
-%number of neurons with significant weights
|
|
|
-subplot(2,4,8);
|
|
|
-hold on;
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPVal(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPVal(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPValSh(Sel&NAneurons,1:trialsback)<0.05,1)/sum(Sel&NAneurons),'color',NAc/3);
|
|
|
-plot(1:trialsback,sum(R_2R.RewHist.LinMdlPEPValSh(Sel&VPneurons,1:trialsback)<0.05,1)/sum(Sel&VPneurons),'color',VP/3);
|
|
|
-axis([0 trialsback+1 0 0.5]);
|
|
|
-xlabel('Trials back');
|
|
|
-ylabel('Fraction of the population');
|
|
|
-title('Outcome-modulated PE resp');
|
|
|
-legend('NAc','VP','Shuff');
|
|
|
-
|
|
|
-
|
|
|
-%Chi squared stat for each trial
|
|
|
-for i=1:trialsback
|
|
|
- [~,R_2R.RewHist.LinMdlPEX2all(i,1),R_2R.RewHist.LinMdlPEX2all(i,2)]=crosstab(cat(1,R_2R.RewHist.LinMdlPEPVal(Sel,i)<0.05,R_2R.RewHist.LinMdlPEPValSh(Sel,i)<0.05),cat(1,VPneurons,VPneurons+2));
|
|
|
- [~,R_2R.RewHist.LinMdlPEX2region(i,1),R_2R.RewHist.LinMdlPEX2region(i,2)]=crosstab(R_2R.RewHist.LinMdlPEPVal(Sel,i)<0.05,VPneurons);
|
|
|
-end
|
|
|
-%plot([0:trialsback]-0.1,(R_2R.RewHist.LinMdlPE2all(:,2)<0.05)-0.52,'*','color',NAc);
|
|
|
-plot([1:trialsback],(R_2R.RewHist.LinMdlPEX2region(:,2)<0.05&R_2R.RewHist.LinMdlPEX2all(:,2)<0.05)-0.52,'*','color','k');
|
|
|
-
|
|
|
-%% stats comparing PE coefficient weight in first 2 trials in selective and non-selective neurons in VP
|
|
|
-Sel=R_2R.SucN | R_2R.MalN;
|
|
|
-NSel=(R_2R.SucN | R_2R.MalN) == 0;
|
|
|
-[~,R_2R.RewHist.SelectiveHistory{1,1},R_2R.RewHist.SelectiveHistory{1,2}]=anovan(cat(1,R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,1),R_2R.RewHist.LinMdlPEWeights(NSel&VPneurons,1),R_2R.RewHist.LinMdlPEWeights(Sel&VPneurons,2),R_2R.RewHist.LinMdlPEWeights(NSel&VPneurons,2)),...
|
|
|
-{cat(1,ones(sum(Sel&VPneurons),1),zeros(sum(NSel&VPneurons),1),ones(sum(Sel&VPneurons),1),zeros(sum(NSel&VPneurons),1)),cat(1,ones(sum(VPneurons),1),zeros(sum(VPneurons),1)),...
|
|
|
-cat(1,R_2R.Ninfo(Sel&VPneurons,4),R_2R.Ninfo(NSel&VPneurons,4),R_2R.Ninfo(Sel&VPneurons,4),R_2R.Ninfo(NSel&VPneurons,4))},'varnames',{'Selective','Trial','Subject'},'random',3,'model','full','display','off');
|
|
|
-
|
|
|
-save('R_2R.mat','R_2R');
|