|
@@ -1,97 +0,0 @@
|
|
|
-%decodes trial identity from spiking across bins for each individual neuron
|
|
|
-clear all;
|
|
|
-load ('R_2R.mat');
|
|
|
-load ('RAW.mat');
|
|
|
-
|
|
|
-folds = 5; %number of times cross-validated:
|
|
|
-shuffs = 1; %number of shuffled models created
|
|
|
-
|
|
|
-%load parameters
|
|
|
-BinDura=R_2R.Param.BinDura;
|
|
|
-bins=R_2R.Param.bins;
|
|
|
-binint=R_2R.Param.binint;
|
|
|
-binstart=R_2R.Param.binstart;
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-%setup variables
|
|
|
-UnitDec=[];
|
|
|
-NN = 0;
|
|
|
-
|
|
|
-for i=1:length(RAW) %loops through sessions
|
|
|
- if strcmp('NA',RAW(i).Type(1:2)) | strcmp('VP',RAW(i).Type(1:2)) %check if it's a suc vs mal session
|
|
|
- %events being compared
|
|
|
- RD1=strcmp('RD1', RAW(i).Einfo(:,2));
|
|
|
- RD2=strcmp('RD2', RAW(i).Einfo(:,2));
|
|
|
- for j= 1:size(RAW(i).Nrast,1) %Number of neurons per session
|
|
|
- NN=NN+1; %neuron counter
|
|
|
- for l=1:bins
|
|
|
-
|
|
|
- LowHz=zeros(1,1);
|
|
|
- DecodeSpikes=NaN(1,1);
|
|
|
- DecodeRs=NaN(1,1);
|
|
|
-
|
|
|
- [PSR1,N1]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD1},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
|
|
|
- for m=1:length(PSR1)
|
|
|
- DecodeSpikes(m,1)=sum(PSR1{1,m}>(binstart));
|
|
|
- DecodeRs(m,1)=1;
|
|
|
- end
|
|
|
-
|
|
|
- %get all the spikes from reward 1p2 trials
|
|
|
- [PSR2,N2]=MakePSR04(RAW(i).Nrast(j),RAW(i).Erast{RD2},[(BinDura(1)+(binstart - binint)+l*binint) (BinDura(2)+(binstart - binint)+l*binint)],{2});% makes trial by trial rasters. PSR1 is a cell(neurons, trials)
|
|
|
- for n=1:length(PSR2)
|
|
|
- DecodeSpikes(n+m,1)=sum(PSR2{1,n}>(binstart));
|
|
|
- DecodeRs(n+m,1)=2;
|
|
|
- end
|
|
|
-
|
|
|
- if sum(DecodeSpikes(1:N1,1))<7 || sum(DecodeSpikes((1+N1):(N1+N2),1))<7 %prevents errors with LDA on conditions with no variance
|
|
|
- LowHz(1,1)=1;
|
|
|
- end
|
|
|
-
|
|
|
-
|
|
|
- %if one neuron or more has too few spikes, so LDA has error because not
|
|
|
- %enough variance, this removes those neurons from the analysis
|
|
|
- if sum(LowHz)==0
|
|
|
-
|
|
|
- %creating models
|
|
|
- CVacc = NaN(folds,1);
|
|
|
- CVaccSh = NaN(folds,1);
|
|
|
- %normal model
|
|
|
- for r = 1:folds
|
|
|
-
|
|
|
- Partitions = cvpartition(DecodeRs,'KFold',folds);
|
|
|
- LDAModel = fitcdiscr(DecodeSpikes(Partitions.training(r),:),DecodeRs(Partitions.training(r)));
|
|
|
- prediction = predict(LDAModel,DecodeSpikes(Partitions.test(r),:));
|
|
|
- actual = DecodeRs(Partitions.test(r));
|
|
|
- correct = prediction - actual;
|
|
|
- CVacc(r) = sum(correct==0) / length(correct);
|
|
|
-
|
|
|
- end
|
|
|
-
|
|
|
- %shuffled model
|
|
|
- for q=1:shuffs
|
|
|
- DecodeRsSh=DecodeRs(randperm(length(DecodeRs)));
|
|
|
- PartitionsSh = cvpartition(DecodeRsSh,'KFold',folds);
|
|
|
- for s = 1:folds
|
|
|
- LDAModelSh = fitcdiscr(DecodeSpikes(PartitionsSh.training(s),:),DecodeRsSh(PartitionsSh.training(s)));
|
|
|
- predictionSh = predict(LDAModelSh,DecodeSpikes(PartitionsSh.test(s),:));
|
|
|
- actualSh = DecodeRsSh(PartitionsSh.test(s));
|
|
|
- correctSh = predictionSh - actualSh;
|
|
|
- CVaccSh(s) = sum(correctSh==0) / length(correctSh);
|
|
|
- end
|
|
|
- AccShuff(q,1) = nanmean(CVaccSh);
|
|
|
- end
|
|
|
- UnitDec.True(NN,l) = nanmean(CVacc);
|
|
|
- UnitDec.Shuff(NN,l) = nanmean(AccShuff);
|
|
|
- else
|
|
|
- UnitDec.True(NN,l) = NaN;
|
|
|
- UnitDec.Shuff(NN,l) = NaN;
|
|
|
- end
|
|
|
- end
|
|
|
-
|
|
|
- fprintf('Neuron ID # %d\n',NN);
|
|
|
- end %neurons: FOR j= 1:size(RAW(i).Nrast,1)
|
|
|
- end %checking if the right session type
|
|
|
-end %sessions: FOR i=1:length(RAW)
|
|
|
-
|
|
|
-save('UnitDec_2R.mat','UnitDec');
|