123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- #!/usr/bin/env python3
- import pandas as pd
- import pickle
- import numpy as np
- from scipy.special import logit, expit
- import argparse
- import matplotlib
- import matplotlib.pyplot as plt
- matplotlib.use("pgf")
- matplotlib.rcParams.update(
- {
- "pgf.texsystem": "pdflatex",
- "font.family": "serif",
- "font.serif": "Times New Roman",
- "text.usetex": True,
- "pgf.rcfonts": False,
- }
- )
- def set_size(width, fraction=1, ratio=None):
- fig_width_pt = width * fraction
- inches_per_pt = 1 / 72.27
- if ratio is None:
- ratio = (5**0.5 - 1) / 2
- fig_width_in = fig_width_pt * inches_per_pt
- fig_height_in = fig_width_in * ratio
- return fig_width_in, fig_height_in
- parser = argparse.ArgumentParser(description="plot_pred")
- parser.add_argument("data")
- parser.add_argument("fit")
- parser.add_argument("output")
- args = parser.parse_args()
- with open(args.data, "rb") as fp:
- data = pickle.load(fp)
- fit = pd.read_parquet(args.fit)
- fig = plt.figure(figsize=set_size(450, 1, 1))
- axes = [fig.add_subplot(4, 4, i + 1) for i in range(4 * 4)]
- speakers = ["CHI", "OCH", "FEM", "MAL"]
- n_groups = data["n_groups"]
- for i in range(4 * 4):
- ax = axes[i]
- row = i // 4 + 1
- col = i % 4 + 1
- label = f"{col}.{row}"
- # if args.group is None:
- # data = np.hstack([fit[f'alphas.{k}.{label}']/(fit[f'alphas.{k}.{label}']+fit[f'betas.{k}.{label}']).values for k in range(1,n_groups+1)])
- # else:
- # data = fit[f'alphas.{args.group}.{label}']/(fit[f'alphas.{args.group}.{label}']+fit[f'betas.{args.group}.{label}']).values
- # data = np.hstack([(fit[f'group_mus.{k}.{label}']).values for k in range(1,59)])
- # data = fit[f'mus.{label}'].values
- if "fixed_bias.1.1" in fit.columns:
- data = expit(
- np.hstack(
- [
- logit(fit[f"probs.{k+1}.{label}"].values)
- + fit[f"fixed_bias.{label}"].values
- for k in range(n_groups)
- ]
- )
- )
- else:
- data = np.hstack([fit[f"probs.{k+1}.{label}"].values for k in range(n_groups)])
- ax.set_xticks([])
- ax.set_xticklabels([])
- ax.set_yticks([])
- ax.set_yticklabels([])
- ax.set_ylim(0, 5)
- ax.set_xlim(0, 1)
- low = np.quantile(data, 0.0275)
- high = np.quantile(data, 0.975)
- if row == 1:
- ax.xaxis.tick_top()
- ax.set_xticks([0.5])
- ax.set_xticklabels([speakers[col - 1]])
- if row == 4:
- ax.set_xticks(np.linspace(0.25, 1, 3, endpoint=False))
- ax.set_xticklabels(np.linspace(0.25, 1, 3, endpoint=False))
- if col == 1:
- ax.set_yticks([2.5])
- ax.set_yticklabels([speakers[row - 1]])
- ax.hist(data, bins=np.linspace(0, 1, 40), density=True, histtype="step")
- ax.axvline(np.mean(data), linestyle="--", linewidth=0.5, color="#333", alpha=1)
- ax.text(0.5, 4.5, f"{low:.2f} - {high:.2f}", ha="center", va="center")
- fig.suptitle("$p_{ij}$ distribution")
- fig.subplots_adjust(wspace=0, hspace=0)
- plt.savefig(args.output)
- plt.show()
|