123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- #!/usr/bin/env python3
- import pandas as pd
- import pickle
- import numpy as np
- import argparse
- import matplotlib
- import matplotlib.pyplot as plt
- matplotlib.use("pgf")
- matplotlib.rcParams.update({
- "pgf.texsystem": "pdflatex",
- 'font.family': 'serif',
- "font.serif" : "Times New Roman",
- 'text.usetex': True,
- 'pgf.rcfonts': False,
- })
- def set_size(width, fraction=1, ratio = None):
- fig_width_pt = width * fraction
- inches_per_pt = 1 / 72.27
- if ratio is None:
- ratio = (5 ** 0.5 - 1) / 2
- fig_width_in = fig_width_pt * inches_per_pt
- fig_height_in = fig_width_in * ratio
- return fig_width_in, fig_height_in
- parser = argparse.ArgumentParser(description = 'plot_pred')
- parser.add_argument('data')
- parser.add_argument('fit')
- parser.add_argument('output')
- args = parser.parse_args()
- with open(args.data, 'rb') as fp:
- data = pickle.load(fp)
- fit = pd.read_parquet(args.fit)
- fig = plt.figure(figsize=set_size(450, 1, 1))
- axes = [fig.add_subplot(4,4,i+1) for i in range(4*4)]
- speakers = ['CHI', 'OCH', 'FEM', 'MAL']
- n_groups = data['n_groups']
- for i in range(4*4):
- ax = axes[i]
- row = i//4+1
- col = i%4+1
- label = f'{col}.{row}'
- #if args.group is None:
- # data = np.hstack([fit[f'alphas.{k}.{label}']/(fit[f'alphas.{k}.{label}']+fit[f'betas.{k}.{label}']).values for k in range(1,n_groups+1)])
- #else:
- # data = fit[f'alphas.{args.group}.{label}']/(fit[f'alphas.{args.group}.{label}']+fit[f'betas.{args.group}.{label}']).values
- #data = np.hstack([(fit[f'group_mus.{k}.{label}']).values for k in range(1,59)])
- #data = fit[f'mus.{label}'].values
- data = np.hstack([fit[f'probs.{k+1}.{label}'].values for k in range(n_groups)])
-
- ax.set_xticks([])
- ax.set_xticklabels([])
- ax.set_yticks([])
- ax.set_yticklabels([])
- ax.set_ylim(0,5)
- ax.set_xlim(0,1)
- low = np.quantile(data, 0.0275)
- high = np.quantile(data, 0.975)
- if row == 1:
- ax.xaxis.tick_top()
- ax.set_xticks([0.5])
- ax.set_xticklabels([speakers[col-1]])
- if row == 4:
- ax.set_xticks(np.linspace(0.25,1,3, endpoint = False))
- ax.set_xticklabels(np.linspace(0.25,1,3, endpoint = False))
- if col == 1:
- ax.set_yticks([2.5])
- ax.set_yticklabels([speakers[row-1]])
- ax.hist(data, bins = np.linspace(0,1,40), density = True, histtype = 'step')
- ax.axvline(np.mean(data), linestyle = '--', linewidth = 0.5, color = '#333', alpha = 1)
- ax.text(0.5, 4.5, f'{low:.2f} - {high:.2f}', ha = 'center', va = 'center')
- fig.suptitle("$p_{ij}$ distribution")
- fig.subplots_adjust(wspace = 0, hspace = 0)
- plt.savefig(args.output)
- plt.show()
|