|
@@ -1,278 +0,0 @@
|
|
|
-#!/usr/bin/env python3
|
|
|
-
|
|
|
-from ChildProject.projects import ChildProject
|
|
|
-from ChildProject.annotations import AnnotationManager
|
|
|
-from ChildProject.metrics import segments_to_annotation
|
|
|
-
|
|
|
-import argparse
|
|
|
-
|
|
|
-import datalad.api
|
|
|
-from os.path import join as opj
|
|
|
-from os.path import basename, exists
|
|
|
-
|
|
|
-import multiprocessing as mp
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-import pandas as pd
|
|
|
-import pickle
|
|
|
-from pyannote.core import Annotation, Segment, Timeline
|
|
|
-
|
|
|
-import stan
|
|
|
-
|
|
|
-parser = argparse.ArgumentParser(description = 'main model described throughout the notes.')
|
|
|
-parser.add_argument('--group', default = 'child', choices = ['corpus', 'child'])
|
|
|
-parser.add_argument('--chains', default = 4, type = int)
|
|
|
-parser.add_argument('--samples', default = 2000, type = int)
|
|
|
-parser.add_argument('--validation', default = 0, type = float)
|
|
|
-parser.add_argument('--output', default = 'model3')
|
|
|
-args = parser.parse_args()
|
|
|
-
|
|
|
-def extrude(self, removed, mode: str = 'intersection'):
|
|
|
- if isinstance(removed, Segment):
|
|
|
- removed = Timeline([removed])
|
|
|
-
|
|
|
- truncating_support = removed.gaps(support=self.extent())
|
|
|
- # loose for truncate means strict for crop and vice-versa
|
|
|
- if mode == "loose":
|
|
|
- mode = "strict"
|
|
|
- elif mode == "strict":
|
|
|
- mode = "loose"
|
|
|
-
|
|
|
- return self.crop(truncating_support, mode=mode)
|
|
|
-
|
|
|
-def compute_counts(parameters):
|
|
|
- corpus = parameters['corpus']
|
|
|
- annotator = parameters['annotator']
|
|
|
- speakers = ['CHI', 'OCH', 'FEM', 'MAL']
|
|
|
-
|
|
|
- project = ChildProject(parameters['path'])
|
|
|
- am = AnnotationManager(project)
|
|
|
- am.read()
|
|
|
-
|
|
|
- intersection = AnnotationManager.intersection(
|
|
|
- am.annotations, ['vtc', annotator]
|
|
|
- )
|
|
|
-
|
|
|
- intersection['path'] = intersection.apply(
|
|
|
- lambda r: opj(project.path, 'annotations', r['set'], 'converted', r['annotation_filename']),
|
|
|
- axis = 1
|
|
|
- )
|
|
|
- datalad.api.get(list(intersection['path'].unique()))
|
|
|
-
|
|
|
- intersection = intersection.merge(project.recordings[['recording_filename', 'child_id']], how = 'left')
|
|
|
- intersection['child'] = corpus + '_' + intersection['child_id'].astype(str)
|
|
|
- intersection['duration'] = intersection['range_offset']-intersection['range_onset']
|
|
|
- print(corpus, annotator, (intersection['duration']/1000/2).sum()/3600)
|
|
|
-
|
|
|
- data = []
|
|
|
- for child, ann in intersection.groupby('child'):
|
|
|
- #print(corpus, child)
|
|
|
-
|
|
|
- segments = am.get_collapsed_segments(ann)
|
|
|
- if 'speaker_type' not in segments.columns:
|
|
|
- continue
|
|
|
-
|
|
|
- segments = segments[segments['speaker_type'].isin(speakers)]
|
|
|
-
|
|
|
- vtc = {
|
|
|
- speaker: segments_to_annotation(segments[(segments['set'] == 'vtc') & (segments['speaker_type'] == speaker)], 'speaker_type').get_timeline()
|
|
|
- for speaker in speakers
|
|
|
- }
|
|
|
-
|
|
|
- truth = {
|
|
|
- speaker: segments_to_annotation(segments[(segments['set'] == annotator) & (segments['speaker_type'] == speaker)], 'speaker_type').get_timeline()
|
|
|
- for speaker in speakers
|
|
|
- }
|
|
|
-
|
|
|
- for speaker_A in speakers:
|
|
|
- vtc[f'{speaker_A}_vocs_explained'] = vtc[speaker_A].crop(truth[speaker_A], mode = 'loose')
|
|
|
- vtc[f'{speaker_A}_vocs_fp'] = extrude(vtc[speaker_A], vtc[f'{speaker_A}_vocs_explained'])
|
|
|
- vtc[f'{speaker_A}_vocs_fn'] = extrude(truth[speaker_A], truth[speaker_A].crop(vtc[speaker_A], mode = 'loose'))
|
|
|
-
|
|
|
- for speaker_B in speakers:
|
|
|
- vtc[f'{speaker_A}_vocs_fp_{speaker_B}'] = vtc[f'{speaker_A}_vocs_fp'].crop(truth[speaker_B], mode = 'loose')
|
|
|
-
|
|
|
- for speaker_C in speakers:
|
|
|
- if speaker_C != speaker_B and speaker_C != speaker_A:
|
|
|
- vtc[f'{speaker_A}_vocs_fp_{speaker_B}'] = extrude(
|
|
|
- vtc[f'{speaker_A}_vocs_fp_{speaker_B}'],
|
|
|
- vtc[f'{speaker_A}_vocs_fp_{speaker_B}'].crop(truth[speaker_C], mode = 'loose')
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
- d = {}
|
|
|
- for i, speaker_A in enumerate(speakers):
|
|
|
- for j, speaker_B in enumerate(speakers):
|
|
|
- if i != j:
|
|
|
- z = len(vtc[f'{speaker_A}_vocs_fp_{speaker_B}'])
|
|
|
- else:
|
|
|
- z = min(len(vtc[f'{speaker_A}_vocs_explained']), len(truth[speaker_A]))
|
|
|
-
|
|
|
- d[f'vtc_{i}_{j}'] = z
|
|
|
-
|
|
|
- d[f'truth_{i}'] = len(truth[speaker_A])
|
|
|
- d['child'] = child
|
|
|
-
|
|
|
- d['duration'] = ann['duration'].sum()/2/1000
|
|
|
- data.append(d)
|
|
|
-
|
|
|
- return pd.DataFrame(data).assign(
|
|
|
- corpus = corpus,
|
|
|
- )
|
|
|
-
|
|
|
-stan_code = """
|
|
|
-data {
|
|
|
- int<lower=1> n_clips; // number of clips
|
|
|
- int<lower=1> n_groups; // number of groups
|
|
|
- int<lower=1> n_classes; // number of classes
|
|
|
- int group[n_clips];
|
|
|
- int vtc[n_clips,n_classes,n_classes];
|
|
|
- int truth[n_clips,n_classes];
|
|
|
-
|
|
|
- int<lower=1> n_validation;
|
|
|
- int<lower=1> n_sim;
|
|
|
-
|
|
|
- real<lower=0> rates_alphas[n_classes];
|
|
|
- real<lower=0> rates_betas[n_classes];
|
|
|
-}
|
|
|
-
|
|
|
-parameters {
|
|
|
- matrix<lower=0,upper=1>[n_classes,n_classes] mus;
|
|
|
- matrix<lower=1>[n_classes,n_classes] etas;
|
|
|
- matrix<lower=0,upper=1>[n_classes,n_classes] group_confusion[n_groups];
|
|
|
-}
|
|
|
-
|
|
|
-transformed parameters {
|
|
|
- matrix<lower=0>[n_classes,n_classes] alphas;
|
|
|
- matrix<lower=0>[n_classes,n_classes] betas;
|
|
|
-
|
|
|
- alphas = mus * etas;
|
|
|
- betas = (1-mus) * etas;
|
|
|
-}
|
|
|
-
|
|
|
-model {
|
|
|
- for (k in n_validation:n_clips) {
|
|
|
- for (i in 1:n_classes) {
|
|
|
- for (j in 1:n_classes) {
|
|
|
- vtc[k,i,j] ~ binomial(truth[k,j], group_confusion[group[k],j,i]);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (i in 1:n_classes) {
|
|
|
- for (j in 1:n_classes) {
|
|
|
- mus[i,j] ~ beta(1,1);
|
|
|
- etas[i,j] ~ pareto(1,1.5);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (c in 1:n_groups) {
|
|
|
- for (i in 1:n_classes) {
|
|
|
- for (j in 1:n_classes) {
|
|
|
- group_confusion[c,i,j] ~ beta(alphas[i,j], betas[i,j]);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-generated quantities {
|
|
|
- int pred[n_clips,n_classes,n_classes];
|
|
|
- matrix[n_classes,n_classes] probs[n_groups];
|
|
|
- matrix[n_classes,n_classes] log_lik[n_clips];
|
|
|
-
|
|
|
- int sim_truth[n_sim,n_classes];
|
|
|
- int sim_vtc[n_sim,n_classes];
|
|
|
- vector[n_classes] lambdas;
|
|
|
- real chi_adu_coef = 0; // null hypothesis
|
|
|
-
|
|
|
- for (c in 1:n_groups) {
|
|
|
- for (i in 1:n_classes) {
|
|
|
- for (j in 1:n_classes) {
|
|
|
- probs[c,i,j] = beta_rng(alphas[i,j], betas[i,j]);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (k in 1:n_clips) {
|
|
|
- for (i in 1:n_classes) {
|
|
|
- for (j in 1:n_classes) {
|
|
|
- if (k >= n_validation) {
|
|
|
- pred[k,i,j] = binomial_rng(truth[k,j], group_confusion[group[k],i,j]);
|
|
|
- log_lik[k,i,j] = binomial_lpmf(vtc[k,i,j] | truth[k,j], group_confusion[group[k],j,i]);
|
|
|
- }
|
|
|
- else {
|
|
|
- pred[k,i,j] = binomial_rng(truth[k,j], probs[group[k],j,i]);
|
|
|
- log_lik[k,i,j] = beta_lpdf(probs[group[k],j,i] | alphas[j,i], betas[j,i]);
|
|
|
- log_lik[k,i,j] += binomial_lpmf(vtc[k,i,j] | truth[k,j], probs[group[k],j,i]);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- real lambda;
|
|
|
- for (k in 1:n_sim) {
|
|
|
- for (i in 2:n_classes) {
|
|
|
- lambda = gamma_rng(rates_alphas[i], rates_betas[i]);
|
|
|
- sim_truth[k,i] = poisson_rng(lambda);
|
|
|
- }
|
|
|
- lambda = gamma_rng(rates_alphas[1], rates_betas[1]);
|
|
|
- sim_truth[k,1] = poisson_rng(lambda + chi_adu_coef*(sim_truth[k,3]+sim_truth[k,4]));
|
|
|
- }
|
|
|
-
|
|
|
- for (k in 1:n_sim) {
|
|
|
- for (i in 1:n_classes) {
|
|
|
- sim_vtc[k,i] = 0;
|
|
|
- for (j in 1:n_classes) {
|
|
|
- real p = beta_rng(alphas[j,i], betas[j,i]);
|
|
|
- sim_vtc[k,i] += binomial_rng(sim_truth[k,j], p);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-"""
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- annotators = pd.read_csv('input/annotators.csv')
|
|
|
- annotators['path'] = annotators['corpus'].apply(lambda c: opj('input', c))
|
|
|
-
|
|
|
- with mp.Pool(processes = 8) as pool:
|
|
|
- data = pd.concat(pool.map(compute_counts, annotators.to_dict(orient = 'records')))
|
|
|
-
|
|
|
- data = data.sample(frac = 1)
|
|
|
- duration = data['duration'].sum()
|
|
|
-
|
|
|
- vtc = np.moveaxis([[data[f'vtc_{j}_{i}'].values for i in range(4)] for j in range(4)], -1, 0)
|
|
|
- truth = np.transpose([data[f'truth_{i}'].values for i in range(4)])
|
|
|
-
|
|
|
- print(vtc.shape)
|
|
|
-
|
|
|
- rates = pd.read_csv('output/speech_dist.csv')
|
|
|
-
|
|
|
- data = {
|
|
|
- 'n_clips': truth.shape[0],
|
|
|
- 'n_classes': truth.shape[1],
|
|
|
- 'n_groups': data[args.group].nunique(),
|
|
|
- 'n_validation': max(1, int(truth.shape[0]*args.validation)),
|
|
|
- 'n_sim': 40,
|
|
|
- 'group': 1+data[args.group].astype('category').cat.codes.values,
|
|
|
- 'truth': truth.astype(int),
|
|
|
- 'vtc': vtc.astype(int),
|
|
|
- 'rates_alphas': rates['alpha'].values,
|
|
|
- 'rates_betas': rates['beta'].values
|
|
|
- }
|
|
|
-
|
|
|
- print(f"clips: {data['n_clips']}")
|
|
|
- print(f"groups: {data['n_groups']}")
|
|
|
- print("true vocs: {}".format(np.sum(data['truth'])))
|
|
|
- print("vtc vocs: {}".format(np.sum(data['vtc'])))
|
|
|
- print("duration: {}".format(duration))
|
|
|
-
|
|
|
- with open(f'data_{args.output}.pickle', 'wb') as fp:
|
|
|
- pickle.dump(data, fp, pickle.HIGHEST_PROTOCOL)
|
|
|
-
|
|
|
- posterior = stan.build(stan_code, data = data)
|
|
|
- fit = posterior.sample(num_chains = args.chains, num_samples = args.samples)
|
|
|
- df = fit.to_frame()
|
|
|
- df.to_parquet(f'fit_{args.output}.parquet')
|
|
|
-
|
|
|
-
|