123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- using static UnityEngine.Mathf;
- namespace UnityEngine.Rendering
- {
- /// <summary>
- /// An implementation of Hable's artist-friendly tonemapping curve.
- /// http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
- /// </summary>
- public class HableCurve
- {
- /// <summary>
- /// Individual curve segment.
- /// </summary>
- public class Segment
- {
- /// <summary>
- /// The offset of the segment on the X axis.
- /// </summary>
- public float offsetX;
- /// <summary>
- /// The offset of the segment on the Y axis.
- /// </summary>
- public float offsetY;
- /// <summary>
- /// The scale of the segment on the X axis.
- /// </summary>
- public float scaleX;
- /// <summary>
- /// The scale of the segment on the Y axis.
- /// </summary>
- public float scaleY;
- /// <summary>
- /// <c>ln(A)</c> constant in the power curve <c>y = e^(ln(A) + B*ln(x))</c>.
- /// </summary>
- public float lnA;
- /// <summary>
- /// <c>B</c> constant in the power curve <c>y = e^(ln(A) + B*ln(x))</c>.
- /// </summary>
- public float B;
- /// <summary>
- /// Evaluate a point on the curve.
- /// </summary>
- /// <param name="x">The point to evaluate.</param>
- /// <returns>The value of the curve, at the point specified.</returns>
- public float Eval(float x)
- {
- float x0 = (x - offsetX) * scaleX;
- float y0 = 0f;
- // log(0) is undefined but our function should evaluate to 0. There are better ways
- // to handle this, but it's doing it the slow way here for clarity.
- if (x0 > 0)
- y0 = Exp(lnA + B * Log(x0));
- return y0 * scaleY + offsetY;
- }
- }
- struct DirectParams
- {
- internal float x0;
- internal float y0;
- internal float x1;
- internal float y1;
- internal float W;
- internal float overshootX;
- internal float overshootY;
- internal float gamma;
- }
- /// <summary>
- /// The white point.
- /// </summary>
- public float whitePoint { get; private set; }
- /// <summary>
- /// The inverse of the white point.
- /// </summary>
- /// <seealso cref="whitePoint"/>
- public float inverseWhitePoint { get; private set; }
- /// <summary>
- /// The start of the linear section (middle segment of the curve).
- /// </summary>
- public float x0 { get; private set; }
- /// <summary>
- /// The end of the linear section (middle segment of the curve).
- /// </summary>
- public float x1 { get; private set; }
- /// <summary>
- /// The three segments of the curve.
- /// </summary>
- public readonly Segment[] segments = new Segment[3];
- /// <summary>
- /// Creates a new curve.
- /// </summary>
- public HableCurve()
- {
- for (int i = 0; i < 3; i++)
- segments[i] = new Segment();
- uniforms = new Uniforms(this);
- }
- /// <summary>
- /// Evaluates a point on the curve.
- /// </summary>
- /// <param name="x"></param>
- /// <returns></returns>
- public float Eval(float x)
- {
- float normX = x * inverseWhitePoint;
- int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2);
- var segment = segments[index];
- float ret = segment.Eval(normX);
- return ret;
- }
- /// <summary>
- /// Initializes the curve.
- /// </summary>
- /// <param name="toeStrength">The strength of the transition between the curve's toe and the curve's mid-section. A value of 0 results in no transition and a value of 1 results in a very hard transition.</param>
- /// <param name="toeLength">The length of the curve's toe. Higher values result in longer toes and therefore contain more of the dynamic range.</param>
- /// <param name="shoulderStrength">The strength of the transition between the curve's midsection and the curve's shoulder. A value of 0 results in no transition and a value of 1 results in a very hard transition.</param>
- /// <param name="shoulderLength">The amount of f-stops to add to the dynamic range of the curve. This is how much of the highlights that the curve takes into account.</param>
- /// <param name="shoulderAngle">How much overshoot to add to the curve's shoulder.</param>
- /// <param name="gamma">A gamma correction to the entire curve.</param>
- public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma)
- {
- var dstParams = new DirectParams();
- // This is not actually the display gamma. It's just a UI space to avoid having to
- // enter small numbers for the input.
- const float kPerceptualGamma = 2.2f;
- // Constraints
- {
- toeLength = Pow(Clamp01(toeLength), kPerceptualGamma);
- toeStrength = Clamp01(toeStrength);
- shoulderAngle = Clamp01(shoulderAngle);
- shoulderStrength = Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f);
- shoulderLength = Max(0f, shoulderLength);
- gamma = Max(1e-5f, gamma);
- }
- // Apply base params
- {
- // Toe goes from 0 to 0.5
- float x0 = toeLength * 0.5f;
- float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0
- float remainingY = 1f - y0;
- float initialW = x0 + remainingY;
- float y1_offset = (1f - shoulderStrength) * remainingY;
- float x1 = x0 + y1_offset;
- float y1 = y0 + y1_offset;
- // Filmic shoulder strength is in F stops
- float extraW = Pow(2f, shoulderLength) - 1f;
- float W = initialW + extraW;
- dstParams.x0 = x0;
- dstParams.y0 = y0;
- dstParams.x1 = x1;
- dstParams.y1 = y1;
- dstParams.W = W;
- // Bake the linear to gamma space conversion
- dstParams.gamma = gamma;
- }
- dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength;
- dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength;
- InitSegments(dstParams);
- }
- void InitSegments(DirectParams srcParams)
- {
- var paramsCopy = srcParams;
- whitePoint = srcParams.W;
- inverseWhitePoint = 1f / srcParams.W;
- // normalize params to 1.0 range
- paramsCopy.W = 1f;
- paramsCopy.x0 /= srcParams.W;
- paramsCopy.x1 /= srcParams.W;
- paramsCopy.overshootX = srcParams.overshootX / srcParams.W;
- float toeM = 0f;
- float shoulderM = 0f;
- {
- float m, b;
- AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1);
- float g = srcParams.gamma;
- // Base function of linear section plus gamma is
- // y = (mx+b)^g
- //
- // which we can rewrite as
- // y = exp(g*ln(m) + g*ln(x+b/m))
- //
- // and our evaluation function is (skipping the if parts):
- /*
- float x0 = (x - offsetX) * scaleX;
- y0 = exp(m_lnA + m_B*log(x0));
- return y0*scaleY + m_offsetY;
- */
- var midSegment = segments[1];
- midSegment.offsetX = -(b / m);
- midSegment.offsetY = 0f;
- midSegment.scaleX = 1f;
- midSegment.scaleY = 1f;
- midSegment.lnA = g * Log(m);
- midSegment.B = g;
- toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0);
- shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1);
- // apply gamma to endpoints
- paramsCopy.y0 = Max(1e-5f, Pow(paramsCopy.y0, paramsCopy.gamma));
- paramsCopy.y1 = Max(1e-5f, Pow(paramsCopy.y1, paramsCopy.gamma));
- paramsCopy.overshootY = Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f;
- }
- this.x0 = paramsCopy.x0;
- this.x1 = paramsCopy.x1;
- // Toe section
- {
- var toeSegment = segments[0];
- toeSegment.offsetX = 0;
- toeSegment.offsetY = 0f;
- toeSegment.scaleX = 1f;
- toeSegment.scaleY = 1f;
- float lnA, B;
- SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM);
- toeSegment.lnA = lnA;
- toeSegment.B = B;
- }
- // Shoulder section
- {
- // Use the simple version that is usually too flat
- var shoulderSegment = segments[2];
- float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1;
- float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1;
- float lnA, B;
- SolveAB(out lnA, out B, x0, y0, shoulderM);
- shoulderSegment.offsetX = (1f + paramsCopy.overshootX);
- shoulderSegment.offsetY = (1f + paramsCopy.overshootY);
- shoulderSegment.scaleX = -1f;
- shoulderSegment.scaleY = -1f;
- shoulderSegment.lnA = lnA;
- shoulderSegment.B = B;
- }
- // Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we
- // skipped the overshoot part.
- {
- // Evaluate shoulder at the end of the curve
- float scale = segments[2].Eval(1f);
- float invScale = 1f / scale;
- segments[0].offsetY *= invScale;
- segments[0].scaleY *= invScale;
- segments[1].offsetY *= invScale;
- segments[1].scaleY *= invScale;
- segments[2].offsetY *= invScale;
- segments[2].scaleY *= invScale;
- }
- }
- // Find a function of the form:
- // f(x) = e^(lnA + Bln(x))
- // where
- // f(0) = 0; not really a constraint
- // f(x0) = y0
- // f'(x0) = m
- void SolveAB(out float lnA, out float B, float x0, float y0, float m)
- {
- B = (m * x0) / y0;
- lnA = Log(y0) - B * Log(x0);
- }
- // Convert to y=mx+b
- void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1)
- {
- float dy = (y1 - y0);
- float dx = (x1 - x0);
- if (dx == 0)
- m = 1f;
- else
- m = dy / dx;
- b = y0 - x0 * m;
- }
- // f(x) = (mx+b)^g
- // f'(x) = gm(mx+b)^(g-1)
- float EvalDerivativeLinearGamma(float m, float b, float g, float x)
- {
- return g * m * Pow(m * x + b, g - 1f);
- }
- /// <summary>
- /// An utility class to ease the binding of curve parameters to shaders.
- /// </summary>
- public class Uniforms
- {
- HableCurve parent;
- internal Uniforms(HableCurve parent)
- {
- this.parent = parent;
- }
- /// <summary>
- /// Main curve settings, stored as <c>(inverseWhitePoint, x0, x1, 0)</c>.
- /// </summary>
- public Vector4 curve => new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f);
- /// <summary>
- /// Toe segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
- /// </summary>
- public Vector4 toeSegmentA => new Vector4(parent.segments[0].offsetX, parent.segments[0].offsetY, parent.segments[0].scaleX, parent.segments[0].scaleY);
- /// <summary>
- /// Toe segment settings, stored as <c>(ln1, B, 0, 0)</c>.
- /// </summary>
- public Vector4 toeSegmentB => new Vector4(parent.segments[0].lnA, parent.segments[0].B, 0f, 0f);
- /// <summary>
- /// Mid segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
- /// </summary>
- public Vector4 midSegmentA => new Vector4(parent.segments[1].offsetX, parent.segments[1].offsetY, parent.segments[1].scaleX, parent.segments[1].scaleY);
- /// <summary>
- /// Mid segment settings, stored as <c>(ln1, B, 0, 0)</c>.
- /// </summary>
- public Vector4 midSegmentB => new Vector4(parent.segments[1].lnA, parent.segments[1].B, 0f, 0f);
- /// <summary>
- /// Shoulder segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
- /// </summary>
- public Vector4 shoSegmentA => new Vector4(parent.segments[2].offsetX, parent.segments[2].offsetY, parent.segments[2].scaleX, parent.segments[2].scaleY);
- /// <summary>
- /// Shoulder segment settings, stored as <c>(ln1, B, 0, 0)</c>.
- /// </summary>
- public Vector4 shoSegmentB => new Vector4(parent.segments[2].lnA, parent.segments[2].B, 0f, 0f);
- }
- /// <summary>
- /// An instance of the <see cref="Uniforms"/> utility class for this curve.
- /// </summary>
- public readonly Uniforms uniforms;
- }
- }
|