using static UnityEngine.Mathf;
namespace UnityEngine.Rendering
{
///
/// An implementation of Hable's artist-friendly tonemapping curve.
/// http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
///
public class HableCurve
{
///
/// Individual curve segment.
///
public class Segment
{
///
/// The offset of the segment on the X axis.
///
public float offsetX;
///
/// The offset of the segment on the Y axis.
///
public float offsetY;
///
/// The scale of the segment on the X axis.
///
public float scaleX;
///
/// The scale of the segment on the Y axis.
///
public float scaleY;
///
/// ln(A) constant in the power curve y = e^(ln(A) + B*ln(x)).
///
public float lnA;
///
/// B constant in the power curve y = e^(ln(A) + B*ln(x)).
///
public float B;
///
/// Evaluate a point on the curve.
///
/// The point to evaluate.
/// The value of the curve, at the point specified.
public float Eval(float x)
{
float x0 = (x - offsetX) * scaleX;
float y0 = 0f;
// log(0) is undefined but our function should evaluate to 0. There are better ways
// to handle this, but it's doing it the slow way here for clarity.
if (x0 > 0)
y0 = Exp(lnA + B * Log(x0));
return y0 * scaleY + offsetY;
}
}
struct DirectParams
{
internal float x0;
internal float y0;
internal float x1;
internal float y1;
internal float W;
internal float overshootX;
internal float overshootY;
internal float gamma;
}
///
/// The white point.
///
public float whitePoint { get; private set; }
///
/// The inverse of the white point.
///
///
public float inverseWhitePoint { get; private set; }
///
/// The start of the linear section (middle segment of the curve).
///
public float x0 { get; private set; }
///
/// The end of the linear section (middle segment of the curve).
///
public float x1 { get; private set; }
///
/// The three segments of the curve.
///
public readonly Segment[] segments = new Segment[3];
///
/// Creates a new curve.
///
public HableCurve()
{
for (int i = 0; i < 3; i++)
segments[i] = new Segment();
uniforms = new Uniforms(this);
}
///
/// Evaluates a point on the curve.
///
///
///
public float Eval(float x)
{
float normX = x * inverseWhitePoint;
int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2);
var segment = segments[index];
float ret = segment.Eval(normX);
return ret;
}
///
/// Initializes the curve.
///
/// The strength of the transition between the curve's toe and the curve's mid-section. A value of 0 results in no transition and a value of 1 results in a very hard transition.
/// The length of the curve's toe. Higher values result in longer toes and therefore contain more of the dynamic range.
/// The strength of the transition between the curve's midsection and the curve's shoulder. A value of 0 results in no transition and a value of 1 results in a very hard transition.
/// The amount of f-stops to add to the dynamic range of the curve. This is how much of the highlights that the curve takes into account.
/// How much overshoot to add to the curve's shoulder.
/// A gamma correction to the entire curve.
public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma)
{
var dstParams = new DirectParams();
// This is not actually the display gamma. It's just a UI space to avoid having to
// enter small numbers for the input.
const float kPerceptualGamma = 2.2f;
// Constraints
{
toeLength = Pow(Clamp01(toeLength), kPerceptualGamma);
toeStrength = Clamp01(toeStrength);
shoulderAngle = Clamp01(shoulderAngle);
shoulderStrength = Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f);
shoulderLength = Max(0f, shoulderLength);
gamma = Max(1e-5f, gamma);
}
// Apply base params
{
// Toe goes from 0 to 0.5
float x0 = toeLength * 0.5f;
float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0
float remainingY = 1f - y0;
float initialW = x0 + remainingY;
float y1_offset = (1f - shoulderStrength) * remainingY;
float x1 = x0 + y1_offset;
float y1 = y0 + y1_offset;
// Filmic shoulder strength is in F stops
float extraW = Pow(2f, shoulderLength) - 1f;
float W = initialW + extraW;
dstParams.x0 = x0;
dstParams.y0 = y0;
dstParams.x1 = x1;
dstParams.y1 = y1;
dstParams.W = W;
// Bake the linear to gamma space conversion
dstParams.gamma = gamma;
}
dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength;
dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength;
InitSegments(dstParams);
}
void InitSegments(DirectParams srcParams)
{
var paramsCopy = srcParams;
whitePoint = srcParams.W;
inverseWhitePoint = 1f / srcParams.W;
// normalize params to 1.0 range
paramsCopy.W = 1f;
paramsCopy.x0 /= srcParams.W;
paramsCopy.x1 /= srcParams.W;
paramsCopy.overshootX = srcParams.overshootX / srcParams.W;
float toeM = 0f;
float shoulderM = 0f;
{
float m, b;
AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1);
float g = srcParams.gamma;
// Base function of linear section plus gamma is
// y = (mx+b)^g
//
// which we can rewrite as
// y = exp(g*ln(m) + g*ln(x+b/m))
//
// and our evaluation function is (skipping the if parts):
/*
float x0 = (x - offsetX) * scaleX;
y0 = exp(m_lnA + m_B*log(x0));
return y0*scaleY + m_offsetY;
*/
var midSegment = segments[1];
midSegment.offsetX = -(b / m);
midSegment.offsetY = 0f;
midSegment.scaleX = 1f;
midSegment.scaleY = 1f;
midSegment.lnA = g * Log(m);
midSegment.B = g;
toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0);
shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1);
// apply gamma to endpoints
paramsCopy.y0 = Max(1e-5f, Pow(paramsCopy.y0, paramsCopy.gamma));
paramsCopy.y1 = Max(1e-5f, Pow(paramsCopy.y1, paramsCopy.gamma));
paramsCopy.overshootY = Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f;
}
this.x0 = paramsCopy.x0;
this.x1 = paramsCopy.x1;
// Toe section
{
var toeSegment = segments[0];
toeSegment.offsetX = 0;
toeSegment.offsetY = 0f;
toeSegment.scaleX = 1f;
toeSegment.scaleY = 1f;
float lnA, B;
SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM);
toeSegment.lnA = lnA;
toeSegment.B = B;
}
// Shoulder section
{
// Use the simple version that is usually too flat
var shoulderSegment = segments[2];
float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1;
float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1;
float lnA, B;
SolveAB(out lnA, out B, x0, y0, shoulderM);
shoulderSegment.offsetX = (1f + paramsCopy.overshootX);
shoulderSegment.offsetY = (1f + paramsCopy.overshootY);
shoulderSegment.scaleX = -1f;
shoulderSegment.scaleY = -1f;
shoulderSegment.lnA = lnA;
shoulderSegment.B = B;
}
// Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we
// skipped the overshoot part.
{
// Evaluate shoulder at the end of the curve
float scale = segments[2].Eval(1f);
float invScale = 1f / scale;
segments[0].offsetY *= invScale;
segments[0].scaleY *= invScale;
segments[1].offsetY *= invScale;
segments[1].scaleY *= invScale;
segments[2].offsetY *= invScale;
segments[2].scaleY *= invScale;
}
}
// Find a function of the form:
// f(x) = e^(lnA + Bln(x))
// where
// f(0) = 0; not really a constraint
// f(x0) = y0
// f'(x0) = m
void SolveAB(out float lnA, out float B, float x0, float y0, float m)
{
B = (m * x0) / y0;
lnA = Log(y0) - B * Log(x0);
}
// Convert to y=mx+b
void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1)
{
float dy = (y1 - y0);
float dx = (x1 - x0);
if (dx == 0)
m = 1f;
else
m = dy / dx;
b = y0 - x0 * m;
}
// f(x) = (mx+b)^g
// f'(x) = gm(mx+b)^(g-1)
float EvalDerivativeLinearGamma(float m, float b, float g, float x)
{
return g * m * Pow(m * x + b, g - 1f);
}
///
/// An utility class to ease the binding of curve parameters to shaders.
///
public class Uniforms
{
HableCurve parent;
internal Uniforms(HableCurve parent)
{
this.parent = parent;
}
///
/// Main curve settings, stored as (inverseWhitePoint, x0, x1, 0).
///
public Vector4 curve => new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f);
///
/// Toe segment settings, stored as (offsetX, offsetY, scaleX, scaleY).
///
public Vector4 toeSegmentA => new Vector4(parent.segments[0].offsetX, parent.segments[0].offsetY, parent.segments[0].scaleX, parent.segments[0].scaleY);
///
/// Toe segment settings, stored as (ln1, B, 0, 0).
///
public Vector4 toeSegmentB => new Vector4(parent.segments[0].lnA, parent.segments[0].B, 0f, 0f);
///
/// Mid segment settings, stored as (offsetX, offsetY, scaleX, scaleY).
///
public Vector4 midSegmentA => new Vector4(parent.segments[1].offsetX, parent.segments[1].offsetY, parent.segments[1].scaleX, parent.segments[1].scaleY);
///
/// Mid segment settings, stored as (ln1, B, 0, 0).
///
public Vector4 midSegmentB => new Vector4(parent.segments[1].lnA, parent.segments[1].B, 0f, 0f);
///
/// Shoulder segment settings, stored as (offsetX, offsetY, scaleX, scaleY).
///
public Vector4 shoSegmentA => new Vector4(parent.segments[2].offsetX, parent.segments[2].offsetY, parent.segments[2].scaleX, parent.segments[2].scaleY);
///
/// Shoulder segment settings, stored as (ln1, B, 0, 0).
///
public Vector4 shoSegmentB => new Vector4(parent.segments[2].lnA, parent.segments[2].B, 0f, 0f);
}
///
/// An instance of the utility class for this curve.
///
public readonly Uniforms uniforms;
}
}