Przeglądaj źródła

Readd script directly into git

Julia Sprenger 1 rok temu
rodzic
commit
61e4fa1915
1 zmienionych plików z 126 dodań i 0 usunięć
  1. 126 0
      ephys_neuropixel/code/create_rawdata.py

+ 126 - 0
ephys_neuropixel/code/create_rawdata.py

@@ -0,0 +1,126 @@
+import itertools
+import pathlib
+
+import pandas as pd
+import numpy as np
+import scipy
+import spikeinterface.full as si
+import json
+import csv
+from scipy.io import loadmat
+import neo
+
+from bep032tools.generator.BEP032Generator import BEP032Data
+from bep032tools.generator.utils import save_json, save_tsv
+
+# b = BEP032Data()
+# b.generate_metadata_file_channels()
+
+
+
+class BIDSGenerator(BEP032Data):
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.probe_name, self.probe_sources = self.load_probe_source_data()
+
+    def generate_metadata_file_channels(self, output):
+
+        recording_folder = self.custom_metadata_sources['source_data_folder']
+        neo_reader = neo.get_io(recording_folder)
+        # recording = si.NixRecordingExtractor(recording_folder, streamid)
+
+        neo_streams = neo_reader.header['signal_streams']
+        neo_channels = neo_reader.header['signal_channels']
+
+        df = pd.DataFrame.from_records(neo_channels)
+        df.rename(columns={'name': 'channel_id', 'id':'channel_name', 'sampling_rate':'sampling_frequency', 'units':'unit'}, inplace=True)
+        df['type'] = 'EXT'
+
+        # ensure all channels have a corresponding contact
+        channel_contacts = df['channel_id'].str.extract(r'(\d+)').astype(int)
+        assert all(np.isin(channel_contacts, self.probe_sources['chanMap0ind']))
+
+        df.set_index('channel_id', inplace=True)
+
+        save_tsv(df, output)
+
+    def generate_metadata_file_probes(self, output): # get_probes_files(path):
+        # only a single neuropixel probe used in this experiment
+        df = pd.DataFrame(columns=['probe_id', 'type'], data=[[f'probe-{self.probe_name}', 'Neuropixel']])
+        df.set_index('probe_id', inplace=True)
+        save_tsv(df, output)
+
+    def generate_metadata_file_contacts(self, output): #  get_contacts_files(probes_file):
+        df = self.probe_sources.copy()
+
+        df.rename(columns={'chanMap0ind':'contact_id','shankInd':'shank_id','chanMap':'1-indexed-contact_id', 'xcoords':'x','ycoords':'y'}, inplace=True)
+        df.set_index('contact_id', inplace=True)
+
+        save_tsv(df, output)
+
+    def generate_metadata_file_dataset_description(self, output):
+        mdict = {'author': ['Alice A', ' Bob B']}
+        # Using a JSON string
+        save_json(mdict, output)
+
+    def generate_metadata_file_participants(self, output):
+        df = pd.DataFrame(columns=['subject_id'], data=['sub-' + self.sub_id])
+        df.set_index('subject_id', inplace=True)
+        save_tsv(df, output)
+
+    def generate_metadata_file_sessions(self, output):
+        df = pd.DataFrame(columns=['session_id'], data=['ses-' + self.ses_id])
+        df.set_index('session_id', inplace=True)
+        save_tsv(df, output)
+
+    def generate_metadata_file_ephys(self, output):
+        mdict = {'PowerLineFrequency':60}
+        save_json(mdict, output)
+
+    def load_probe_source_data(self):
+        sources_folder = self.custom_metadata_sources['source_data_folder'].parents[1]
+        # Import .mat dataset
+        mat_files = list(sources_folder.glob('*.mat'))
+        assert len(mat_files) == 1
+        mat_file = mat_files[0]
+
+        mat = scipy.io.loadmat(mat_file)
+        df = pd.DataFrame()
+        for key, values in mat.items():
+            if key.startswith('__') or key == 'name':
+                continue
+            else:
+                df[key] = values.flatten()
+
+        if 'name' in mat:
+            probe_name = mat['name'][0]
+        else:
+            probe_name = None
+
+        return probe_name, df
+
+
+
+if __name__ == '__main__':
+
+    for sub_path in pathlib.Path('.').glob('../sourcedata/sub-*'):
+        sub_id = sub_path.name.split('sub-')[-1]
+        for ses_path in sub_path.glob('ses-*'):
+            ses_id = ses_path.name.split('ses-')[-1]
+
+            gen = BIDSGenerator(sub_id, ses_id,
+                                custom_metadata_source={'source_data_folder': ses_path})
+            gen.basedir = pathlib.Path('../rawdata')
+            gen.register_data_sources(ses_path)
+            gen.generate_directory_structure()
+            # gen.organize_data_files(mode='link', autoconvert='nwb')
+            gen.generate_all_metadata_files()
+
+
+
+    # contacts_file = get_contacts_files(get_probes_files('neuropixPhase3A_kilosortChanMap.mat'))
+    # channel_file = get_channel_file('/Users/killianrochet/Downloads/bep032-spikesorting-2/Cazette/dataset/sub-i/ses-123456/ephys/sub-i_ses-123456_task-r2g_run-001_ephys.nix',contacts_file)
+    # print(contacts_file)
+    # print(channel_file)
+