123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- from load_website_data import load_icl
- import numpy as np
- try:
- from scipy.io import savemat
- except ImportError:
- pass
- from crowd_labeling import CLLDA, concurrent_cllda, combine_cllda
- from crowd_labeling.MV import MV
- import cPickle as pkl
- import json
- from os.path import join, isfile, isdir
- import argparse
- from copy import deepcopy
- import sys
- # parse input arguments
- print('parsing arguments')
- parser = argparse.ArgumentParser(description='Run or update CL estimates.')
- parser.add_argument('database', type=str, help='Absolute reference to the sqlite database file.')
- parser.add_argument('save', type=str, help='Directory in which to save results.')
- parser.add_argument('-classifications', type=str, help='Directory in which to save results for website viewing.',
- default=None)
- args = parser.parse_args()
- database = args.database
- path = args.save
- classifications_path = args.classifications
- assert isfile(database), 'database path does not exist'
- assert isdir(path), 'save path does not exist'
- assert isdir(classifications_path), 'classifications path does not exist'
- # load sqlite data
- print('loading database')
- icl_votes = load_icl(database)
- votes = icl_votes['votes']
- workers = icl_votes['workers']
- instances = icl_votes['instances']
- instance_set_numbers = icl_votes['instance_set_numbers']
- instance_ic_numbers = icl_votes['instance_ic_numbers']
- vote_ids = np.array(['Brain', 'Muscle', 'Eye', 'Heart', 'Line Noise', 'Chan Noise', 'Other', '?'])
- instance_ids = icl_votes['instance_ids']
- worker_ids = icl_votes['worker_ids']
- T = icl_votes['n_classes']
- C = icl_votes['n_responses']
- A = icl_votes['n_workers']
- is_expert = (icl_votes['is_expert']).astype(bool) # type = np.ndarray
- # append identifier to string
- def add_identifier(string, identifier):
- return '_'.join((x for x in (string, identifier) if x is not None))
- # run cllda
- def run_cllda(save_path, vts, wks, its, vt_ids=None, it_ids=None, wk_ids=None, it_priors=None, wk_priors=None,
- it_set_numbers=None, it_ic_numbers=None, identifier=None):
- if isfile(join(save_path, add_identifier('icl_cllda_models', identifier) + '.pkl')):
- # load for python
- with open(join(save_path, add_identifier('icl_cllda_models', identifier) + '.pkl'), 'rb') as f:
- cls = pkl.load(f)
- # update CLLDA with all transforms
- cls = concurrent_cllda(cls, vts, wks, its, nprocs=4, vote_ids=vt_ids, instance_ids=it_ids,
- worker_ids=wk_ids, worker_prior=wk_priors, num_epochs=800, burn_in=0)
- else:
- # CLLDA with all transforms
- cls = concurrent_cllda(4, vts, wks, its, nprocs=4, vote_ids=vt_ids, instance_ids=it_ids,
- worker_ids=wk_ids, worker_prior=wk_priors, instance_prior=it_priors,
- transform=('none', 'ilr', 'clr', 'alr'), num_epochs=1000, burn_in=200)
- # save individual models for python
- with open(join(save_path, add_identifier('icl_cllda_models', identifier) + '.pkl'), 'wb') as f:
- pkl.dump(cls, f)
- # combine models
- cl = combine_cllda(cls)
- # aggregate data
- return {
- 'instance_ids': cl.instance_ids,
- 'worker_ids': cl.worker_ids,
- 'vote_ids': cl.vote_ids,
- 'instance_set_numbers': it_set_numbers.astype(int),
- 'instance_ic_numbers': it_ic_numbers.astype(int),
- 'transform': cl.transform,
- 'labels': cl.labels,
- 'labels_cov': cl.labels_cov,
- 'worker_mats': cl.worker_mats,
- }
- # save results in 3 different formats
- def save_results(save_path, data, identifier=None):
- # save combined model for php
- print('saving for php')
- json_data = deepcopy(data)
- for key, val in json_data.iteritems():
- if isinstance(val, np.ndarray):
- json_data[key] = val.tolist()
- elif isinstance(val, list):
- for it, item in enumerate(val):
- if isinstance(item, np.ndarray):
- val[it] = item.tolist()
- json_data[key] = val
- with open(join(save_path, add_identifier('ICLabels', identifier) + '.json'), 'wb') as f:
- json.dump(json_data, f)
- # save combined model for python
- print('saving for python')
- with open(join(save_path, add_identifier('ICLabels', identifier) + '.pkl'), 'wb') as f:
- pkl.dump(data, f)
- # save combined model for matlab
- if 'savemat' in sys.modules:
- print('saving for matlab')
- for key, val in data.iteritems():
- if not isinstance(val, np.ndarray):
- try:
- val = np.array(val)
- except ValueError:
- data[key] = np.empty(len(val), dtype=np.object)
- for it, item in enumerate(val):
- data[key][it] = item
- continue
- if not np.issubdtype(val.dtype, np.number):
- data[key] = val.astype(np.object)
- savemat(join(save_path, add_identifier('ICLabels', identifier) + '.mat'), data)
- # optionally save classifications for website viewing
- if isdir(classifications_path) and all((x in data.keys() for x in ('labels', 'vote_ids',
- 'instance_set_numbers', 'instance_ic_numbers'))):
- path_str = join(classifications_path, add_identifier('website', identifier) + '_icl_')
- with open(path_str + 'index.json', 'w') as f:
- json.dump(zip(json_data['instance_set_numbers'], json_data['instance_ic_numbers']), f)
- with open(path_str + 'classifications.json', 'w') as f:
- try:
- json.dump(json_data['labels'][np.where(np.array(data['transform']) == 'none')[0][0]], f)
- except KeyError:
- json.dump(json_data['labels'], f)
- with open(path_str + 'classes.json', 'w') as f:
- json.dump(json_data['vote_ids'][:-1], f)
- # CLLDA settings
- n_pseudovotes_e = 100
- n_pseudovotes_u = 1
- expert_prior = n_pseudovotes_e * (np.hstack((np.eye(T), np.zeros((T, 1))))) + 0.01
- user_prior = n_pseudovotes_u * (np.hstack((np.eye(T), np.zeros((T, 1))))) + 0.01
- all_priors = np.zeros((A, T, C))
- all_priors[is_expert.astype(np.bool), :, :] = np.tile(expert_prior[np.newaxis], [is_expert.sum(), 1, 1])
- all_priors[np.logical_not(is_expert), :, :] = np.tile(user_prior[np.newaxis], [np.logical_not(is_expert).sum(), 1, 1])
- instance_prior = np.histogram(votes, range(C))[0] / 100. / np.histogram(votes, range(C))[0].sum()
- # run and save CLLDA with experts
- tag = 'expert'
- print('Running CLLDA_' + tag + '...')
- out = run_cllda(path, votes, workers, instances, vote_ids, instance_ids, worker_ids, instance_prior,
- all_priors, instance_set_numbers, instance_ic_numbers, tag)
- print('Saved individual CLLDA_' + tag + ' models')
- print('Saving combined results...')
- save_results(path, out, tag)
- print('Saved combined results')
- # run CLLDA without experts
- tag = 'noexpert'
- print('Running CLLDA_' + tag + '...')
- out = run_cllda(path, votes, workers, instances, vote_ids, instance_ids, worker_ids, instance_prior,
- user_prior, instance_set_numbers, instance_ic_numbers, tag)
- print('Saved individual CLLDA_' + tag + ' models')
- print('Saving combined results...')
- save_results(path, out, tag)
- print('Saved combined results')
- # run and save with only luca
- # remove non-luca votes
- worker_ids_lu = worker_ids[0]
- luca_ind = np.in1d(workers, (0,))
- votes_lu = votes[luca_ind]
- workers_lu = workers[luca_ind]
- instances_lu = instances[luca_ind]
- # remove instances with votes that are unsure
- keep_index = np.logical_not(np.in1d(instances_lu, np.unique(instances_lu[votes_lu == 7])))
- votes_lu = votes_lu[keep_index]
- workers_lu = workers_lu[keep_index]
- instances_lu = instances_lu[keep_index]
- instance_ids_lu = instance_ids[np.unique(instances_lu)]
- # reset instance numbering
- instance_set_numbers_lu = np.array(instance_set_numbers)[np.unique(instances_lu)]
- instance_ic_numbers_lu = np.array(instance_ic_numbers)[np.unique(instances_lu)]
- instances_lu = np.array([{x: y for x, y in zip(np.unique(instances_lu),
- np.arange(np.unique(instances_lu).size))}[z]
- for z in instances_lu])
- # run MV
- cl = MV(votes_lu, workers_lu, instances_lu)
- # save results
- save_results(path, {
- 'instance_ids': instance_ids_lu,
- 'worker_ids': worker_ids_lu,
- 'vote_ids': vote_ids,
- 'instance_set_numbers': instance_set_numbers_lu,
- 'instance_ic_numbers': instance_ic_numbers_lu,
- 'labels': cl.labels,
- }, 'onlyluca')
|