Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

tpl-fsaverage_hemi-L_den-164k_atlas-Lausanne2018_scale-3_dseg.label.gii 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Wed Mar 13 16:08:55 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0.980392" Green="0.980392" Blue="0.980392" Alpha="1"><![CDATA[unknown ]]></Label>
  20. <Label Key="1" Red="0.603922" Green="0.807843" Blue="0.0627451" Alpha="1"><![CDATA[lateralorbitofrontal_1 ]]></Label>
  21. <Label Key="2" Red="0.827451" Green="0.427451" Blue="0.439216" Alpha="1"><![CDATA[lateralorbitofrontal_2 ]]></Label>
  22. <Label Key="3" Red="0.0627451" Green="0.592157" Blue="0.647059" Alpha="1"><![CDATA[lateralorbitofrontal_3 ]]></Label>
  23. <Label Key="4" Red="0.768627" Green="0.054902" Blue="0.964706" Alpha="1"><![CDATA[lateralorbitofrontal_4 ]]></Label>
  24. <Label Key="5" Red="0.247059" Green="0.407843" Blue="0.792157" Alpha="1"><![CDATA[parsorbitalis_1 ]]></Label>
  25. <Label Key="6" Red="0.701961" Green="0.631373" Blue="0.0666667" Alpha="1"><![CDATA[frontalpole_1 ]]></Label>
  26. <Label Key="7" Red="0.0862745" Green="0.333333" Blue="0.901961" Alpha="1"><![CDATA[medialorbitofrontal_1 ]]></Label>
  27. <Label Key="8" Red="0.0901961" Green="0.709804" Blue="0.980392" Alpha="1"><![CDATA[medialorbitofrontal_2 ]]></Label>
  28. <Label Key="9" Red="0.282353" Green="0.760784" Blue="0.0431373" Alpha="1"><![CDATA[medialorbitofrontal_3 ]]></Label>
  29. <Label Key="10" Red="0.92549" Green="0.694118" Blue="0.556863" Alpha="1"><![CDATA[parstriangularis_1 ]]></Label>
  30. <Label Key="11" Red="0.941176" Green="0.709804" Blue="0.980392" Alpha="1"><![CDATA[parstriangularis_2 ]]></Label>
  31. <Label Key="12" Red="0.372549" Green="0.717647" Blue="0.243137" Alpha="1"><![CDATA[parsopercularis_1 ]]></Label>
  32. <Label Key="13" Red="0.337255" Green="0.517647" Blue="0.101961" Alpha="1"><![CDATA[parsopercularis_2 ]]></Label>
  33. <Label Key="14" Red="0.466667" Green="0.592157" Blue="0.752941" Alpha="1"><![CDATA[rostralmiddlefrontal_1 ]]></Label>
  34. <Label Key="15" Red="0.8" Green="0.0117647" Blue="0.686275" Alpha="1"><![CDATA[rostralmiddlefrontal_2 ]]></Label>
  35. <Label Key="16" Red="0.160784" Green="0.74902" Blue="0.109804" Alpha="1"><![CDATA[rostralmiddlefrontal_3 ]]></Label>
  36. <Label Key="17" Red="0.788235" Green="0.235294" Blue="0.984314" Alpha="1"><![CDATA[rostralmiddlefrontal_4 ]]></Label>
  37. <Label Key="18" Red="0.278431" Green="0.00784314" Blue="0.129412" Alpha="1"><![CDATA[rostralmiddlefrontal_5 ]]></Label>
  38. <Label Key="19" Red="0.482353" Green="0.156863" Blue="0.447059" Alpha="1"><![CDATA[rostralmiddlefrontal_6 ]]></Label>
  39. <Label Key="20" Red="0.94902" Green="0.815686" Blue="0.0235294" Alpha="1"><![CDATA[superiorfrontal_1 ]]></Label>
  40. <Label Key="21" Red="0.956863" Green="0.478431" Blue="0.85098" Alpha="1"><![CDATA[superiorfrontal_2 ]]></Label>
  41. <Label Key="22" Red="0.490196" Green="0.509804" Blue="0.745098" Alpha="1"><![CDATA[superiorfrontal_3 ]]></Label>
  42. <Label Key="23" Red="0.156863" Green="0.415686" Blue="0.192157" Alpha="1"><![CDATA[superiorfrontal_4 ]]></Label>
  43. <Label Key="24" Red="0.372549" Green="0.580392" Blue="0.372549" Alpha="1"><![CDATA[superiorfrontal_5 ]]></Label>
  44. <Label Key="25" Red="0.411765" Green="0.160784" Blue="0.670588" Alpha="1"><![CDATA[superiorfrontal_6 ]]></Label>
  45. <Label Key="26" Red="0.0588235" Green="0.384314" Blue="0.439216" Alpha="1"><![CDATA[superiorfrontal_7 ]]></Label>
  46. <Label Key="27" Red="0.231373" Green="0.352941" Blue="0.490196" Alpha="1"><![CDATA[superiorfrontal_8 ]]></Label>
  47. <Label Key="28" Red="0.0117647" Green="0.439216" Blue="0.423529" Alpha="1"><![CDATA[caudalmiddlefrontal_1 ]]></Label>
  48. <Label Key="29" Red="0.678431" Green="0.784314" Blue="0.309804" Alpha="1"><![CDATA[caudalmiddlefrontal_2 ]]></Label>
  49. <Label Key="30" Red="0.913725" Green="0.431373" Blue="0.807843" Alpha="1"><![CDATA[caudalmiddlefrontal_3 ]]></Label>
  50. <Label Key="31" Red="0.752941" Green="0.164706" Blue="0.478431" Alpha="1"><![CDATA[precentral_1 ]]></Label>
  51. <Label Key="32" Red="0.109804" Green="0.239216" Blue="0.560784" Alpha="1"><![CDATA[precentral_2 ]]></Label>
  52. <Label Key="33" Red="0.992157" Green="0.52549" Blue="0.329412" Alpha="1"><![CDATA[precentral_3 ]]></Label>
  53. <Label Key="34" Red="0.317647" Green="0.831373" Blue="0.113725" Alpha="1"><![CDATA[precentral_4 ]]></Label>
  54. <Label Key="35" Red="0.980392" Green="0.0666667" Blue="0.756863" Alpha="1"><![CDATA[precentral_5 ]]></Label>
  55. <Label Key="36" Red="0.952941" Green="0.992157" Blue="0.905882" Alpha="1"><![CDATA[precentral_6 ]]></Label>
  56. <Label Key="37" Red="0.690196" Green="0.211765" Blue="0.313726" Alpha="1"><![CDATA[paracentral_1 ]]></Label>
  57. <Label Key="38" Red="0.898039" Green="0.572549" Blue="0.682353" Alpha="1"><![CDATA[paracentral_2 ]]></Label>
  58. <Label Key="39" Red="0.945098" Green="0.282353" Blue="0.807843" Alpha="1"><![CDATA[paracentral_3 ]]></Label>
  59. <Label Key="40" Red="0.890196" Green="0.439216" Blue="0.156863" Alpha="1"><![CDATA[rostralanteriorcingulate_1 ]]></Label>
  60. <Label Key="41" Red="0.505882" Green="0.192157" Blue="0.847059" Alpha="1"><![CDATA[caudalanteriorcingulate_1 ]]></Label>
  61. <Label Key="42" Red="0.0235294" Green="0.92549" Blue="0.921569" Alpha="1"><![CDATA[posteriorcingulate_1 ]]></Label>
  62. <Label Key="43" Red="0.423529" Green="0.372549" Blue="0.14902" Alpha="1"><![CDATA[posteriorcingulate_2 ]]></Label>
  63. <Label Key="44" Red="0.482353" Green="0.172549" Blue="0.760784" Alpha="1"><![CDATA[isthmuscingulate_1 ]]></Label>
  64. <Label Key="45" Red="0.788235" Green="0.54902" Blue="0.866667" Alpha="1"><![CDATA[postcentral_1 ]]></Label>
  65. <Label Key="46" Red="0.792157" Green="0.901961" Blue="0.878431" Alpha="1"><![CDATA[postcentral_2 ]]></Label>
  66. <Label Key="47" Red="0.12549" Green="0.843137" Blue="0.352941" Alpha="1"><![CDATA[postcentral_3 ]]></Label>
  67. <Label Key="48" Red="0.698039" Green="0.45098" Blue="0.521569" Alpha="1"><![CDATA[postcentral_4 ]]></Label>
  68. <Label Key="49" Red="0.745098" Green="0.709804" Blue="0.501961" Alpha="1"><![CDATA[postcentral_5 ]]></Label>
  69. <Label Key="50" Red="0.729412" Green="0.223529" Blue="0.643137" Alpha="1"><![CDATA[supramarginal_1 ]]></Label>
  70. <Label Key="51" Red="0.301961" Green="0.862745" Blue="0.682353" Alpha="1"><![CDATA[supramarginal_2 ]]></Label>
  71. <Label Key="52" Red="0.054902" Green="0.423529" Blue="0.109804" Alpha="1"><![CDATA[supramarginal_3 ]]></Label>
  72. <Label Key="53" Red="0.717647" Green="0.858824" Blue="0.462745" Alpha="1"><![CDATA[supramarginal_4 ]]></Label>
  73. <Label Key="54" Red="0.203922" Green="0.101961" Blue="0.576471" Alpha="1"><![CDATA[superiorparietal_1 ]]></Label>
  74. <Label Key="55" Red="0.72549" Green="0.0901961" Blue="0.505882" Alpha="1"><![CDATA[superiorparietal_2 ]]></Label>
  75. <Label Key="56" Red="0.105882" Green="0.27451" Blue="0.992157" Alpha="1"><![CDATA[superiorparietal_3 ]]></Label>
  76. <Label Key="57" Red="0.0313726" Green="0.713726" Blue="0.0156863" Alpha="1"><![CDATA[superiorparietal_4 ]]></Label>
  77. <Label Key="58" Red="0.184314" Green="0.909804" Blue="0.847059" Alpha="1"><![CDATA[superiorparietal_5 ]]></Label>
  78. <Label Key="59" Red="0.917647" Green="0.772549" Blue="0.101961" Alpha="1"><![CDATA[superiorparietal_6 ]]></Label>
  79. <Label Key="60" Red="0.0235294" Green="0.72549" Blue="0.780392" Alpha="1"><![CDATA[superiorparietal_7 ]]></Label>
  80. <Label Key="61" Red="0.298039" Green="0.835294" Blue="0.14902" Alpha="1"><![CDATA[inferiorparietal_1 ]]></Label>
  81. <Label Key="62" Red="0.894118" Green="0.482353" Blue="0.45098" Alpha="1"><![CDATA[inferiorparietal_2 ]]></Label>
  82. <Label Key="63" Red="0.356863" Green="0.784314" Blue="0.854902" Alpha="1"><![CDATA[inferiorparietal_3 ]]></Label>
  83. <Label Key="64" Red="0.921569" Green="0.317647" Blue="0.643137" Alpha="1"><![CDATA[inferiorparietal_4 ]]></Label>
  84. <Label Key="65" Red="0.443137" Green="0.678431" Blue="0.568627" Alpha="1"><![CDATA[inferiorparietal_5 ]]></Label>
  85. <Label Key="66" Red="0.709804" Green="0.0588235" Blue="0.439216" Alpha="1"><![CDATA[inferiorparietal_6 ]]></Label>
  86. <Label Key="67" Red="0" Green="0.733333" Blue="0.270588" Alpha="1"><![CDATA[precuneus_1 ]]></Label>
  87. <Label Key="68" Red="0.54902" Green="0.94902" Blue="0.270588" Alpha="1"><![CDATA[precuneus_2 ]]></Label>
  88. <Label Key="69" Red="0.0156863" Green="0.145098" Blue="0.137255" Alpha="1"><![CDATA[precuneus_3 ]]></Label>
  89. <Label Key="70" Red="0.188235" Green="0.129412" Blue="0.776471" Alpha="1"><![CDATA[precuneus_4 ]]></Label>
  90. <Label Key="71" Red="0.898039" Green="0.631373" Blue="0.458824" Alpha="1"><![CDATA[precuneus_5 ]]></Label>
  91. <Label Key="72" Red="0.113725" Green="0.0313726" Blue="0.937255" Alpha="1"><![CDATA[cuneus_1 ]]></Label>
  92. <Label Key="73" Red="0.639216" Green="0.34902" Blue="0.827451" Alpha="1"><![CDATA[cuneus_2 ]]></Label>
  93. <Label Key="74" Red="0.647059" Green="0.333333" Blue="0.815686" Alpha="1"><![CDATA[pericalcarine_1 ]]></Label>
  94. <Label Key="75" Red="0.572549" Green="0.768627" Blue="0.384314" Alpha="1"><![CDATA[pericalcarine_2 ]]></Label>
  95. <Label Key="76" Red="0.623529" Green="0.807843" Blue="0.478431" Alpha="1"><![CDATA[lateraloccipital_1 ]]></Label>
  96. <Label Key="77" Red="0.815686" Green="0.141176" Blue="0.282353" Alpha="1"><![CDATA[lateraloccipital_2 ]]></Label>
  97. <Label Key="78" Red="0.537255" Green="0.619608" Blue="0.533333" Alpha="1"><![CDATA[lateraloccipital_3 ]]></Label>
  98. <Label Key="79" Red="0.286275" Green="0.556863" Blue="0.0862745" Alpha="1"><![CDATA[lateraloccipital_4 ]]></Label>
  99. <Label Key="80" Red="0.843137" Green="0.658824" Blue="0.345098" Alpha="1"><![CDATA[lateraloccipital_5 ]]></Label>
  100. <Label Key="81" Red="0.537255" Green="0.831373" Blue="0.384314" Alpha="1"><![CDATA[lingual_1 ]]></Label>
  101. <Label Key="82" Red="0.984314" Green="0.427451" Blue="0.207843" Alpha="1"><![CDATA[lingual_2 ]]></Label>
  102. <Label Key="83" Red="0.752941" Green="0.164706" Blue="0.913725" Alpha="1"><![CDATA[lingual_3 ]]></Label>
  103. <Label Key="84" Red="0.705882" Green="0.988235" Blue="0.6" Alpha="1"><![CDATA[fusiform_1 ]]></Label>
  104. <Label Key="85" Red="0.823529" Green="0.839216" Blue="0.635294" Alpha="1"><![CDATA[fusiform_2 ]]></Label>
  105. <Label Key="86" Red="0.984314" Green="0.72549" Blue="0.529412" Alpha="1"><![CDATA[fusiform_3 ]]></Label>
  106. <Label Key="87" Red="0.0980392" Green="0.764706" Blue="0.74902" Alpha="1"><![CDATA[fusiform_4 ]]></Label>
  107. <Label Key="88" Red="0.258824" Green="0.878431" Blue="0.160784" Alpha="1"><![CDATA[parahippocampal_1 ]]></Label>
  108. <Label Key="89" Red="0.0156863" Green="0.937255" Blue="0.0980392" Alpha="1"><![CDATA[entorhinal_1 ]]></Label>
  109. <Label Key="90" Red="0.588235" Green="0.901961" Blue="0.768627" Alpha="1"><![CDATA[temporalpole_1 ]]></Label>
  110. <Label Key="91" Red="0.721569" Green="0.341176" Blue="0.172549" Alpha="1"><![CDATA[inferiortemporal_1 ]]></Label>
  111. <Label Key="92" Red="0.952941" Green="0.521569" Blue="0.666667" Alpha="1"><![CDATA[inferiortemporal_2 ]]></Label>
  112. <Label Key="93" Red="0.580392" Green="0.172549" Blue="0.0156863" Alpha="1"><![CDATA[inferiortemporal_3 ]]></Label>
  113. <Label Key="94" Red="0.0117647" Green="0.545098" Blue="0.219608" Alpha="1"><![CDATA[inferiortemporal_4 ]]></Label>
  114. <Label Key="95" Red="0.772549" Green="0.482353" Blue="0.341176" Alpha="1"><![CDATA[middletemporal_1 ]]></Label>
  115. <Label Key="96" Red="0.47451" Green="0.670588" Blue="0.258824" Alpha="1"><![CDATA[middletemporal_2 ]]></Label>
  116. <Label Key="97" Red="0.909804" Green="0.215686" Blue="0.156863" Alpha="1"><![CDATA[middletemporal_3 ]]></Label>
  117. <Label Key="98" Red="0.301961" Green="0.705882" Blue="0.145098" Alpha="1"><![CDATA[middletemporal_4 ]]></Label>
  118. <Label Key="99" Red="0.788235" Green="0.12549" Blue="0.184314" Alpha="1"><![CDATA[bankssts_1 ]]></Label>
  119. <Label Key="100" Red="0.462745" Green="0.87451" Blue="0.768627" Alpha="1"><![CDATA[superiortemporal_1 ]]></Label>
  120. <Label Key="101" Red="0.466667" Green="0.313726" Blue="0.4" Alpha="1"><![CDATA[superiortemporal_2 ]]></Label>
  121. <Label Key="102" Red="0.690196" Green="0.247059" Blue="0.560784" Alpha="1"><![CDATA[superiortemporal_3 ]]></Label>
  122. <Label Key="103" Red="0.972549" Green="0.968627" Blue="0.941176" Alpha="1"><![CDATA[superiortemporal_4 ]]></Label>
  123. <Label Key="104" Red="0.235294" Green="0.0627451" Blue="0.0823529" Alpha="1"><![CDATA[superiortemporal_5 ]]></Label>
  124. <Label Key="105" Red="0.0784314" Green="0.670588" Blue="0.423529" Alpha="1"><![CDATA[transversetemporal_1 ]]></Label>
  125. <Label Key="106" Red="0.835294" Green="0.94902" Blue="0.980392" Alpha="1"><![CDATA[insula_1 ]]></Label>
  126. <Label Key="107" Red="0.305882" Green="0.576471" Blue="0.0901961" Alpha="1"><![CDATA[insula_2 ]]></Label>
  127. <Label Key="108" Red="0" Green="0.937255" Blue="0.423529" Alpha="1"><![CDATA[insula_3 ]]></Label>
  128. </LabelTable>
  129. <DataArray Intent="NIFTI_INTENT_LABEL"
  130. DataType="NIFTI_TYPE_INT32"
  131. ArrayIndexingOrder="RowMajorOrder"
  132. Dimensionality="1"
  133. Dim0="163842"
  134. Encoding="GZipBase64Binary"
  135. Endian="LittleEndian"
  136. ExternalFileName=""
  137. ExternalFileOffset="">
  138. <MetaData>
  139. <MD>
  140. <Name><![CDATA[Name]]></Name>
  141. <Value><![CDATA[node label]]></Value>
  142. </MD>
  143. </MetaData>
  144. <Data>eJzsnXeX3UTy9+UANraJJodlsM0CJsMCJiyMbXLOednBxpjg9//v75k+q3qmpqZid7WkO74653P6XqnV0pWupO6qb5VOD8Nwbpv7trllm4e3eXGbz7a5uM3/bU8Ht8sr23y3zSPb3LrNP7Z5bpt/bfP8Ni9vc/82721zzzZ3bvPENie3ObDNiW3+2ubqNr9ts7nNf7d5fZt3tvlom6fG7f04lpe2y2+2+WqbU9s8OJbPjpwet31m5IFt7hq5e5vbt7ljm9tGnh734eZtntnmpW3eHCm/498j727zxjavjb/n3fG3PLnN2W2OjvtXpmvbn//YppRb2/w68vE2n47Hsfyu78ffsTFu/8HxGJZj/sK4/WfH/Xplm1fHY/ryeG4e2+bRkXvHeaV8fNyXx8fffMM25Xwd3ubIeNyPb3Nsm99H/tzm73Gb5Vxc3ubCNp9vc378/tY475Px/Hy4zfvj7yrH4W10vuj0w/h7y/n7aeSXbf6zzbfbfDkei2/R+qfGc3t6BD4/j+adGY/XXWN5Gzm/DyOeHnlxPL8vjse5fD43nttXx2P97ng8z47cRM7v3+j8bo3HEM4tnN+vRh4Zz/Ej4/kFbhl2XzPPjr/xmbEunPdXxnP+/Fj3uXG/y7X1z5HnEaV+ud4eGOsA943nv/wvyrV4N+LekRtGyjV648iRkZtHyv+nXEfHEX8iHh6PDxyjE+PvA14a+W3Yue7Pj8C5uTzy23hOgLdGyjrlv1j+h++PlPtGuUbL//GTkcdG4Jp9e1znnWH3/7T8f58czxtwAMH9p8s1DvyIKPfE8n8v97JfRn4e/vdf/xlRrp9yj/tim69R+c0I3tZX4/dyDcF9o/xH4Bp5cORZxCnyv8D3xcLpcR34n5T/BL5Xwv3y5FiW5beOwPX118jT43nH91Hg38POPRWuu5eHnXsrvb++Np7L99B5g/stXI9wvo6O5wdfn3+P5+TqSPm+NZ6PUpZ78aXxf1KOOVy3+Jjj63eD8NB43B5Cx+OWYee+DcD/Hc7HM4hyv3l1LM8NO/d1TGmjXLNwjcP9/sxYlmMD94d7EA+MwDV93wg8F2B6Ap3zJ0ZK/YOIQyPlP3B4PN4Avh/gZwoAfQT8jCnnA/4z+B5B7w34/nBl5HNCOZ/4XgGU41r+Q+X+gO8VF8bzXO4LpR8Dz69SfkCAe0g55vBfg/9j+W+8jeDuDXh6ajwW0nOxUO4Z5bou/9tLI/AZnpffjcDvL/9XuL+Uz9+iOuU3fTnyxUj5L3+N6mn7XPbltJNbELeRzw8Pe5/BLzLQ6wH6nwDet2vjfwb+X1tj+emwcy1fRDyC+AfDc4hHCNCPfW7Y/fwtwPP3/mHvfRbavp8gPX8L5drFz987h51nb6HcZ24ey9sRpT5+/pZr8e9h57r0PH8LcG/G1xJ+/r481nsLrfPOeIxL+Trik7GEZy/cx98Z+j9/AXj+lvJnho8QXxO45y88d4FTDA8O8rMYQ/8v2jMaeH5s9wwD9+zG4P/LHSN3jtzGAHVhfATPdwDu/fiZ9jQCj6Pgf0XBz39cF/oDrzG8PuyMwXDfAIP7CRzl2XXTsLvPgKdy7UC/AXN1rF+ui61h99gOgH4FvhdhPh/4PgZmgwH/r/B/rdxjHkLcOuztk2Bw/6T8L/F94VnCM8Pefguwgcryfyh9ENyXoSW+d3J9HdznweD+z6MI6Nfja+B5Ugf6SLifxPWXMKX/8wACP4PuHXb3qe4nyx8XgL7VXcPuaxQ+Q7/rCbINDIzhS3mI4SSiPCsOk/LosPMcgf7b48PO/wv3406g7/j/dJwB+no3DLv7fb8Pu/t9GNwHhH4g/Y77hpjS9r8Eyj3lpWFvHxI/6zjKPtL+5XnEf8cS36Non1PiyrDTJ6XA/aw8T+E+iJ+thQsK0M95H5WUMqb6YCzfQN+hjwt8woDHHU8y4Hsw7g/jZzgeb3PPfW46O9Y5a9R9itkWHrvAf8baHp5+QPXBZgXg/zT0Oy4Nu/vrwE9k2U/D3n48ULaD/3u/oBL6+NCX+Q8B29CofeG7cXsfIr5kKM+pLwiwDJ5J2C7xLSJybLUJH+fvx32nfSbaHzo17B2L0H4Tfj6UPg/cc8uzkOsX0X4Q9Gc4OyJA+zlgN4Z+DrYvgo0R2xnhucn1VW4a9vZV6D0R2yGBX4edPgi1SwLYPonZGHb6FhrwjC7PdNzP5ewdYNPE9kyAjqtgPh1nYfAzH9s9sf2z7CM8x+8feHsofOae2/CMpnZSzl4KlGfxjcNe2ynm5mGv7aT818rzlNpVj4/tlucUfY7S/il9bpZnMfec5J6RGHjubaLPnmcf94yDZxq120IJ40f8/HqDwD2nHht223bpWACeNZK9Fyb8PIProsyn49CDgz0epRN+HlBgjEqfCfhZ8AuC3vcBzp5cgPt3uebBrsyNcaV7OBwHel+m9mdsg5bGwXQsLI2Jwd7ioVyz3DiYjpf/MezYuB8YdvsF4dqHcfBdAtg+c5JQnhncmPpWgjS+/ouBPm/gHkGv25eGnbE25k0DPAaHe+2/DfC1VZ5h2FZfPmPbz3sEbowO43SAPvdoXxOuO23cDlMZX2D7P4zl8XdsIwK/AAWP6QtwbX3KAM9XznZE7yd03A/neYMBnhMwtodrDq6rhwZ5/E9tsdgOAOef+io4uGsXU/5znI0AbELlt51zADZG2geI2Auw3YD6TqDEYH8K/UxtCJIt4Rw6rpJdgfZHqI/m3mHH/kD9NvgztYXDxPl2wL9D72/YJkGhdoeyvYMM2PZwAJVwXzyMSgDqHxW4adw3amOkgF0C+52OD7vtF8AxBvw7sH8K2yvwd7hncPdqAN9nNPsFXHec7QJ4aeD7aVJ/DXMFgW2O2K6B/WfAm8Puvh62fWA0O4dk4wA7x+sD3ycEXcmFsQ58/oR8xnZU8N9BiX15mI/GOmDzwPYPoNShfUz8udzfy70DnkuWPaTwNvlO7//UhwiAvqrnRO0lYCOhPsry/y3PSKvPCz5MCRjPYxtKea5S+wlnR+HqlL7uTwLYrsL9/8FvCmCNxn+G3X1uXA/sHT+jz3hb5b8Gz3Ows1C7PrWxSLYW0EFRWwtsK/v/IPXxa/y/1BdM/b+gJeT8vxTpmQf/Wbh/0/tdtv8XeG7Y6/8FvP5f/Dwuz/u7SVmemdT/CyXu24EmB+qDTaA8i7jnIH7W4OcW9v9uDjvaP1zi/tYmAdt1X2eQxgGl/hPjeQUdZdT/C/18zf8LwH1D8v+Waw3bODn/L4Ub92paLMn/+ywqC9J4FvRaPf2/tw97/b+cDdTy/3J2Ucn/+8Kwd4yKx5oc2vhSGlNG/L8aW4Ps/8U6X83/y40DI/5f+Az3GToGLKXH/wtI/l8Jun94PMSN0/D/Per/Baj/F8ZrAB23af5fOB7cuCvb/wtwNiXNtkz9v9jGTLkDwdmcgcdRWeBs0RiP/xds1BjN/wvPqWz/r6YhtPy/hTLO+HwszzPU+H812zjcyzT/7+ag+4A5+zn1/2I7OpQe/y+2k3DjHXzP5cYyQI3/F9DqcWMqPLa3tqNNXH+4xv9rjVEk/y8F+jGSH4D6A/D2vP7f8nyCcYo0JqG0HGPteJe2cX+J+n25vtFpoT7nI9aWcf5j8B3T5+ndY4n7V/Ad7secvk7zL2u+5kj/Cj9HsS8a+6PB7krBtk1uXAbXJ/6s+azxxPmvJV/2r8PefhZnd8fg+wHcG/H/mI7xsN9bGiN6oWNEzucFJd429ZNTtL4V7V/RfQAbOjcfj02pj53GFXmA/cTHhNq86ZjYC+5L3Tnw/voIUv+K62tZPn0JyX4N4PsG17/CGgAM16eSYrA0yj6AVgCI9q+8/axNBNUXFHBcXkb/iosbg/4V18+i0P4V18/C/avXB16z4OlfUR+TpGfwYD1rqeaB2l00Dhi09AE0vQT4cyVbD2gpIP6O9q+4PpWkr/h5sLUWku6C6i8Kxa4EvmEPkg2Km3BcgmTHxctxiZ8vki3LsnFJWD7j08HtcfbYTDibGrXDaf1GrDnB0OOCn4Pcdrjn5BlScj5dTbti2R0kfcvtA691wX1byp0CmhYmAn5eln2iuhnql4U+tNS/xvZM/Fwu3yX/K9beUKx1yj5Z+pyIfoeC+4ScjoeOAyzdD8TmUP0P1v5INlpYjp+PHh+BphmKoOmLJDg7BwfVLdDxjkenJE1Yp8RBY5IsOJ/IlgPOto01UVgbhfVRkkbKGrdhGzl+XlrPQU1bJdnYvforD9Cv5zRZ+PlKbfdUY021XBJUW8jdW6FNzTcrLZM0VRRrnFCjJfOCx8v/GnZyDmg+Cw24f5fziZ8LlmaN6sAiOjdurI7v39L8LLznmfPFYBsBjGHwPBqnx4H9NLQfRP04lp9HghtXaVo+CziHWO9n6f4iwD2B9hW9SPGDFvdVQnWHdOL8YFw9TotY+qt3opJi9X0ljaNFy7HjtJIYzYcnAfpKqj2nWssbUXnYAd6GpMnEcaNHhOU3DTvxpBjav9Y0nRonhr39c+7Zh5drtrTjTJ1jw45eVNKNHht2x7xK2lKqMaU6Jao3lXykVIcKsbNYk2rpUjn/qlUP+pUe+6Hkp6U+WygB7JOo6UdoYyBp7KVpaiWdrde2aXFFgdMoSrHI54U6VKeLdb0Yy6dN62DdL9d+1E5L4Y6H5JOSfOjYl05zRVDKeBbGxm8NvBaZ2ok5NJ98BGwP5sZCnN0Z+3M5nz/VQBc+YMp3UdtUE01jxmnsuAXVVHP6avzbLXs5jBk5HxXVZmuaBQ2rr8hpHbh6Xls6gOMUNR3FRVQWamwL3glrM7nlcMx67oN2zN5GJcD1t/Bz6MCwE8fp2T48234Y9vo4Wn0dZbJ08z+QbVgae0uvQrX3VGMv6fE5LF+Npt/H/MSUGt8NvIaGm0cBu5L2rPXwDQN+Jlr+Jc0PxbVNYxAwnD/qu2FvfAIH95zAdrGPhh3fFvZnfUXKSKyDF25blK9RCceDxjZb4OPRej0vcdJ8ghrleFi+riiSHRI05/Ad49FEadonLr4E+o5avAnV9OJjyo1xSr91a9g9xuPs3VRLUOD0PrVaI0nbhP2n1Lao6YaoRgh0QpY/le6rpe3BNgaw73j0O1QXA3Ezmk6HszHcPvBaHE1vU+wEoKE5IXyvyb+xSQBtDMCNo8p6lu6F07xg3Qj8H7lx08focyT/hqVLoX1wr+bEc+/T8m5IlL4UzhsJz2VJ+yHFEwEenQe379zz7nvyvVanwflTrHaiegoaxyTFM1HtBN5PSYuBc39o9mDt3kGvd07TIGkYvPqEAtYmWFpfKa5Kiq8CvQF8pnk0La0AjcOS8nFyOgFJDyBhxQP28ONzPnrPfcNr86Q20nIf3hr8PnTwn2O7h9c//jX5LZzvW2LDCb1vcPcVy3/N2eklv7Plg4Y4tah/+RlSeuPbaJwb1ghw/l5Oo32OfLd8vlm+W8lXa/lmufvt80PMx+rxo3rypVA4fyftr3v8oDRuT+rz474/58fk/JWS/o7q8O4adnK+1vgeS5/0ICoLHl8i5z8sfWLJR4j9ftj/J/kE4dhsDHv1MZwfz+PXs3x5UT9dOWZS3hcNydem+ddq/WXgI/P6wqSxhcfHVevD8viqwIeEfUmcprHVjyT5lrw+JNxPwfGYOC6TG0NdQKUXbIPk/DuSTwc+S74Zj6/GE5dAoc8Pr2+F859wfg3NbwJ+EczbZL6nT8dN3jhTa7L8FJJvAsay15Tt3zS0x1VgP4LmN6D3Q68tv8bm74mLteJkpXhZPJ/a5yWbvGSX/2awY0C+G3bH3HJ2dS7ulhKxi2s2cctnkBm3Wzt57M8e+waA40owtJ7HTm3lYMFYcSMFrl8I/V9qp+DsEpx9whsrQe0Fmu1BszNIcceanaH0RyC/ywvMcrw+Z0c4R77Ds5raB+g4DOZzdgEuXpnGLFt2Aq3vRtkywLYAPP6PxDjDuP/ioI/3JZ/AxsCP+VvioLH2nBvHc7HR0tj9kcGn4eZ+Dx13amNqTwy1BNTBvxPnGJd0KzAep+NtK8Yax1rT2GtufA1x2PAdxpGe2GxpnGzFaFtE7LU0ZpvGb+NxsQaMg8vYFu6lNwpE4rwlv5KUW4feq8t41YoB54DfVcZnnjFsIaLr9IxdPTHjmv+rZUxagHEVjDc3h92+M0nvmDUG9WoVC5rekBtbYrj5nD9ZGk96xoxevR4Xw85h2fulsR0d49XEuePJGqs+xbRn6fa4sVytr7JmksZoHqT4ee+YzJOzCFP6N1buIm+8PY6752LvqV6pQPtP3lh8KS4/Oob6ftDfpxClbJ/24yLjJY+fmOsD1sbr0XGa5XfGepUpwTH3EfB4kBsbajoZ7rjTfhm3zWhenWj8lIdIPgENnFuA88V7cgzQPAMWNTkHMDT/gAUdh+Pv2FfAjc1x3zFi3+fG9JH1y355chJE0LQI0Kez8hjQnAZYt+DJaYD7YWB/eGfY2z+hOQwi+Q60nAfce1K0mIPsfAg1mgqqr/DA9YfAxgKf4RnZkjMBT1Y+hD+GvbkU6GcL2nfiYqO2HPwqzNP0IgDt81g5F2ryMdD+j/ccROJfvPkZrDwNNyvLcB3Mg+gzfjbQfhX+LvWTHhp28j/gZTV5HOgzCuxpWD+jPcMkXQ2nkZbyOtTmeOiV84FDsivU5oGwbODevBBUF6QtpzYCbh7VbEs2yZ75IugzOaJH4ij/QWpT5OyjYEuQ7KeWDQLAuSRgXfxZy0dxZojlnfDknvDqpaQ6+D8kXe+4L54FHg/W5Kig+qx7yGeKpYXibNPeephIH4Nqw6z6OI4S9720sYxkJ79r2Bm/aXq07NwXtM59A39sOa2DBJcPQ9JJHBh258TAaLkxgDuGvTkzaJ3Dw24fAdXPwT5o+TKwPk6rg/2NnOaQ9nk4nXgLnO6OfqZ1OB8ErQdoywAtl4aF5/9l5d2Q4PJvSPG0eDwhaQSpD8ayFdDxhjSfjmM4X4313aIcR2m8Hu0LWrEIvw17+3Q1PqRsH1NUGynl+cAafivnB/c5kvsDay3Po9LrE+N0nF5qfWlbhNb8IJbeEzSfUr6Ql4fdvrt/o++aH8+bN4Tb5icDnx/kE2Z9qZ6UTwTAfkLwo+DPH5L5nhwjEmCfeBe19QFpLyPnyAfDXpsI58/UfJwcYCP5ZNhrN+HGLdROhscgnI3MY08rdpKIvbB8pvpaDdhGBOqnpb5bWocC/79Iv3uq6cmJ9ov6nbnvGnAMob9zjXymz3Gv9vjvcT70E7Cts7evG7TJEI9rQdeLgPWmnAYawDZYLc8JZ6eViPrs6TqebQDYb27lWMF5Vmq02lw/J9L38eRb0XTdFKzv9uRf+cXYJgXrqjn9gif3CIV7FlO7ONWXS/UASTMOz0pJb+7RpVNtuqVT54DjwmkutGMoHcuMe9EqTlkaE49WvqDF8XK+bG7cx9nFJducNL6X+rfYd8PplLE9nWpqNE0w1lZI+U80DQZn68S2K03bQO1c2K7A2Vnw2JnaJTYR3NgW2/k3CViP58ntjzV/2O6I+7mA1a/Q/LHUJ0ufgTRfB3dfx9vi7leWpkrTOZXrBufKwGixJ54YEyvfBbUja1oXzveFbYiaz8zSfMB4+oVhr+2BajAomkbC0jZg+yv3v6K2MWpT2xp0Xz0eO1qxG1q8RuFBVFr6POpftvIqeGIvtPwIGCvGAt8bI3kN8DOA87F5/XNS/gHOz6HlF4jkDdDiHTwxDlJcA/VJ4FiGghajQPdJi1HAvgDJ9k/jEAArrt4TI18baxC188J+YnuaZSfNiBHAdkGsS9skSDa/As7bxcWNW9p+bP/StP2cTQrfczU7T1S3j21nWj3OHoL7htZ2tInrD3Ox0dJ4Xhs7F7sDaOgBS0sP/RhLR89tz4pDxvZMz/isRxwxp2+n/SXaB+LGIlz9CFKfy8pXhPtMeL4Vq2vF5XricCVfGtXaAGUdTX9UkHQmMC7zxtJy59ryN24hqO2tEImNhXsj/h/TMR6lJeYVjw+1OAiqKXxm0Pcp0r/idGISNK8nxRs3QftXmkbIilPQcoRCvwXrYwBP/GhN3GgZX9fGhVpxoPi+EelfWTGe5d7xNyolOB1GVv/qT1JuIrj+Fb5HaX2p35jvls9Xy4GqgfstXD+L2ju0GEqtf2Vp/7U4yGj/ivoVI2i+n1b/T03MopTDlfavvD4CGnfojUOkfmdsO4/EF9I4Q+uY4eeaZsvl+nNU4+5BskN4csxiaH9NQrPHZkFtblp8nwVtW4vrw+3j5xx9RtJ9icTw4eeeZXcoYJvy7cNeOzOOz7tzqIvL88bdeWLxaHwd1dFp+W4kPeWJIff9v3+hMjOejuvzW3FzeH1vnFxNvl8uLk7SWE0R75YVzwZIOt4p4tdw/82q9+OwW7+xFYCzbWv6Bqy5qo03ozFnXNyZ1j/x+pqpvV2LK7OAuDMuxst6dmr2+5a4MYgXq8GK21lCLFhrfJcU71XOI34ueGK7JDsJBxerJcVzeXNP1RKN17LitKIxWVa8FfbpPM/Ma42/suKutHML10pmXFVBywFRG1/lIeLnknxe3LPMWg4TF4tE/dSUuwe979sjBso6dgcNJB+eB9oXp2AbFY1pwhwdct//C1B73Maw81zNilPi/JLccs2WhonGHB0npTc2yYpD8uRtK3D9PCuWCPcXvfWiaPZ87jrI6k/Q8U9rXFBWjNAVVFp4YoEo3jggK6aH+rTPo1KK58mI8wFa43u0MSc31pRyuku5+LxxPLXQeB2qlb448HZn8OfSeVJsDhcr8y5qm1teG4NTiGoNrOVwfKT+JozLLc2Chje2xoqpidrUse3eEy8DtNoZvP0xbjk+bpnbfWpszzpm3PHhnjP4ORT1U+DnW3aMS5kisS1WfY9eBetWuNiSCB5fjadtTyyKN+7EwnrO/kLKSDwKfiZa/iUr/sQTZwJI7yPwIMVrQmwJ9md53l8AsR6RmBErlkSz22EbIRc7IsWMXE/xIt5Yj+9QCdRqqHpg2Sy13FeaP8nyC3H6dy2OhdNfeeJdaL9WsyF6bTLSf4KOzeh4zRqvWHZ82k+hTKW/4rC2LWHpq2q0V1R/xWmxan3a2jFq0V8Bkj2uFkt/decQ011R/RW2F2HbEpfXFSPtk2Wn4WxSXqL6K8lWgfVXNM6LQv3JHv0V3ha+d2EfA3znxtW4lOD0TfheouVXlfhkLCP6q4gGy3omU/1VRIe1CvorKxaP6ytbGisNqr2iRPRXWgwgN9X4m73xgy06LMt/WrvdTM2VFPPYU38FWNvTsPRXLc9B63lE9VaW7orqr7waK1pKaPEJWlyDpr/iYksjOVotqA7Ko6vyYumoLE3Xvwden0X1V7U6LGof52Jps3RYEf1VFE1/1arBavGDYWibpSz9pi0FTXNl6bCwDT2quaL5WWieFvxbsnRXWH9Vi/Uc7KG/8miwarVXHv0Vfm5aWquo9kq617ZqriLnFGPpq1r0T9aYvofmqkZ3xemvJB2WpIWytFhWnwcfK6/+ytJhRfRXUvx+iwbrXua7pauSbG4PkDKqIcJ2lsycAxE0/ZWnn6vVg9/ZorPyINlrQHtVo7vi9Fd3DHv1V9T2JOmvvLYrqr3SNFjc+dxAeHVVXqznn1d/FdVi3YDKG4x6GCmvX1R/xemw5tJfaZorzsaP/eItmitNi+XVVWGbZbb26rfxnNKS097V6q80NP0VpVU/lcmVIf4+09cGWYf1Fiq5PCdvDXt1WJtOsvRXEnDuOf8Vl2clAqevipKtv/JCNf5U6x/VXEn6K84OoWmjOLy6oUhsNfY/tNgYrImzefTcHkxR7Zqlv8IU/wQ8k2r2LSO2zjtx2quij/Bqr6j+issd1KLFymhjSv0VzXEk6a+ifDPszo9UoForLV8SV++XwLpeH5WVl4nDq7mScjpFtFac9grruSwbHudD0/RXHFNd21NOXv0V1WIVLF8c9ntp9c4w82geBo2If7CH9ov6BzPb9vocI/5By24i2X09PkTLP0h9hbSUaMnJQH2Hkn/w4SHmE4xo8zKpybvgoYyR8fhH0wdiPLkgLH+gpDPEdaQxHvS/vTHOFFgffy5YPj5s54z6BzmfIPUNWjGp0uS1u9Sw1YjmK7RyMtT4CgFtjFD6B3j8HPUP1mo2gQ1UUiRf4BLh/IPYXwW+QTwvK98CgI/rM6hsxTp/AD2fNC+iVPbwD3rRtsEtt9qT/IOcfhijLZPg8jNkacA0XlHmRfyDcO1gPx++psCvx/kHaT4FyMvVmseSch8pqQ+wpe1M/yAlS/PmBXx8dB5eVusfjML5B6EvfaPAkYHPH8rN6wmcv2gOBlpqSGMCboxQ4yuUuAGVGG4ehurmM8nSk0U5Mfj8hJz/tId/kItfmCs/QwTs29tkSg3LV+gda1Jf3Zy+w4h/MEpWfgbrvAAXjGUWNB6Fgpe/P8T8h5YPEOcc1tB8gZJ/sNZXaOnMrJgbDUtv/A4qvbT6AlvigFqmFj8rgMfotP2oH9BD8f+BHzCLnse49+TxBWbwIypr8foF8Tot/sEaX6CGx4/n8RN62miJZcNgX+BHQSz/ILbdfc18nwMr50XPa7Hcn2p8dVPxFflejodmM4v47HryICozALsNZ6/NtnVygD/UG08p1auJx6TnVTv/PW1zpzu3nwUcW7CFtcR81qL5nWv81fgc1JwHfP1EsOIiWo6RN6ctZ988I8y3kOJkab5Zy5c/F1k2VbB101gGCrbXWXUhPgKg9j6Kpkvw4omB9mLFNrSQpbOo0WJ4oOfRim1ooSZ2XKsH8RXYBmppSE4wpYZlk3zGUUdbtza2PcumqkHPn0eX0ouoPsZqoxZsJ8Y+3Mi7VTxgrZCVVyB72xpvMdsvRPIEYA2SJ/ahNe9BZFvYztpC1NZZawNdBbx5+LNzRkR4EpUe6LoRsD3z6FjehEotz4WV8yJafwkTjq2s4Q9lWfF3ev2nV1HZul3Mj8x3DRzbsMV87wmnI5Tq0dLLJea7BmfvjGgbW8B2UqtejY4S22O9ttKs6w78QBGfDtZp1vqFWnLHcGj9/Y0F4tHfYFvMQ6i8mZRcfhrNThixKXrtspKmlsuj86Aw70FhWZQpx/FUqwvlrYMv749nTE/r1eYYAvBYpjYvDQbrfKT5S2YKH8LU0PxNeJlXp/XMsNdGsXQkWxFnW7Lik2riXrxw+uWstrlc4lqOcUuflaGN9+juW9ZfVV5A5Qvou1Z/CeBniJSnCscUcHnLKJxeTMp5hmMVcMwC5D2T2suGy30G/inq84J9xvPwetLvoW1raOt58ra18h4qe9OSSy6Lc6i0aO23FYrfjvry8LJVwYp7a3kPaiSfn3cdb6wJR+S4tGyHI5JXkGOKbWAsewXEsdTYOiJxTjXtS5Nk6/bUsfzWWB/g9XVzsVwtPI5KitfuPzc03iyDJ0jpuY4i19PBjtC4Nyn+TQLa4ebBfE7bbbV7QFnXo1HxcJgB60686xw2lmkcUuZ5jxFwNJkjCrhOTdua7+rxQc57qt27LT3IBiL6vgJvDOUcSHqWiM3zBCo93DbU54LFeLcHtKyrIeWa1ZYBeJ+surVw925tmcYVht878Kcwj5K1Lak9y2fbqnX7U5n3d0L7Enj/vb8p4mvHfvIpuCbgqZMBd6148j7hUqs3JRn6N04L99Kw23+g+RX+JdSR5k+hc2xhqpj0KeCeAS1gjYOVCzTK+eF/8djnEXQ5Nz/Cf1GZgaRLhf3k5nmxtK+XSds12+J+0+XE40PbXSJb5PMWmncFlVEiPrm58OpsQQNLv0fg/F9S3giOUsfKJzElVl4JjHZcIu0An5DPmJr2pG1IfIbKVi4KfDgC398f7HzLlItDfc7/6LYw75PSAusgi74a8mBwx0V6d8D7pOTw6uXfQPWltnoQiY//OJFPhHmfoGVcHW+7WFfKXU9e/ankj7c4O8jaeCgt33hUEz8FPf3RVgzE24j3UJkF1dji323pcbN520DLxzMF9B6Z6e/bD5Pkp8yY8P8SvmdvY79M3LXlrdeC1Mcq1PgTObta2W+PrQ04MNY5oKwP81smzRbJxepwvsgaWvd7yqnkbqLgY8Itb8W7H9l8Tz5/zyyXyPKjcDFUGXnCaJyVJxarhatJ+53xWy8F6vWAvivIendQJjgPW0sbtK0WrHG/ZKPl6tFySr5JQrKL4hx39HtGbjy6vKZ9D1nHqfAtKjHcPIqVExBfl9+NJaxntQ18h8oMOLuXFyuW0lqf5hWMti9B30EWAdt5vkgC3pH2WWKb3DZqyY6hpXD/Yy0+mcYoe6+/KNFraeq+8XpaT9qYYCl8h0rgdDJazDOdB58tvWbBo00558AbgwA2DGyP4Hy4XM4IzobCxdpbMTEFLjbSivWn+SA98Zpc/kRvnkmgJh8jjW3CnwGsTQf9NW6DapLLPE7bWtajufBwm5wm8YQDTtdUNHY4nxrobaDdTYayHDRWWH+A9TrgE8c+cq4tDJe3vjafFfVx0HY5+7HHL1FrH+PsC55c59w4y5Ovm/MzSv0hK3+Lp092ygnNycHlCLDa8ObaxZxh0J4Pz5P95NancLFPdzuw8pBy9yMtL4eUT9Ob15LGFXjzGWBqcxxyuQYt/Ri91r1aoKiflMsXR/3RElw8iee+UaNLLutRDViBs9Viiu0P/P3Uf2/Zv8o26b3Sc9/YcMDl+OHuKfQ5b+XgKd89sc1cngF6f/HmbKnJHWIdHy7+25Pjget/1eaK0OD6slyMPs1bwN1jYV+tWP9IPD4Xy05jnul3K36bIsVV3m+sZ8WUSXDxsJ5n0b1DPN70BgYtDhCA/ix+1mkxfB64YxGJQcNwffPjDo6Rz9zxwVjxQRxSzAx+DljLPTEqMKasjevoEZfAHa+i8/wclVRnH9Gm99JnR3XMoM+lOY4LmwoXKuHsAR59Kae5/JiZB9pITWNoUZ4RNIeOR19X+m60j1ejz+LGqBhPn46buD5jTTseDQ2nYand79rJ0idw13it37zVD81R9p/zsXr8i3gsr/k7LaSxP/4dHj8ZB9XwWv4hrm9f7Awev8nU/z06Wfboso+cHYLaDPAyj42BriO168Fr15DWoetxfW/cT/PmhZLsG7QefYeKZt+QbB4R2wbG806LLPuGlbPuRaZd6hsofQNPX4KOczx+B+45hMcjkn2Dy4vhufa0vqfGlhNq4/DGJ1AsLapk37B8IBKSTaMHls9FsmXQ+xb3OyzbhvT7N9DnqF1Ds29Y4PU99TmflDeWpewTtmm0Itk3tHMv5ZWreY9ZDbX2DY8tI0rEvqEB9o0bGVrtGxy1+Xa0d2957ByAdTwsW4ZEje2bo/zWa6gEjiEy7Rs9cjBsDv+zV2wqcPYNrj8xp32DQ4tN1n6vhwvocxmfczYOy9YhvYdJijdttW9QamP8LFtFDbVjLMs+kxkjtApxLrWxAlhH4NEPAD8x8zTbRqFWPy3ZKlrtGhxS7DmGs29Av97SjUbxaio8Uxk/FPsDjCVq9XS0He477X979RxRtPe2WHjeL8Fh2Vtq8OjZloZHw+KlxkZl7Z91/rlximdftfzZMA6h69xPlnEaHM7H6uFuUmr1vBT/9EkG6M9zy8D3qmmPLLjjIsH5UzlbnjS/BW2sA8eH85c+LcyndWrsjpzeyvJJ1+aC89g0W/PNlWNhabUiSPbQqM2VQu1E3vfLajbajPfXwrtrub585F2yXqRxTYvmFpdeTV0PuFzqXq2eF208Yy0vFB3ggcGfZxr6hVEbe8tUxhs1aPaYaDvw2aOR3mrE0kha+kkJOibh/BBeOP+ER6epjXlqxinaGJz6Qbj5Xo0ohj4zN5w8EqiLobZUz/sgrbGU1L/l7POt75xsfQcl7kPh/fL6f7mYqlrNbZRam66X2vFoFpw/7V/k+0tCvV5E+sEefzRHjV/bA7VLgw8x4jPUfIc12uoevCDM6wGnadZ8omDz5pZRrXgtVC9u2Q8knXmkbi0e27+EpXuvgbtuJP08wM2bkojfO4N7UdkTLW4gk+JvL/09KL2T5cP3tmO9I6sQsUO12vA8+5PFlP8bThfsoSb2oxbJjqlxePif9uKOscTzW7D2lcb8aXC6Ds96Nw277QbWNSfZHTeGad4hdWKw7ZzWmERaL6JZAei6XDvS9o4FwTFBNXivxysEby4/ry7HaucqKiUsm7qEFNdU2w61S2nfa6nVuHLg88zZtnuPef8lbFfC6zvwaKlqyNJftUKvSS8QXx3FinvztKG9AwVj+XGisXfaOgDePtagefe5lwaOw3OeNTtEFpovyOPzKf4pzV8WeefIZrB+4cJC4N4h4sHSHHKxWh8y9TikdTH4/RRSHfCf4X30vO/C8w6ODKgfRdJaRjWYtevBOy/wf8Gj/ed8iJytyvIh1lJrU6J+1rcJ3nYy9Z4Y2A+sWaX76EFaD66JqK9sjgnbESLr0f9Kr/3LnGr/K08J5xnwjLdoH73sD60D+mJYXjNJ4wtJyzy1phlPoCFuIatdj0bWO0YGwOevabU1PUANtZrxrH37yVhWaM0RL2nSa+P0KWVc4xlT1Y67LDh9OIUbr9Tq7lvypHv2FfDE+UMMgKTlh3P0LTln9LsHT3+Y05d8NOzEEkC9aL5rbz5smlOhN9l5u0E7RM8zpy36dvD/Tzik8zz1c2097Uy18SgR4DxD7EZN3MGSiGigQLduaai8GviIFp3Th9P55XvEFqzlvMBwuhzJLubV9nj83DAmj/ipI7b7YufbGnQ7IPQvIxpQGM9w9iWKJ/cEMEeuiQLo20A7GdlnDU7PAtukuSVqckdoWHkQaF6ITLznJju3A+fTlnQYPXI5ePM1FC1Ado4Gzvd9qzDfik3i8jFk5VsofuyHB18+zL+d9SK+xEz/Xfk9mw7AhyQ9f2p8PLAPWXkPavIfaHH79DngjfMpUBs4zLdyF0TsyO+gsndeAo99PGpLnDvPQMT2E8kbYAE2Ns5eIdkuIvH9XqhfSCMjvp9+j5wrz9iajoOs+j3i9nvF5mfu45Rx988y3z3x50DtmPF5VEbi5YHIPnKx8JRaDW1W387TX4rEsrfEsE8Vn16w4s4zYtCxJpRSGwfkiTvXlpffCrHRkbhxi0j9SJy4dz+ldek8Lc45Kxb89UHWAkX6cb3juM+isjVu21NH011L8dmZUySO2qtHjay3FaQlfpqLpaY6nGhcdA3gq/taOKfQ58efC1H/iYeNjlj9hhIvHOkjSnalKWKVo/HF2THIc8cX42cvnReJH85iY4TrF1hx+5GYXWrP5eJdpXW55VLMr2QDnjuOt3esridml8bm1sbpRsYpeBw0ZZxtj3haGjs7ZbxsJK7V8p9p8bCt3O/YfjSm1RubatXF0P4qN69gjZUl3wgeS3vG3HD8PHGmU8SeFjgNJfgu6PxDHTgZAPuFIO7zyOCLDz2C6moxndp8Gg9qxYVq/80NBk+8pkS0vrcvV+pSf1cLNXGatTGa3P84EocZ8d1p1MZa4rFfbVxlLREthQY+9lPkA3qRfI7GPq5KjKOmWaHzMmMVadwfjv+jsYDemEQac7hqXCGfMVPFDHL2wuKz9thIW3zdF4advP4XJoLaiMq8z4fdNiNNd2XF71lxfdLySAxelGhsHrXVSWixdLV4Yu56xtZFYui8MWhczBzELNXGO1k6CikWTtKU9LB5RyZqt4d5XN05Y9lqzxk9f9HYNADrT6Cf1PqbcJu9/B81kxZHlhUz5unL94zF6h3rBbTEctXEZ1mUcxPpW2rxTVaMlhQHJWmdIjFZntgsbjkXcwVtcfFWHrjjLC3zxFV546ZqmCM2qiYmqjZGTot/mut+umpTj/ijWn3a6YZ1qb+uVj/m3YeW9jXt2vPkO/yenpo5johOj/scwauJK3C+5xoNXUQX16qbK/uSpX3zauMsHVmr5o3TwLXo2mqI2K1aNW1gtyz2GMknTNvW4ve8+x3RroFfvnz22KOkOpxW7RVm3ruDrTnw6ta8erT7hM9ROE2apFHL0q1l2ewBzh9AfQNbHbD0aB79mYeIDs1rF/iKfL445OjNMmIuNwy878FYOvDcxp9rtWRcLGwv4LnGnbue+jDtP0M1ZBIRnY2lpfLU4eKCMV7NWA/9GP3fUFo0YFyM8j+FeR6o9iqq92oFtgvfXyGfMVIbkf8evReUewSnxZLuLZp2Cz5jfY30nktunhf8X/Doq6R6rTHlHu1WD6aMb7KgeipvPQtvvHyEQwpFF0XHlTc6OWIsWwLlf2PpqyJo2iqMNIYuJdVGSeP/TP2VxA3GMomiRfl92B333xvQQ7Xom6ZAGkNZFO1aL31US/6HpWuiLLCGxNI2bSpENFJRGxLWQa2KNipT4+TN1VGb67wlvwfVIXHzLgTW1+DyhFBAd6TVjeibInqk14P1C15NEqdPovNq9UuRGBgvlsaoNt6WanxgPtUDefRLtblcsvO9ZE2ZejEA2n7K+ZueIutkI2mHOB1RLRnao1WbopqgqajJ+fMTKmv1QNBWDy0Q1vdo+ppaij/A0vVMSWYeJThPVMvzESpr8Gh7PD4R0OtYeZqovgfPlzQ7GXmhLN3PHPeeiN6Fyz1F4dpu3W4L5bh6fFGgc8GfawA/VUsb0W1l4PVlTeV7kuC0TzDfo5Oy2rHa82L93zJ9FtcjUu7cGj1WD7CuzKMx8+jR8Hx8LKiergZ6nbfcSzz5AqzjZ9WJ5Cao8WnVYOWH42L4I1rAJdHDd4X9l5E4/Bawf0nyd2A8OQOjwH+B+qqs/5MHb1x9FlPpPr260Bbw/6Qm3r0VjybU+36Gp1GbVlx+iy7W44MsPpie/h0Oj+7IOtZT7q8EPm8RX84q49UrR8G+OE0/5c3tGYXTS3vyhWbuA/Y3RePyYX82R8pn8BNEfQuvoc9RP05LblON6H5E8uZ7iMSN11DrB1o1rPxWEqCdp9+XQg+fk0XEl3N0kPPh3jTsxIZbcQaR2IVVmnAeJo4/jOW0LkaqRzVAGKhjLc/anx+NNiJ+Jy7Pj8SWgrf+r0Y7uB7Fs562fgvYn3NpBH8uWP4a8JuUmJWMuJdIfAz3OTPGBnw2njoef8+U95Pioy8+j5q4oEydQG18kYVn/LmRBOhqs9rzbCvKg8byYo+RcmVHfGIef8YGKgHJz2T5n3Ceb8nGbC2ndax84hLaMZzSdgbHBR8nuj4XWwZk2+i0bd3irFPgxuUZ+ar/hUqKtk6U2vV6UPyWc/pm5wD/duAZoY6HDDvikvHmGtDsyFo+BSs+PgLVWUvzpdzpGG5ey768asz3tkHh4kmtONGMGFJrO1mxqKvOv8lnjGd97ZnlqSfZkFt5EZUYK5YTx+5y8zQk/Xq0nUeD7fdGen8Ep1Oh+0x1Dp7fzhHVq0jrtLw341HheNTQ2xbOEYnj9vAe+czZ41va9zzHPH3yCJqeA+pIMepZUO0IXaYtr8Gjk6zRJ3HvRfG+eyVjWxo4r4BVJ4pn+y1YzzBvnd77ESViG3w8WF9rR8Kqk7F9bXrCsQ3J1+fRUlHtngT8Xvrdmy/CowvU9k06/rV+0CVS7umt1yNtk5tHl0vXdMZ1z8XX9UbKo4DraHk6DjFtcvNozKCEtI2I37mQqRGFfCQSVM/JtXEj+nxY2Za2HcwhVHK5U6R1LKzzcrQTRxRonYztWXoCXA/fQ3Ed6xkX8Vc9jEor7yj+vOpYWlHJV4LXl+p4c+Jw2zo+gr+fGOy8NbRNbp6X42S7te14OMbgqUOBffbUzcB6vnnqeLii8PuMSDmJMtqmGh6tba/+qMBp3en+W9p4rj53HKbQ6cO2PLooqY2ItspDr5xRWr1rzOdI/Z7Q6zlbSz637xfopZWnevnfyHZfGvj94XyoNb+rd1xFz21xx24qcF6sObZZ0J6dGXAaPS73RyYXhp33/J0X6pwnZO9DyTcS0b160OJw4HdI86NkxQfVbDv7uEVpzXG3NdLaTmRbHrjrPnoPqNFN1PBax7bxNjxAzA83rwZJf4D3TYrzkn4LxH3hz0vjQgA4VvizB5y/T2vfk//P004NkW1TuOdpLRcVPiTgZe8zy73Qdmqp3X4WNO6C5l6kx7Psc4lD/ICg/UapjhXr+IFjuYW0L1nU5CL7eGKka7C2vU9RSZG2FYmb0fxXZ0c0vdLZAF69VUs8I91mz9jJwlPDtBomKza21HlbIGsf8O/H8+mxkI7X3EjHBwP3ZU9dSs32vGjP335KjOtresJxLD11PBN3jWS0ez1McH1F63rWwXV63Ye0a1nzXUk2cLrcQ/l9Hn8Z1g5cY77j9vAkzecm8CVYyzE/opIS1Zh4gH3Bn1d1+mH4X15lihSTj5dL67bg2U9tv+cA56j+noCXZfmWf3Wg+XGjQJuXRui2Lk3I1YTfk8kl4bOnPnyfmkhecAlvPQ9crveMdq1ttOCxk0k+nqi9rbffy8PXw04eDJj3TSOSH+UXBDevBi2fvlTnF7I8A/jt1vJefOtYLtHybgJYrrXvJftapvZr2g//atBtupF8Jx4b8ZfC59ptasC7GFrbsWywXwT5knym742ItleD5x0WEbLOWQTpGvragXafgDpZ13DWtT7dyGk9raf5p+8H3/tZ6Lh0yZTr+LQTLY6Zi7XgNJBUm1LAPjB8HLE9TNKr4b4DzqfFxRTjfBw0/xb3bgwA5x2Q3vugvcuAi9nFMUs0FhHHUZwkYM3zCQasw6Qa6U0EpzvEOpdNAvadW7l2wTcG9XEMIGeX5ex9eMK6bCt3JR17lxL3jbjnK94W91w/ZYBzJdFl+PqhuZfOIOi1dkYAx7ByOQNw/n0a84rzj9Fc/Tg3ERdnpOVAsnKNa/m4sS+V03Vpvlj8v+L83zhejftfUds8tXVvITi7H9YNcLYE/B/n/lcbiMj7pXB+vfKdux/j3DRWDjAt39UG4RUEp4/D98ZIHh/8DLDysWh5Tl4hwPHg4oppDggvXNwixrpGAW6fcAwxjTkt33GcrBbzSffJihnkYvc4aJyzFUuFnz+eeBbg2BCLadD09NSmj3V+lq46qvWles/XBvkdAZsETY9YnqOaJg9rxzR9E6dfsrRA+J7r0XAAVn/a64Pn+gy4b2htR5u4PjHnz8H9CuxT0OzgnP+Kxh9QynPlv4P9HlRue9SuRcFatKgdw3Mccek93qVtqb/EcQqVnvoSXJ/LGuMUcN+JWyZh5X3UckeWPpTUtyrQPHQvonWsOAD8rNTGZVz/Csfyc+fa0kJsIThfK6efjPSv6BiP4slDJYHHh1yfCv+nrf3ARPpXWr5JbQzL6Uq97zmk/SstX1ftewCh/1JKyMeDS61PFelfnWTKGxFa/4pi9a/wWCvSv5Li0wF8D9H6V7AfxxBZ/Su6T5sIrn+F71FaX+o3prTihXBfazMA7rdw/Sts62jpX1kaY9qH0rCeyS06YK8uq2aydBved5Zw/SvJt835nT3aDAwXU4J9WB4/j+TrsY4Zfq5p9lzrOWjZsqLvqrVsC7TvJqHZY1vQbG4c3v4j3Y72Dl/cvvbco/vC5aeT8D4TsZ3w5MC/qxPPh/er0lIC2xG0/rAFtU9iO8LTzHepX03hbJtW/gHcF9fqUXu79P7BKFyfH/cJuRhUvH7kfYaWPTYaj2v5CDKw7MAt8UnYhszlOWt5DpZ+GeSasXLQeHPVgD57K4CmbeU0jaWf89Fgv7vK0trh5yGU+Phw/ZIWfcZGEtx7bqxnqGS/196b46El97TnHTC1eHwOuKzxTdS+v4P6NcpzgfNLYzQ7CYYbs3PjcWm55jOJUvsuA2z30WJRC94YU86PQ306pcR9qqzc9tRmoUHPZ68c7FJfsUfucUzEzyX5vLhnmbUcJi4vMO7Hcn3Ku4edPq7WB9ZyD3vzEXuP2UEDbMM5FIT2xSnYRnVY4SgqDw2xHLJaPepb3EBk5zLFzzpuuWZLwxwL4l2Xnncrr6Vlz9NyIdLxBQX3A731PFwbeB8thbsOsvoTdPzjyRvnRbNtWkTyMllxH5ytlKvnyTsW9Wln5NTS4I6HZcvFRMeaeExr5TzaVJZpPnkvXG4gek4vDrx//8Nhry1ai2fg8rjgsTK3PJp3hsNjC7fs5Bjax4QSxuWWZkEjkvNDqxexp1N9RCTnRIuNwZpwf4hb7tVoRKfIcaNIfS54DtX4Kf4e62b5OLhJi6em9SS8ehUtJjZCxFejtTNlDKkn7yeg1bPiKC3/kic20RsXiP1Q0eNhxcBhf1Y0zior/kuz21m+tEjs036NW4rEe1BqNVQ98OivAGs5xuMbkvxIku7KA7Un0X6tZku0bDLlvGv2Fjo2o9+t8Yply6f9FMpU+iuOiOZK8jtz7Wborzhq/dvaMWrRXwGSPa6GYvek+iaqx8Lbieivin3o5oF/z00pqT+ZIu2TZafhbFJeptBfYTh/sqW/ouB7F+dzyNBfAfheEskvTFnrr3ZPWforKxaPI6q5wlDtFWUq/VUUS3PVosey/Ky1211V/dUZVLZi6a9qn4Ogv9LAcV6a3orSorHSoDGflBb9lcdnX4Olv2rp11s6qoi+q4f+KhpLO5X+Kkpv/VUGXNu4H7XFoGmuqP6K6rCwHb1Gd6XlOsO/YUn6K+s5mK2/8uqweuqv8HPTq7XyaK966KqAyDnFWPqqFh2UNWbP1Fxl6684HZamhbJ0WFafp0Z/hXVYkh4rosHi4vdbtFb3MqWlq/LqoqL6K2xnycw5EEHTX3n6uVK96LFoQbMj1WiuJP0V9z5yzv7E6a8i9iuKV3vl0V+12Kis559XfxXVYtHz6a1n5XOO6K+oDmtO/ZUHzifeorny2CVrdFWtmiuMdb4xNforC0l/RempraolS3/F6aYs/dWmkwz9lQanvwK4OOAoVF8VoUZzFdFYRfRXlKjmStJfcfYETRvF4dUNee369H/QYmOwJs7m0XN7MEX9ER79FVD8E/BMmuK3ZE9YLyFpriT9FQfVX0V0WFl6rqn0VzTHkaW/ioJ9SZ4c6R6obiuSa93zLgdLf9WS57rY+75ApcaXTOnJl/01Kjkfmqa/4pj7+u4xRfRXVIdl+eKw30urdwaVUX+a1ba2T5nU7nukXc3nGPEPFtuAZjex7L9Qp8Y/KPkKLVpyMmi+wxpfoJda/59FTd4FD2WMjMc/XG42TMRXCH7BcwM/FgNNITd+w6WUC+7dwY5xlniXfAYsH5+VZ06D8wlm+Qe9dpcatpLgfIZaToZaXyFgjRPwuCnqH6zVbFI2GCRf4JLBPiHsrwIfHjcvC3w8M/2D3vNGl2GfULafrlbTG/Ej0uWe9l5AJQb7kLicDNoyC8kXOCVR/yC9bu5h5mHfHvYNSv6/Wu10lPtIWUumf5CSpXlrIds/6OUQw40GLX6/DB5HZaE1B4NGRE9Y4yuUqD2fmm6+lSw9WRR8PrQ+J+c/7eEfjPoJe+ZniID9eptBLD/hfvcPRsnKzxA9TxwePyHnF5KI+ggtPyCOZdHqWf5Azj9Y6ye0dGbvDXK8jYWlN47E6AA1fsCsOKCWqcXPKo3RS7u4zMaKXWqh57HuNXnyMmTQErdl+QKpTxCva/kDoQSyfIEcXj9ei7+wJYaNQ8rF4MHyD2LbnTc+LptvmBL7DqkPsee1WO5PXl/dHGB7KHzHdrBT5PNSsOIzImC7DWevzbZ1Yk6jEv8+bywlVy8ah0nPs0ZPO9zpzu238iwqC2ALi/hws8j2g7ceG7h2olhxEa3HyZPTlrNv4jYidlEuRtaKd1gSLTbTe1AJ0FgGCrbXafU4bYFl/4voFCQisdAWVmwDcFugLl5nKqzjzkHPpxXb0EJt7LhWD9s/PRqSqF3bskk+46ijreuNbX8JlVNBz19En5JNrU5GaqMWbCfGftzIu1U8YK2QlVcge9se6LGN5AnAOiVP/ENW3gOvbTWDGntnjQ10FbDy72fniqghalNtWRfbMS3dWlTTRpfTcokTjq3Mpvg7vf7TXvvwIyo94NiGLabsCacj9NbzcikItnN+isopwHbTTP2k1x7L2Uqzrrsanw62S9b6hVpyx3Dg/v0G831JePU32BYTzU9j2QqpjVHCY5vNyq+TRXR83jKOx7+1Jf+PNqa/BZUZ4LFMbV4aDNb5SPOXTE8fwlxQrTVeRnVZkj4rU+s9FS35CCk1cS9erBxXU6Bpsl5GZY02ntO5W5r4Wj39KsPdT6P1p4baw6Q8VdF4A047ZrUVyXfWAy73meTv4uIqonnVLJ9atL1ssmxeHmrzyGUSud9qfbJ7SKnV2w9Y8W6170D1gO9RkfWicScUz3Fp3QYlklewNrdh1jYKlr0CxyJFbR2ROKc6awo/WbZvDctvjfUBXl/348y6LUTySy6V8j+uiS2b81o92BEr7q2Gg6TkNN3etrh1LT2Ll8MMWHfiXSeb2uMu5Q+t5YhARtuar6v23m2N8zcQ0fcVeGIocTklkp4lYvOMamWyYjpbthtdV0PKNesB71NLOxrcvVtbpnGFQctlF+FPVGK0eVnbBa6O83Cp0VMHh33O2W1fJZ+l3/S3UMdi6pjmazPDXSuevE+At96UZOjgMJJ+EPsZ6DyOl5hy6UwVkz4F3DOgBaxxsHKBRjkvwC2v3Yb1Drsoki4V9pOb5yWSV6B2W9xvwu1mHqvaXAVz0nKteH1zc1Kru63Rz2K/l5U3QsLKJzElFwJoxyXSDoXL39DSntU20KKNo1x0UvJpfBiErq/xIVPWQtvVoHHfWGfNHYcPGsh8R0EPtHj4j5nvWXwizPtEWBZpFwBdKb2WIvrTiD/+LCopnIbd8o1HNfFT0NMfrcU/vE3I3K6ms50L+nspXC6eDLxt0ntkpr9vP0zYN5bdNr4es9vebxO9rrz1WtH6VRGbsmZXg323bG1Se/j30+8tk2aL5GJ1OF9kDVn7P+WEczn9gI4JnZ8B3S63/R58j0oMN4+S5T/hYqgi+cAuMd/nYIrcZ9ox8OxPr9/+M/Nde1dQT3Betow2MrDG/Zx91ltvSr5JQrKLTpEbD5OxPY6s41T4tgEun5+U3w/+q9FtZF8ruD9m2Yu+QqWHj4z2pPyCkW1weN9BJu0z8MUKYuVu5PhqqDtWXrj/sRWnnHVNZl5L8/SM19P1PFnjgiXAXSunF0RWvDONs66NBy20aGTONdAaN2HZVSI6jhqfnJWPwIoH0rBiR61tS0j5NK3tWVh5KlvyfErUvkvIiiW5e9ibV/IeYR6l6OZvGGQdvrRNrDnnllua5tI2znvoyYlY9pPqVCknGrD0epbm8zdhnzYNJB3YZWUZYMU2W9uWsN6x0DMnm+bD0/aJxhPR+y/2eURt8T3txkXPW2xeUFJa3iNg6bta8uRrfv8ClzPJi3XMWsZUpxp5EJUUKydI7Tajube9nDHw9hOfR+Xz6HhY7UeQYi6Buyspz8FIrmRvjGdByyl029j2bY7tU2pz+HriqWryu3jomReW5mzFuVtfcGxbQnoOZeRBbXkORvN8cnqiGmicII0XbHkO9oxfKX2pLQXOt2cBPiSsHfNqwrw+Fnx8uH5Jy3NwI8CDqPRAn5dafrrMPHUtdgkr586UucKysM6rxCsGLfmWtH5MzzxTtbmWLLtPS64eq88DxyU7H5B1fiW066cl70IkX4wXLrcDLcHGEm3bGwdfg5Xro7afy5GVN+MGg0MNWO8gkXIhZBI5f7U5ATxYdrXjnbDOr0QkNjxKVnz330x9DU1PyYFt/D3jiZcQI/s7Ki0uCHw+ltHYy9o4zKUQjQGUYgG5uDcrLm/TyQVU9sTyZVlxYRpWDNXHBC7GitbxoMXmWfSM87HsCdnxITT+JEI59y02Bmuy7B+9ttsSJ2D5lXvtc8+pRVNhPXei+mSMpW+eQiuswWnnLa1si36U8ylFdK21UN029U1px9LSatboAAEpLpTTG3Kay1rtZYuWb+5rvcfkvVd8i0rA8sVpfjBcr8Wfdhpty+MfzNZ9AbX7HmnXc4w8/kFsE8jSqt09lpY/Tlrfsl1Y/kEvXv9gi+4OqPX/zekfjObTx2j7JGkFXxvac8hINtgWDWPB6uNiO2fUP6jlDm31D0btLhG2AvzKfNeQ+gS1/kGMNTbAY+avUOmhVrPpwfIFLpGIvjTq/9Oe7Z7j6fEFPsKUtWT5AqP+wVrtL26/VTsc1RJbOV80anXIWUT9g95rKfLOhwccx3hpWD6iOx11JDL9f1P5DWv9Rx5/4o0GU/gHI0Tzh0d8htY45Tgql+AfbPH/WZSxSk9NmQQ+H8cQ1wY7l/jc/sE5c+n+ScrNAFH/IIzrpDHe3L5AjpaxpIU3f2bknPSE+oSg5Hh/iPkMLf/g6446nB9xTv9gS247yz9Y48frSZYNmZsiftUWn14mNFYpk57HutfUmsNI4yqiJW4rSot/sMX/ZxHx42X4AjPQ8vxaYB/eF8Nevx7Y7bQcHr35hilbYvFaJsn22OL/99ASN6HZxTy+uinwxmlk0DMuQvOvTkHULjq3vW5OaAxqS6xnBM4/3MsfXntsaq8tyy4aOU73j+UDqKy1vWrb0OpY8bJW7EML1Iap1esZcwFA/g0NsNtZ9QCsLdDsgJYuwUMkDtqDFduQpZWYCssWi6Hn0YpteNpRR1s3SwsSoSX2xbJdthDRqLyEyqmg58/SyfTEo4mJtJOB5U/2vKNIwqsDerNxO7XQfbBsdRl5C1rx2E7BztpKrW2zJf/CUuHyQvTIEWHxJFPOwVEDS8umadqyNG9TTth2mY3Xd9pzH6I2VRzTsDUxlqawlUsVWLZPS+fYQotG0ovXZlpjF31KqV/j02mxX/YC9/U3ULl0NP0NtsVEc9FYduEHURnF0tdl5NJpwRrL18KNs/Hvzor76E1tLpooPfVEmfT0IcyFR5O935DsJhtDnc2oNdZFw9Iy99y2BNZkSdr451BZq4HnaF1/PwD3TTqPq7MkrHxV0bgDrB2z6uJcY5YOLQsr51nEL/YoKj142puTFq1flNo8cplE7q9an0zKka8tW2WsMUU0Rmcq7iWfl05N7sI5keKO2i2M//d/kTinjO3BZNm+NYr/n9Mm3InKWnppHVp+71zMfZ3CtRq5Zg92hMa70bi3JeLVqUQ4PJZcbB+tNxXR42L5mqIcMcjeHviyamNWOduw9R6CpVOrZSlEbJ7RtrNjO4+jdrn2uXk4ppHuH112jJmfhbRPPci4518xkHLaeWiNp/2dfJa2Qee1+GxrNW4esN+553a07a4K1ybgIFNqWHmb5vZpeMjUwU2pSZyK3jHnvbliLJsC0Dd83oFIzH3G9qz32XmI6FQjv++8oz0czx9tG+B+E2434xjRNleJlmtF8sVNzWvK/Cgt+tmIFtmbQ6Im10Rmuxf2MVqOiEyt3EUDLq/Gh068eTreR/W9bWt8wGDVg+9YZ80dD65tL169/BuN28mAakI/TiaSE2WKbXDXGL3Wor53jKVht/zkGTr5bHr6o6XYh7cZ3kNlKzUa3t5YeXK4Y5LNRWU+JdPftx8mzkeW1bZ2fWZtY79Mva7PluuqxcbsscMVDghMccw1W+QPTCnt65T7PNfE5XTqxVz78n0DLT4TzB+ohDgqKx/YJVQuhR55z7z0+k0/ofIno94cePOzYX4inzPatOhhI56bbxqwbKQ9c+Nl5+KjtBwXjm8biOTn6/G/r6HF1mTFUlI7Cl3f+z4y6Z1i0foevlhxpGPAHYua4yOhxR1z14oWo9x6HXqJXitT9IPX03qiU8u4YQq4a+X0mpWkZ7y4lGOO1slqt5XaHHEerBxt3vq0XqYWi+J912CUcwGiGoRI2xEyYpQwZxE0figzjqin9jFb84XtVp8G+EyYV6sDaIHmVs7Eyp+yRKz4/Cg4V0XPY92DVxDPD3tjgqX8CLCcy3cA83De5ueUtpZC67vq/olKytw5xSOU89rr2ms9xlNjxYe1xKzevUJAXOcNyeC4QxyPaB33JWDFteHYs2hMXCTntQaNJ8NknsfWmCiNEytIz1gXK9bjL0ednjEh9PxtJsHFEVjjusuonAPu+FjjxZdJGcGjBY9qxntiaeskPOOejLzXEUC7ai3X0DSovTSdHLXnJZMsewM3ZWlwp9ShWtqsFnoe615TT31NNMf1XGBtV218mkfjkP1uwCmgvv9MNF9zTyTNiKdOz2sxy4cPcD6+7G0U+9ephdOS2zpKzxy+cx/HCOV/MbcNrgfcefHUO9ORuX3Np4PHsMd11/P49kKza3ry6nmZ2+7pJctex5HxjsEe7xmU0HJw9dJJtNLr3OF8RZbeIkpPbYiXqF17jpz5SwP+D9r751rpqcHpxctD3vv8rPf7ZRDdbmR/I7Y6Sk1ukznx2FZr7Z1Ru+cqoOX+Pct8309wNtia/KteetpMek1azK+Hq8z3q8z8LK4y24huU6u31ZFfF84lho8FIvpGTfc4N58L8yhgL7WupxafTbbNcgo2Vpge9pmovRavZ7Ud0c7N/S7Cnu8jLPSM++hFz3dRFdurpgN61lFnanr6ELgxv7Wc1qnZxhLZQCWGm8dB2+Haz8SKZQE9eU0cDNarv5wAtw1uvrb+y0Yd6legWnRtmUXGMdgvzP0+wez3D0pE8yE+2sBjqOxNTx8WvsZajsdUtOr/JGjMz5KBe6+3f3bPdUDPdwS2xpQ+gEov96L1710Q94/7BOXSqX3HFIWziWS1zfEE+Yyh9SJk6hLuRGVB0gVwOoZe+gjuPxs9RoC3rbmvySwODnvfFXhQmM8t1zi0gpzsCI7xO8yAY+y45bVIcXyHSYnBviNuvhYf6PFHWetF2+PIvDdvGET1IJjsGDxrGxnb7GkP1WI3l8CxCbG2h+/Lmdu14l65Z0OZd2Xgc4hk0DPWtgXqx8X81RHs6+25He8+zMm1BXBQmc+B7V9z+y96QzVvnjjtKcFxyi1t9IwvXxpXUOmBu6d71uM0DFmcnxiIPeTmeemh6QSy4v/X5OO5VqJ5E6amp3aWy+eQpaNeQt6ICyPcvOsFuG+Dto1b9jlTj3Kxgfdn5MOENj5geGMF4Pa7N5JmtBZPLpSlEfWxS2j+7idXCG/8RSROA8q3O6LtC673FCpb8bbH7W9rHh2MdExa2qTPhfyIhtWeIvEtUH/ufV7FKeM6zca6F3l9iDUcQHD2uLnPFzfdNO4vxF6teizWnBPODUWx6n9PyhpwGxlk+U/+6MilCZnzd2jvBmxhrvcKZr9zcE7KNdfTVuzJFycR3QbOX8a1J+U6o1h576L58DDW+we9tGzXuw49Lv8Zdr/rzLOfXD2YZ+Xka+E7Zd5PqPyJmffdIF/TH3ak5v2Cc/OFwaeOOnPQ8pt7x9R+zWDds74ddl+bS2DqPux6Wk9lyhpD9ILrh52akdOIOfcDg+NsT6NyScxxflad55Vlzw5y7lHgTIDTxrJVB/4fkWPiPW4c3PLsbdeQGSNDacn3EInLofE5twzLzC+amac0M18pcBcqC3PnCu0NPqb0OyUrJ+XceUSzcpHiHBZPM+X1RE99ZGuuz4w2PGDtNdWyRfIyWL9DqqutK7U3BTifZHY+z3MGvfSQLVpLK+cmzkGg1TvHlL2w9tlTR8ovGtEsRODi1KXlvfYhSjRnqAW2azw+znt82OvvXqrPe+74olq4+KiMmKmtFefXZD4ecnOKRuDygXrr9SJbU4T9ChfHeRcJT6HlQG8fh5eNkUdWjA1UUh5Rlkl484/+Y83KgW1G1nINa1zyHEKr9yzz/TmDZ1G533gGlUDkXvAMKvcjPe6fpd0Ng+g9FKjJJRchOy9ljzYxNL+ohnUfoLSs64X7TdqyOaD33xYitqgXKtcp4Nx19yO4ef9E5X2DHdckrTs3Wk5Nyw/1PCqfN+rtV15xLLfI3Jcp0PpkuB93Dyo9ePuPNCdmZBscuC1uuZYbz8rXeT+Dt96UcPc4bnkLLe3NfXyixzIzrxzlSOf2exDJ1Xl3oN71wr2o1Khpk5s/JVYeuVXhEIKb5+HwsFvfcSMqpwDn1MxoY0099B568wpxApW9iGqFMFb+zoi2S6o/dw7SqeDuhRlt1PKbwtx5QOeA5sFcs4z8o546mRxjyrlzfi6NuXOMZqLdB9fEuIA4n8xmEudR2Zs3O2JpPi8jtHbo8strJmHu/KFLI5IjdMlsJnOBwVvPu27WfvWAyw/XCuTv1HLQ1bQ3BT3zguIcwHPlJv14ZiBXp7eeVp/W6Y2WF7Q3NA+mVs/bRis1sQs1vIPKGmh7bytEcnJGaMnfuWrMHf+wtOnJYf5cwC2Arh3/pqfIfLq8dpI09Z46q8hBgwMCnjpLBOyAB5L+L+vp+pl+H6bJEXq98eNCWUouUW7fMvKAZvEDKoHPDX4R0JYBNTk45+ZXRFY+UODnDm0uBfrbfkblqgPXvJQb9KMR+n0J9MwvmhVXW3JofoHgcmxm8gX57Nk2rgN5QD25QZeMN+eylduUY+4+4NKmnjkr8X9wihyZ3t/D1ZvqmKwK5VrRYi0jcPkptWVLAsfJz70vSzkOq4gnJspbj2M/x7L34PSwk480um7Wf7plu1nHYe7rWiPr/o+ZO9Z0aZxGzL0va+YDPz9KiWMhz6ByTT6nK4luo3WbNb9Hq8f9D+n9aOn3J6s/t0SsePda5r6OPDyAyqmZKnb9zITb8nBnElwsOV1OyzWrzdwx+z3h8pSc7MjtndtvhXs3wu0dyX6Pw9xI900a2y/NWyVunZHbSJndbs16a/q8n2RpRO+pf63ZRc/3kbS82yVruxCDzv32v5lSo+e7bE4krJ/NSx15pnP7vfZZ42lHHale1jX3EirX1BG9h/aMG1+zN44el6vMi/uQ3wxeDkDf37Uf0XI302MbbTvyX5z7OGRD4/x7ty8hnYtNBHc+poqF5XhN4F1SvjEh0j7tF6Y8lsDrDK8J85dMdhz6Epjz+l+zP3liRqR3LXrqrMlnynj/s6RcBay486OOOtq6wE1MWQPdhvRe0dp3jNbul0VLrMx6WsZ0dfs89uLvTu1aMewtbV8b9Hy4UejxyG6zJz2PcxY/Tsh/O7LVAW0brdv8tdM+4/ajZOyXd/2a/VsylxA/k+81eGPXLbj3QeO8f63voN4PfEbQls+1f9x+ZgLx7tntTRGPP3cfcM4J5z/7fuifY+0rgrZ87nxw3t/D/a79SrZ2Z2MFwe81mntf5mTK90fRuCNt+c1CHYuH0GfQwz6EiGppH+nIXLHPXAzYBiEjr0HLuhwPGXi2QetltKlta5WZU1O/BLCuP4r1X8bcgspbHPt1SxLWb6fAenPr8bl9yuQ2UmZjachq3nM/J/9ivkdo3VbNNtesBs8OfB4jbt6aNa3g/53GMwhPe1OQFePhifVYsz/oGf8mxcDVtNEaTwecW0Hwe+fo91ed60nrvhLgHCo90HWXhnRMJDzHOLJuy/8gGy7+BOc1eg6VS+JlVPaGHo/M37BmzaqA44BeGPbGBvXcdrbtouc26HGZ207Tg0hs5H0J/FOA1tHqZvIYKqNEfl82jxJqf/saGXqMLd5D4Hx5XP4+Laehdd4i+RFr/xt0veixoPTMAQl9Omk73v2h81t/cy9q/ptL4b01Kq+Mxykyrl918G/XjssSmcrWcctM3JPc3t3DTq7MuyvR9o/Lwbnm+iGi24gyR47pGu5F9NwON/6Z+7dLxyEb+r/L2m70/16zjrfd64kM2walZ7ve39TrWNHfNtUxnZqecR+Pb7cP9NxO5oT3OYPatul60x6F/tMT42+ieUjwcmlZdBt0Xi13duQuhp7bg/+ZtsyC2+csYCyU2SZ3zLXz8DhZt+U+0PK/g32YMz/Qmnrw2H7ufmCEJ4R53Hy8zIu0jdp+bU0fb+4+3cE1u7ghiUNM24c64PlN0focB1AJQJsHKmj93bSN6HZr9vnkinN4/O2Hk7gjQHRfbxzB26O/hVJzPHoD/zc6Dy+zyNqHbA6gUrvetGv/6HXAkSSsto8y5ZK5KRltO9HxEm43sl7EPtDzfTEbAtzyzO1KeQceJuWa/U32u4ZuTeIEs3+ZbU8Fjr3n9uW4AVfnhGO9Wuj+S/Ok+nPR8hv3G8ca6Nm2hna+em1zlciym/RosydXAvyOyuuVPxEt69Yy9++P8IdC9m/jtnE1mb8agd+JP+N5mXj/Ty3r/t1hv1cNeky0/85c/7vs66AVb171rBzuc3CNlD23w6Etw3Wyt3s9chCVUSJxkVGs2EvIB5OxrbnzP+1XXkRlJj3abOU3A+tY4fxE0eMcyX3Uuq0s5n7/8xJYwjH5Lbk97/WwRufyAvZhiXDHpcyL2IL2A58ZfH6dccHgPOJzVHo4H2Du45DBLyM932M1JZF3pGtw57tl3bnIOh4clxHZbZ9H5dTU/O/wsZj7GpibyyvCFmLufVkCW05q1vEe57n7WhznnLy6z3ltZO79mOJ3ar+/B68z1KwzNy25EK3zQvMP1hL9P7wl8CopOWCb0vI17ZQx3+aINTbMAP/fpfmtXCDta/U+IWT9zk+E9iXouhGmOG9TQX9T9FhkgW1E9PuqcLGBDw2s9d9HWG1NRWSfl8Tcxy2bD0Z6buMjVHp4B/Eu+Q7zAO81BOfvDcQHAVr/N952uflvdOKD5LZ64zmeq473GunJx2v2EOmv0Ppz7zvm0xE6Dy+zaO3PebdTg9T/us/gn6TU6hXOIv6ZxNkJeawjT6JyyXDHhS6fex+n5qlh/lzZS+PdDkDbbycw9/FpAf/3rLpPMVhtev/za9rJ+C9L0DEgpud2I8xxXKak1n4VzV+5ntbT9To9MezNF8gtr2n77Lju2RW6JiPPcVp/7n1fT+up10T7GFNui26z135o28XlfoPrQ7X0v7yxkRbXGHq23Yusfeawcnly++OtB9RcS7Xreae/h70xy9H1ve1ifkTlj+j738x8D558rKuGdMy1Zetp/00/bJ/vKD+iMkLNtoDafZ2Tnuen9RxeT3yPiK77HWrjO8T3lcD6XE4v/H3p/JrMH6jtP8i2tBxWS+ESKn8dS47IMZHauN64ipj7PO93uOMvLZ9yu1q9NTv83ImfOvAzKuk2em0zi+8CzL2vc/3uJdNT19+at2COWIQp8jDMnQ9iSr7e5humxHW+WREy4uZ/EaB1tLpL4T9J1LT9i7LuKsP976Lre9vdj3xLyGijlazrhCOrXwv7mf3bezF3vymL2vhGrc5XI1kxal+RdnvSM9buSwZpecuxonw50bGLwB0L4CvyeSl8ZPAFwVtvDr50LLfA45a5f8/cx3LVmfvaWjotfYWvO9Kr37pUtL7MKvbpMnzT62k9raf1tJ7W0/U+fT8+U7HWR1qO53FI7Unz1iwbrv91OplbKnjYwYsOzjm4j4G7jg4OvvdjevOpPcLwDwfPMXBtYZ5n4NrB3M/AtYOh+8q1gbmT4R4HJxm4tjDc+5+5djDcuxBPOODex/MXA25/k+E3By8zcG1huLh0KdclxpNvgrbLxYh68hlEYgPwhDV5oMvzaMA53zDoljT9EmfP9NgXuH332F1OVfIsg7UOd41z7WDOMFjPiAfH7XHrctzFcLeD2xloO/ieUb7fxsC1g3magXuG3Ux4hoFrC/Mmg+fZSPMzvyC0heFyw3jybNfkqaH3DG+uqKOEmwbffYOL17rGzKNsMXg01B8Pe/OaebRQ3L3Sc9/YUHgwCH3OP+TA0+97gcG630hw15KFdowKrzBwz18Kdx/1rEfhjg+G68s+6oC7x3rWo3DHB0PP970OHmDgfiflXmc94PFKap9FFM+xuIHhkMHhbe5gOFKBdSzo86zg6S9zffPjFXDHB8PFC/3pgOu70+eAtgw/TzSODbnv+/SMHzS443WB4bwDrj9xuROvGkC/hL7TgPaJyrxNBe5YeKjNIc7lMqb9CA+evKePMXjy2nB9uZr8XVoOtYKnT8dNXJ+xph1PbgzOZlS73zWTxwbIXeO1MVCtcRtSrKum3deg4/laTafnd3j1bRQuJ3AvPcaU/73o/xH2kbNDSHaDiI3hdKBdjcj2vPtJ+97QR4vazTlbBFcPt83ZNzQ4+4bHXv8ws56HWvsGNz6idWi7nH/A6ksUuLGOx+9wFpVebmLwXHu1+Ye2GDxx9pF85xgrx5R0/7N8IBIen0sWnJ/FY8vg7onW7wKbRuRYRO0amn3D8i/VwPmQPLnqLb+VF8u+oZ17zo7xgPCbesCN1+8U5mNqbBmSfcOyc1jjd47ip7uRoca+YcHZNzy2Du653MO+4bFlcNDntGXzlsC/+ZjAkuwbFMkP67FvcH2QHraNsp+ePgkH9x5H7ve2wo3XPbYOye8ctXfU2jc87wDg7BuWraKG2jEWZ5Px2Cpq4Hz0Hmp/W81Um/cF9APRXHIUqq/i7Bu1scme+NOsOFVs19DiuGgcVWZchxXfUfsf4cYTNXo6j52G63fXajokov5cSq3P1bK3eKnRsy0FSQPjocYexWHto3X+uXGKtt94nGGNaaxjwGn3OB+rB24cUuufxXBaQdy3l/SEdAzA+WUplq7Rq3WM2vla0LRR5Thw/tSnhfkYr53RQhq34XnceMODZc/0tvMXKjksrVZvPDZYzlZEfawc3PY860Vo0bPVAOMX+O7R23o1t3PC6Xsj9mwOj585AtUEgi5QInP84Z2obtkLZ4epbedH0s6PqASN9FYSHo0khfNDU7hxSfb7WTU84xju/NeOwWt8xR7gWbkxETejsoD7o5KmtHbsw9nnPRpWL1z/y8ttaJ9qYqeiWJpSi1p7boTa8WgWNVrintA+5cag93c9cXAcNX5tC82HaPn/uPW89ZZA67UW1X57fKMcnG08ildn7tGdZ+nTNTy2fwnLL+zFunbovdsTKzklXltSLzwa+hoicQQtcP53z9hB899HxiDcWI7C2dk8NqlaG55nnzKY8r/D6YI9RGM/WpBsmBacFuNwAtJ+cmN7DU7XEW2jYOlmuPGTpR/JpDbu5lbHejXaFY5jqMyE204N1vV4hUF7N1Ek5oiDruux61g2dQktvqmlnZ7U6Fs9911ORzzFuBew7Oy1vopMsrVYGldQmUXt+xQsXZi3Hc+7CjR/jLYPntg7bj26fbqOtq89tG8WnvMc0fV74wgjeHw+nL+K0+552ByJrHNhAXCaPa8N/iID1Rpy8VpW/CW3DscHDrAPDfbRsx4XA/oBKnuQGVuaod2E/4LXnkX9gbWxrTXU2pSsGFpvO720n5xmle6jB+5axUTsF3NNnD3Bsx73f+m9rzVT63/F8z/w9MO5/nsvfTE3vphby6xNUuy0h6z2PBpZKd4cx51LceieuPQMajXjPybt4354R2LteOoXUtai6cQBbtxSq7uv0e979pHiifO3tPyZ59nbJ6b6Ek6nk/3uDvj8xUy0vEvE0hF9y8zz/j8ktPM89fNsPe1MNbEoEfB5zopBWGVqtVScFr5mHYta3TunR7fW8ei8ObS8GxKa9kGzw9XokLJ89N5rWPI9WP6JGlt26TvX6lmt8bhEJM8EZqrcG4XavBO1vy1KbR6N3nk3gGjOiez8GxY1/4mp8m9wugOPbiYr/4YHK78Ex0myv9zvzILTOVDtAldHi0eTAO1A5FjU+vU9Wo0san3QWoxaxA/8pzAP2AyixaPV+BB/U+YDXB8E63xb8m9k5Obw5JfgnuHemLQaPiGfOR9MjV+kVx6O2rEaZ9N/CpWZcPZoD7W/rWZqsaVOhUd7wdkGs9717oGzl3mw7EhePLbJ2v9Irxg2jlMTMnX+jal+19Q5NSjWcYjm3QCy7EfW/kf+C7W/pZZa7X5Wbg0PNf35gpRfozbPhsRUuTdqj0NNHl6PrbA2/wZHVmxkL6x8FS15M7JoyY1Rg9YOtx0rt0SvXBwRfWbLeGRV829kUsY90fwbQOY4xJqmjFPg0PYHvhc7xFYFNbk2vFDtCqfp7JVrQ0PThnDn3zPennKcsjEhteOU2jFP7/wbrXk4psi70Zp/gxv31Nh1Pev1zpuB60+Zb2NjImpzaEyZm6LW9zjlPtbQM+eGlX8jmo/Dk6eiJSdHrU2A/i8ieTWizJV7w4N0D58it8a9jjq1eTNqdDBT5t/AfvSp82/MRST/htc+JxFth56fuXJr1OLx5R9kODQhJxnuICWHpaE47CRLs3FU+CzVbc27AWwwZOXNyKJ2fHJ8Alryb9xASvo50o4GaB2j1Op0PFwdro/8G5Zu1ctBVEqUMehUuSa9vDjIuqjMXBpLyrtBgeuJfsc6ZA1cpzbO63wnovk3NGp0aPuRcr4z8m605ON4C5Xw+fVht+7O4yPzaPlqubBCcNfkRQdWro1sPkCllEejB1Pm3ih482dkwNmwHhvsHLKcRrIXls9Wmu/JWRDFq+v0tJWpddW0wb39rhmT5YOee/9qp2y9sPb/0vrfGqApxn36XsdjDl1A74nLv4FzaWTl3QCiY+Ua7TbVBESp1Yy3bhdY9fwb5T9RO56qyWPxi3NdT/4NT14NLv+GhdWGtt/RbWVp/j3/KW/+DUpWrg0PNC9GT6R8ILV5ODi0mIhvOzHHs2k9/W/qlXcDwPduTlPl4TQqT5PvtW1KYI0PjX2I0mMfW/epB1Z8ytz7h6nRiGS1Y1Hr//bq8e5Cpdd/nhWfIsWs4NgVLZbFS694lKy4laniUFqYI+YkQq2vYqrYlOI74+zqXK79FmqPQ6E2FsWTv8jTjsfnwcWEcDrTd4X9ikK3xc3D1MaNcPqsXjEqnlgULjYFtCZT9EGz/O092ZqJSLyKJxbFS3bMClBj0y3j0osMveJTHpmJjQDe2JM18jtnOa07jQHgYlK4WIHaOJIelH6b9j+bKgZFI+saeYSUdFlUBw+xFfjzHPEp3jgVbyzLHDEuNfsjXZNafApo57U8fRzeejU8isqCJ/ZkFXhF+CzVwfMy41PovZ2LGeGeATSuwxOf4okH4epMlX/RA4wz8HdaUqbcv9pYkiMN60aJxp4sES5mRKon1e8dn9KTQw6wPfHGRmgciKfOKoKvE08sSgZWDIqGx3brte9OEbPi5QZUanjqaHCa+Z6xJzX0ig+ZmxPMvBqbFheXROfPHYvioUecSk08y6oCenccI7JJSjy/hdqYlQyfz2UBqCst3y/0jE/JIuvdsDVsJnJB+OxdtxaqcffC6eOB7HiV2ngTnLuuJW7FE2uSRa/4FC0GJQoXR5KB5jv1khn7MXfsSZQpfK+t05TxThjJV+jZ5xofZE8OMhxYCL3/P9fT1Bp7Mhc/onJKMuNSaNu9YlOk+JRfFsavQ12syc+V62XwMyqXABd78lEnauNTOA3O18J8WLYf4eJZJFYxPqU2PuOryvVWDet3lvMc1aJkx56sAg+icm5qdWBz67NqwefBU8dDy7ZatouxrqUandjcOhkPOJ5o7n1ZJeA/h/UjPeKx5uR0JTXrautIWrWp/rv4vt3zWVKbX3jK/0TtPtbo0s4467VypxOqu9KWrZlfZ1bAGkopp6/F7ai8vaEdDho7enslLfGqrXivnym4NZHbOq0zd3zwFDHGLVjXTG2u3impjSv2xEbXtPP3YOcrro3VxppGa3mEWj3UMw3r1myL0iPefKrfk411ndRqqlaBzFj51m1PCafv02K0PPmAp4DLjeBZjzv+c/+WDGiuZus/l6G10fJBtOitAK7dKcn4DQB9l+pU9NJqTanpWqNjvXMoQq+8InPTS1c21XYKnN7q6LD7HcJ4Gcw7ytSzOMDM8/iVa/PHrKed6eqw9905U/GHsx6OC2qNT5rz90b4UZhXC5fzd4uUUp2l86uDSDu124hwKVAvQkS3lZmTaQokXdhnDe30zi319ZCjXfuGMPdzQ9KzZ2jOpdxXU+jde+XtqqXG7rqx5v/TEsPv8c1L6z4kIPl+ohoiIEublKFzi2jhpOMDwLreehLW+plk+hh74PHfadpEmucogyl8nz32W4OzfWs5wnoi5SWI1F3DY+lO1/RDy9/I1W85z5If+Zlht09Z26c1cV/4wwOvWeB0D5z+wdtfzsjP3RsrB+Hc+0dzZXjqSPU863mxcpm25CeVaMlLWrNvLdtb0xeun5XZ1n5G0pFw+UA5/kmQ5kd5zIG1L14eZYjuyxLhfhfFGz9DjxlXRzuGnmMuURsvEWk/sj9L4z1Uriqt+aFXiXPkcwZT218wOM7j7oGPAZHqr/FTG++cFTfWE65vkdn+vY1E2sk+7637no23b5jFKu6zRq0/mOajr/csx7flQVoP5vfcX+/k0Uy2rg/UxtHRWM7adijedxr0hPt9dwX/Z5n62OsB3B+b+9kBcPu55OcUl6Nxadzg4FAiB1F5UFiuccBJ7f4dIJ89ZMaXRznshIsDz2w/UrcWOC/0s1W/F0cXxpEgdN2p9jMaG4DXreljevu/tfHUGww17Uz1Dpz9SCROvUajFVmvNn4eg3VSpc3jE5PxGzim3FYN3PttOCJ1Jbhj0dpmbzx9ymj9Wq4Y/L5Q/kR46mgs4Td498WKrZL4a2L+rKjzNymXhnRcs4597bnVkOIEW2MNp+aak6x25sJzz67NUYJ1ny25TubWJmfTciwy+Q2VBU+uIY+m16qvaYOj+uE1u+HyAq3pi9WnnZrPGLh3lczJ+YF/HyVGWs9TrzdSjP+URPOVwfHSlmVTm1vtMqLmN7bgOfZ4/+b+H1j7t+Z/eSe4z/CdA9fpfc8+x9ASq7Efyc4TB7nWtGXZWHEJ0m+vyS3ItfPWdcqFZKLnPXv7wCcM2jJaZy60fZP4jJR4/tRcdPIhQarzPlO3FW5b73cie9813idlBlJep3eHnff0vjviOe+QP/QDg/dRSbHWBTLznXJ492OpRPJ4efl4AXzirEPxrpvFpwrWPV9b14Leszm9HxezJs33cFbhSWNZoTYG8Mk1/5+5Y9w8vFvJ2w7m/m2YpwRgGXf+pHVWDc+54niHUNtOL7L2yepD5UaErKelTlyMwNz7RCfteTP3vq2neSfrOZDVzlx4bR2FGk3gtWDdVmq1i1wcSTlv3u32+wfaU0T75MmB7o2z6cWcx3LVpx+2j5+Eds619eYi4zevCt8TInU15tRf/+rkj5m4JAD7JS1fIldnPI5znScgq51V4GfCTwht2dL5jmHKbf/EbJfbpymo9VtGNG5WO58J9ebWFmbyzcx49V6/EKT5PfhPEG29KfbXwzfK/KXwLSolaN1vHOtwcOfqZ8e5ps8bjeg+WXD3TWn+FHj0IRlE34uDqd3mlwa99tcLt0+9tsXpBb6YmS/Jd3hWz71fkf2fgin+ixl47n9fVyI9a6TnypR8p8zvQU873HpaT+tpPcEUsdmu2Q2+Z5/eJ0Ryc9821L2j7TahjYc70COGnYubaoXTiUpEru+IDzoSO2bpXmviFgqPBKjNWa7xXIDIvnrg3m/U+11HwP0BrP2M4j03kX30EMlvTN89AO8f4OZL7ymgcDlUT47Q79q+HTHA9eBzJKfd7Qwnhfk3oJL7PQVvzqrCiQ5E8oOUnEUvDXpOIylHA/d7NgPA8wbau0w+S2h5I3BcphUXGtlXD1RjrNEjDrbELGRq5SO/h9OXSppTK9agRk83t84p4lf3aMGiRPIYRPwHXiJxXpJ9zLKXaUTOVQ/b4akORN5zHnk3bfZ+tvaPnhXmeTgTIGP8iPfROieRfYtA+0d3KXj6b1G4fpEEl2/9LuY3eLmtEdgv/NkLfX+vRsuYXsrtnP3+4giRfEE9bBLe/BwvBPfVg6evlJ1HBdMz9tGCiyPCaLG5GRxVoPnxe/TrIhr/TGD7eNyzZeDV/XoA3ePHw96Yc/zZayOr1dPhc2GNAXr06zaSifTpCpE+oWVfeqgCaivh5pW2e7wbM/IuZqufKNk/Iv1mjcizOZuNZF4JYNlYavCMGcCu22P7XrLfJ+71j5ScGI8mQPNdRMYg+Fxk7AsG+jT4Myby//TguRdx9m38vjQ8j1su8UCAiA9NwrNPHNivkLEfj8+MNmbuPYbmjq80vwecX0biUAdOIjj7AMby/UzN48x3LxtDn/c4eYn4xI7PwLGRyP/TQ+v7XFoo8YGab41Cx4F/obK2DS8ZeQCoDmOKdz9kvdtA8yvOTTQG+MLwv/EzlPQz5nwHIvY1zde7iryajGQXlPLyWjZSXHcziQsLIKLDer8DkfyfHzvncblCP2a+R6jJE2xRxo//HObLqxixg2fkWaM85awX0VRYlP9xD5t3ZIrY8ufczxpNicXBAHP+9iVM0fwpFpG+UI8cFRG9j5UHgbbdO79DC+U8RmL9e8SRa9qmaNx8T2p0VNb5zIwfrsHKD23FnH41+GJQW3x2WD+mxT1GmfseuipT5n0ejn1Ej2ZpuLR1e2rHPNuv+T09meJ4RLcd3Zeovk6zR2Of0F1Dnq+7Vl9ntWvZ1ymt+jqvBo/T3/XW1Vlka+ZWSV8X8VN72ov8Hit2ENu8sm1rBY+PuEdMZCEyfub8qK36Oqqh0+jRV8jyOdSy1RGPzs7qT/fU2RUi9g7LplrTV8+OMfWyMezV4/WIt10yLfG0GZo5b//Xe0576eui/yurztR6uhZ9XRba/vSM+47GgP+zI5x2bhVo1dfV3p8eQGUt2TH1q8Lc+rpszdzUTKWvy+AQ4cYAc+vpMnV5Xm1dL/1dbVxhYUqdXfb/DzRK2do5L3PFaEXB/xUYf+LPHMcMVklfJ2nuVlGPBzq3zUrouhn6Osnudnmf0cMGGIHT0UXYXCAXHJ+p9ugi+Ryht74O58WJrAc6vBZ66eu8cDFTrURixjM1bnPTw+YdmVp1kU8x31eFAzMz97mfc4ro26bi6kiP/FkYTndFl5XP36H5tVq6H8jnQg/NXISoxo2+t+TnYBu9NXURqIbuowQi+jrqn+Nypa0K0ffuzH3PK/7IojmDEj7j70sA76cG/Q0Zftiodm3JRHOx9CIrB0ktVC93inxeMi0agLn9aqcXsA9TAv+3qB5zTiJ61Wyyj3/2fSvih+11frJ9wtb2rHXpPG9ey0IkJ0kPsP8Tz8tuuzeQf+dkAOyLi6zHAVpqr+8vqtGOEvkPZhDJM+LVjEfrLx3vf8MC/+8iOUKeDtb3tsnp9afW8Xvy69b49zVa/aCtlGP6jHCsa5j791Ck/1wkzmBuauMjIm3T7fTEozX15m2uQYo7wXWk49Vzv7J4E5WYiC9Oyh1TA/hHM9uMbLfG95tNi/8Ul60+1usNKw/5lDnJe5CVBye7vcLR4X/+0KMGkViySFzZXLFpS5jA5zkXLXrHufcd+3Rr/MY0t8jWgvk1QLR+DZca8fpWa+Ins/HGWvaK4czyGYMvdqp7G+h88OcoHt+mtW5L29l47BcbHXmkc/sakfgMyzfxUAUR36HmT+b8kh5/iicmDqj5fUshYh/O4rZBth9bxzorxwtFsg332h5H9jssMpg6hmUu5tZ9rAqZsfycbblX3oClM3WupV45dLx449Xn3k8P3lglLufDFDkdWnI8ZOa6uF6BZ2m0/n4h8i6i2nwej5HPmEg7jzI8xnyfE24fJbK0XZFt1m6/dhtLoNYX1Yvs97JNScuz2DvWukehZp3rHW6sLtlRWnIILZV7Cdy8/UjG+wdrmHsfsO388fE75Fuawl6flRuq935GtAJeNL32FJrauTTh+Lz1OK5LZ+573Zz3zIMzc4PBoX3GAURrDEKUwwSaJ+4k+aytuyRaz4mlecrmiJNe279J+YzJ6gsAUf3+xrDjC8afpfrZuQFxOQcnyGfuu5dW3ypupyZ24vgMePbHs5/HnG16gbx+0vxMuN8yFwdR2ZsrAX7vgJTHsgVpOxn7iee1ajIz481qwPpUPG/u/eL2k+4bt9+gs43ob1s0vVNwbcWw7jeRmCqPbiRSd2m8iMopyI5DpL9n7rjILH5bk0Kkb9EDrAP/fAbOJ9Bz/7R3x7bSEr+bcdwi27uMyNwHQDtOlwn/RWVv6LavJ3rcbySf+KtDTKe2ZDJimHvEIpfY8OwY+7c6sUnotR3KhU683rFtjU9m2J4XGoeWzcUA7xt8WEGkfQ81++AB2v+AwVqXq1PiLGk8/kVUUrjtthLNAaHRY/+y8ca/Fj6eiMi9ALO0/fkUod3DWvXBHGcHf46GiD7XamvVmFvL6s1L8raDnvv51D6DO37vjHDzPce/BzXb1vorvTVx60meNP3XFNv33A+n2I/1JE9z3xOle2Mt2T71a07geHJtgPaNziv18bpLmmr8mwcClG0cEH67VP96nn4Ydr9LZ0msym/4vgM9dDQavxL+aOTSCP68KrT+9imZ+1hRfqqoVz5z75b6aQF8x3z3kLHdKSm+3h4+8Dl96z34pgMRf+wvHfhPBT32I0qPcyHxbQfoMW15D1/kWsf7MPV9Bsj24UTzBlKfwIeopETeR4j5inzWkOq1tGn99i+uc1rPaet5iPI1873gvd987QDf73rd92povd/0HEOvp/W0nvZOPewiSwbfb04Pu98LumaNxpQ5bIHbhr3vWKPfad3M7fXGiovugZUjlMsX+rRz3YeZdaeKC8JIOQR7bU/STFP99KvMPLrci2ebmdw3AWcJVo6BHn0Cr98zky2GbF0/9ad82gFL74t94BcnoIxBI+8AyCKS939VeW4icN7wU0P7O+KXzCsBpNzPsJzmA36OmffyoL9ffKpz3BPt/d5RvJrgzHe8Lwn4b019r8k8h0vEmyOq9Hmy8g/evU+5F2Hlm8vk5LA7p5qE91wvlUhOK8gndTMqa/Ji3d6J46j00Ou/0yN/kAWMz0+M/E0+Y04YWPU4zaTVZgZz5EPZT/k84L+CP29OAM094LXDXGa+XyaflwQ+1i3x7LVE470z4sSn5J0kvPaGEqPbIy+AxscMeD6OhZTaiMZbeuIX54rfe0eYt3R62DKtqWe855zxNZhIbEYWc5zLqac5tOTR932vCjhWI6KvzdLhtug6VwWqp5wCj55tLjgNcbR+YY57T7ZuEWtk6HcJbr1MqG/g1D7D8/7sHszxvtu5j3UP8H9zbr/EEnmWlFZdypkZmFtjxgHHiJsXZep7zdTnD/xJU23P42e6a9j7Tq27OjO3D6qVXv4OjTsmIst/GcX77pOpNaC9mOI/4333QURz6tWkLh3wX+LPXp6ZAOpfyjxHXnpvF/8HcU7cNyfiRVT2RNr2FGAtWWbeYo2pzt+bDfvW8vu8vg4Pr60o2D/lqeNhDn/UfkfLtQeAnp+bt3SoX2uq7Rx1cpMy76Ygc9hyp548+dyuDr73al0d9r6Hi87ztJMFt20Lb3t/G/W3ZoTmBls1Lilw+g4Mjr/h5vWI41kVPidgf1bt/QN0BZ46lGwf0RLZuM7obUN+aGQOH1xtvMZDK4LXJpjJHHH0UyPFX/ckotEGH9tUmvAs5vBdazZEb92e+7Bf2FDmS9Ru62HUBrZZa9uKEMkrADGFrfkJrHhZXJeLg8XQtqX5XrzbwfW59YsPm8a3cvNgvrQsgnWs1sSZ4/k4JZ5cHxAr7amTwaNJeGIfejGHJkjT09Bjw81bOtlxKhaRHA+rBH5eecYI9xjL1uzmgRkoWrLsHE+t+wSx/fcNu2P9V4Up8mjNiZWzKwq2q0o5v7K3aQHvEfP4Prl1a+ihk8R6TE4zp2kUNc1lb33nE2g70nVWe5wlsrYx9/1nivvbQYYblPkcXF2Nss6hfc7JGaD5aw4rHBnR6mRyJLjtIwhNUyEtPyLg1WpY7XDttW7LQ/bzcSNATU4gb96gDG4mn+fclyn9VLDN4/uUYzMS2Qd4Hk61b3h73LY9z/Urg557tgdz5NDKxtJq/TUDVOf1Fyq5unPso2e/l8S1fYLWH2/xz+8HaJxEpK5Er9xymfw24XbW2NBnsQfu+Rptg2ovp+D8zPyXfMZI9aNMGfsEXF5zXQDXrqeOhzlyWvYiI57NG++mUXJq9oqrrM3tOXWezwsEbdmaHbgYCW0+Bj9ntVgL/PliIu8vkA8FWtv9wOCNiZh7m3NhxVxlIeXX3U9kavgoXt3ck/uQqXVrhbcnxLtPEFsntSPF4i2Bsn9cLugW8G+n3yUytis9t2vjLNeTPp0d9HwCnrrRbcK9J+9XrKe570EZ9zALzU/QiwMC11AJzP0fqJ2433cTw9z7ud+mH4b/5Wr31rPIaCOT7zvQ2///x4RcWhBT/m7gxwX8bg8/jUjzl8R31wFz+AQ977/w1M3an28Q0ra+CVLzzpDy+T/O48Pxn0607tcvDW1Fjvm3CO33fMsgzf95YrhrVJsP/ORoR7qnSTbznnx5HfDFdUbmsZsrV9bXDNF7P70f0XvTkoB7QN5IbD2tp/039Rh/LwHcDzi1UE4j5t4XL54cWqdXlLnO/X4E526h3/F8a92C9l8705G5j+Ec//2ex9M6tlqdqfarhezcAx6s3DdWnYx9wPkYbhlW871Ud0y4nd7gc1P7TqfrEe289Xpv0NzvjprjPVWevKG9jvd+Yo74HC5W0FNHqvsmM98bo5hFiYvEsQkQR4o/v+CYD3h/P10n0o6HOf4f+H09VpzKOUcdD+cEcJ0ecTYSWdvC2lPr3UivjLyLyhqkY5lJ7b7VAvmwLB1jJpCjjn7m6nDLlsrRoe59TxGojfJxtOxx5zp0WqI2zZP3IIOp80FoeSii+Sm8dbeuE35FZS8+HvLe7+Ths07r0DpcLGFvptRHg68Xz7so1L2ImMsnHWWD4ZER/LkFru0p4H6b9Hu9dTla3xH1jzXXJbeQzxipfhRtTK3xXOV6/xri7ygBvxP+bDH3e5V6AzY78CHV3gNr3zG038h6pnBtctvbmIBXZqLnu3Wm3h7A+dI5nnMs95LVjgf8W+l3PF9atkTwsyqTludfFty7GaT3edyvUJZ78zFIbfTMAdGC9x1BPfUJcL3iz/sN6bjiOvSeLbUVfdZk/5a5npkYT7/9nmF3n5/2/+8JEB2XPCDMj2xT4wHhM8V6V0X0XUj3M5+j68/BfeSz597PPScyyGp/zuPZ4/wUWt65sGY3PfV9dw+8zu565l7Hci/Z+7UUpHcd7TcOkc8YaX6Ew4NPc3njDMB7em5EZUZ7a5YD97y5eZ9zYkK82uDjw16tMF3uJaIX9xDZ9vUG98zo0WYWvw07eYZ+I8D8ud8dtCoUzdDU7+d5eOLt7UckDRlX71pgnWvMulNybJj/XUH7ieh7fPYT9NmwZn4uMJwfwZ8z2exMj3328OYMeGJoLjNEt8O1sWb51L7PZ81utPcKRd8LtGpsdoB77nC0rGu1M8X+90R7r0AL75PPGO97DaLbm5up3t+Doe8um2MfJCCWBn+ek0/IZ0zN+lbdJfDYQnlP+NzaZiZPDrvfBTR1/K4X670x3nbediBtw7NuDZ7tWb9/vzJ3HO9+mvC1vp+B38odAy5e8qmO/7PotnAdaV/3EwcDHBg5iEqr7n6g+Bd6/T/X03rKnGiu3t+H+d6vsyb2Lp6lcmnYed+OVGfu9+5Y7+DRfh9Xf+n8MPJ5gF8YInUB+i6a/cKviF7vxVlTx9Tv1JkLei/zvBfnoxH6fRWIvN+llR45iL4YwZ8x3LthsuG2KxFpo/bdN6vON4l8azD3eGE/TZ53l3jrSm3T+fhayHq/ind/osdAqp9xXNfspVzfj0zAKYI0f9Wg+dHm3p9Vgh67KYE8AVNtZ2q4nGVr+nF6pHw+1dBO5vWV8btwW1lt9v7dUzPF83PuvDr7idML2Ic1+xsrb5uVp+XMmkVyWsBTh9bruT94e6dJ/Z6/vWBdG9Y+r+L92dsvt8YKc46JJCK5x1qZ6jqeYltTHrdoXrgpc8WdmWg7WdzZCS3PV8u6a9ZgIB8Z/nw9oOXxPLlQbl/APnBouc5unxBP7jUv2e315EbyHZ4DNfnmej3PMFNv79aFctsC9iG6v2uWg+eeGKk7NSeV+Rp/rUljyndQW+/89tZpQfrtDwt1LDy5x/52/C5PnTk4MRH/Gta5urKY6t1TZVs97xd4O2vm4S9lvkY0z9Wa1YHLdbZf4PK6Rclsayp+c/ByIlJOL0rNOquA9Z40zznzbsv6z9M63Pf9jCcX2xL2AeeF486vljfuTeZ7NNfNVLxGPr9m1H9jAeB9vZ54g/m+NGi+t9fR/nLLVpnsfF6rDtwjpPkakbpr1vTgiYk5G6hH8dSX1u3NkzNtd78wdw62/ULJUTZHzq+jCjc1wm1PqgsxuNy8mql13yO07Gf090yxrfWUN13dPmeZ4FxaeN5VZn5PIjm/vOtb27s2/L/2zvVHiiII4MsdvnOQiIAknMFEeQf5Jq+AgAJ6yvsEETgOVFD4/z/LxulYltXV1d1V1TO73ckv09tTXa/p2cxOdmrk73XKBduz1t+CmuOFdXAyjwas43nUiK0GPFNmC/U5u7n+cPLzPqw/ph1Xim2wpXzYZvD2NRWHJk8QcFzblpTHAPw58JwhR3bDgDsDN2d03Sn4joObqD9lWsVwixmHtM6PJA5LcB0wDxstapi1vvZfhBZqPHnWar83cBJsOZkxA+tkleQhFvey4vX/1kMLwNoA7K+h8U5+PlsBfTgYkaGevdf2Izz3s44ofX7oc0ckdZioukwWNZoOoc8H0T6KmhoMn1XOh3pSrIPtOvgcxjT8COB1uG5gg7OV69fYwOdy6+cJpwh+ZrPm+T3JOZRC6vcuQ7hcLRKWOZTYtfIh53/i0v8qp/7fPAbgM2cSGQmWftb4VcPY/OmkOT37b03f0wRfJZDIdDqtwGteMufUgIY9Lzye8zzV6VQAn9m2fCYc12zAeNgo5YwjZwc8bUnQ0DHn6wRnEvtyoOaW6GlNbo5jx0tLj2ccpaSeY47V+IXX2fhzLsFWjY5cW56k8jfl2DqdsQKfIZfKpfD03/LeoKddLp/U/tb3TS1I3TfOuUd9wIDDCWrmWnNkIDbOMba4viTQyE3HBup4xeSuA5nrCEkt/ti7FaCMZE3kvrsh+PyFUL/Gmi/B630Z4b0u0rzV+qiVHw1ia55b/7GxqYPP4Y4eMMfh3hTcn7o/NiVw7DmyEq6BbaB1zCV430/cNTL2G+vfB8CfS5HE1KEJOdTUhXXGxj1i88yl9P+GtcB3jB1E/ZgcRUyvZG4Nn6I+xPP9bOE3OO5PCZw/C/ajPkRyTHNtTQVJfjyOz1jRvHeIdVra4uznxN4q557HZQq0eBb46Fu7kBY+WDQclybWtlrka0ztWCQHVK1JSx80+MSRvQxWNo+iPoSbkwMXlwbQt32OtkqPaW0+JYT1iz9L2Jsp31keqPtiFteXx4z0xmxBqDHOH63cwhq+KZ85uZrfE1O4pl/pqPGOMnOdqxFbq4aUxL4a6WuxA7A606kNrZUvDV92KOrbsyRQx2I+vpMhyHEycz5OsIf4vAf1pbwL2BmRoXzUzGUqH1rg45XaL8XSx5LvgxbfG3Pej+in6t8vC+8ZkWurdR5q+cAJiQ9HE2Cd3BinZ37/K7Vf0rzq+sVq+3EycMzatzXB/k5HA6t3tu9WJPgK+2tGtnYb5sQihx9F4OSpOGN6tMiNvWZuKyTx47GpxWjNhwlSMpq2NOHWBpbx9Gvq4HtgsfFcJLamyO9C/hDsl1IyZ1H4U1GPFq1zos0rIZJ8lOaHs/syMqbFXwwhRomMBE6PBrlrWUOHR1yQ1872Whwrbq1ar/kcNM/DqWDx7sQx8GZm925Izia0Tdl/w2CVg5QNzqfOv6ww4xw5NUlqkdRACfVCLf1oVQO1E0d63DSPv+far+E3IZI845q5pcdLq2Zv63VnFdciA3PV85l3ruacz8vGiwGpHJTHYxI9HXmOuTxz91+lcovMrUxug+1tNL7sXGEIMpcJrhTYovRwxOa0zpkVTwFbqB+4jT4vChcNuAy2kFI9FyP6xoJFDlvTOqcptpjxFC+UZJaRZwPU9VMpMOcvCFva9iDPnOwsMjiHEmrmUno4pNf1wZ+wD9vyus4+k8nZyNiycQ7Q2pepcM6R8wy188eK5jsWUscy590QHFhn6dq6RJArfwn4FdvfGQ/z+xPfgL4H4VyD/fNoPLavJT8xWOaLs8v5UzLPM66xgmPXyKMXufd8p8JVRX4QItF1g6DUnhe5+aJiHCutc9sK69g3ABIZCd8JuAYoOdfDurgAxi5E5L6PcANstYjZ4eSp8QsOBP8sdXuTk+dWPlqzIdg/Nn7sqKB1vdk6Dik3ARIZCVo5zLWrQew6+4AhxxGHDcG2PDnSiBMDsF8DpduS3DxLdXn4PiZODlzvVHPNGGjrW2Va507KCaEMhBqT6JlzkiDXfu65SCGV6+igfX5xcPc0PP2Qxk7lasz59eYq8bkUq3ds9NZbb/7t2Ix+fwAlU2vreET/1JvWb58cW9Yx9dbbojfqOnBs9j19hLpTdlr/HmoJd31ce309Z0WZN7PyWicltsaAdlwc1DsJMJSPMdkV1JfkNec8p+Zyul6DsdeZtig98y2mVCdnq4RHA9RYCZK1sQyE4xIb76230vbL23WkQc15HsjRr+X3lPA87pSs5nrp/MPDSD+HB0IeMnDy1D7J85FcXWCJTCu2B2B/WzCei0YN55w6z62BsT+PUJrLmL5OmpczuhZ3Z5yE4/YKbGMyz5G8hz8pW5R8R4fHjvxqDGe31B8Pv3OQXrtxtI5havmaCp7PWWrVaGv9vKhVXNL6dK1r5GlilcP7b9kctpDNxLzNCcPV6srlaYLa+WNl/jvviSJPwRZTooua1zpn1myCLcbCVuf//DyA+xY2tNA8j2MEW1q/dyS2FoEHYLvoSOuGUH2J/Jx7A9a1IO41wjouyN2BDdCPycT2a+b0bsO8l4LzA6FkWvsrZSOTOwVzwryxEI5Rar8U+Nu5dWxTITfHdyvmjYHW5/miQ12TSWS4OfheizbavzfuDzHE7LW+Rs69npbQwqYHmv9b6q233nrrrbfeemvVwn9jc2QpYvK5erTwttcpJ1xf/w1zyEOk</Data>
  145. </DataArray>
  146. </GIFTI>