tpl-fsaverage_hemi-R_den-164k_atlas-Destrieux2005_dseg.label.gii 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Thu Mar 14 14:54:24 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
  20. <Label Key="1" Red="0.196078" Green="0.196078" Blue="0.196078" Alpha="1"><![CDATA[Corpus_callosum]]></Label>
  21. <Label Key="2" Red="0.705882" Green="0.0784314" Blue="0.117647" Alpha="1"><![CDATA[G_and_S_Insula_ONLY_AVERAGE]]></Label>
  22. <Label Key="3" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingulate-Isthmus]]></Label>
  23. <Label Key="4" Red="0.0980392" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_cingulate-Main_part]]></Label>
  24. <Label Key="5" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
  25. <Label Key="6" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_frontal_inf-Opercular_part]]></Label>
  26. <Label Key="7" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_frontal_inf-Orbital_part]]></Label>
  27. <Label Key="8" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_inf-Triangular_part]]></Label>
  28. <Label Key="9" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_frontal_middle]]></Label>
  29. <Label Key="10" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_superior]]></Label>
  30. <Label Key="11" Red="0.54902" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontomarginal]]></Label>
  31. <Label Key="12" Red="0.0823529" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_insular_long]]></Label>
  32. <Label Key="13" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
  33. <Label Key="14" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inferior]]></Label>
  34. <Label Key="15" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
  35. <Label Key="16" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_superior]]></Label>
  36. <Label Key="17" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_lat-Or_fusiform]]></Label>
  37. <Label Key="18" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_med-Lingual_part]]></Label>
  38. <Label Key="19" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_occipit-temp_med-Parahippocampal_part]]></Label>
  39. <Label Key="20" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
  40. <Label Key="21" Red="0.235294" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_paracentral]]></Label>
  41. <Label Key="22" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_inferior-Angular_part]]></Label>
  42. <Label Key="23" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_parietal_inferior-Supramarginal_part]]></Label>
  43. <Label Key="24" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_superior]]></Label>
  44. <Label Key="25" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
  45. <Label Key="26" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
  46. <Label Key="27" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
  47. <Label Key="28" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
  48. <Label Key="29" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
  49. <Label Key="30" Red="0.235294" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_subcentral]]></Label>
  50. <Label Key="31" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inferior]]></Label>
  51. <Label Key="32" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
  52. <Label Key="33" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_temp_transv_and_interm_S]]></Label>
  53. <Label Key="34" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral_aspect]]></Label>
  54. <Label Key="35" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Planum_polare]]></Label>
  55. <Label Key="36" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Planum_tempolare]]></Label>
  56. <Label Key="37" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transverse_frontopolar]]></Label>
  57. <Label Key="38" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_horizontal]]></Label>
  58. <Label Key="39" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_vertical]]></Label>
  59. <Label Key="40" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fissure-post_sgt]]></Label>
  60. <Label Key="41" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
  61. <Label Key="42" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
  62. <Label Key="43" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
  63. <Label Key="44" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
  64. <Label Key="45" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
  65. <Label Key="46" Red="0.0823529" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_central_insula]]></Label>
  66. <Label Key="47" Red="0.717647" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_cingulate-Main_part_and_Intracingulate]]></Label>
  67. <Label Key="48" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingulate-Marginalis_part]]></Label>
  68. <Label Key="49" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_anterior]]></Label>
  69. <Label Key="50" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inferior]]></Label>
  70. <Label Key="51" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_superior]]></Label>
  71. <Label Key="52" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_ant]]></Label>
  72. <Label Key="53" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_post]]></Label>
  73. <Label Key="54" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_frontal_inferior]]></Label>
  74. <Label Key="55" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_middle]]></Label>
  75. <Label Key="56" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_superior]]></Label>
  76. <Label Key="57" Red="0.0823529" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_frontomarginal]]></Label>
  77. <Label Key="58" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_intermedius_primus-Jensen]]></Label>
  78. <Label Key="59" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intraparietal-and_Parietal_transverse]]></Label>
  79. <Label Key="60" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_anterior]]></Label>
  80. <Label Key="61" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_occipital_middle_and_Lunatus]]></Label>
  81. <Label Key="62" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_occipital_superior_and_transversalis]]></Label>
  82. <Label Key="63" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_occipito-temporal_lateral]]></Label>
  83. <Label Key="64" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_occipito-temporal_medial_and_S_Lingual]]></Label>
  84. <Label Key="65" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_shapped]]></Label>
  85. <Label Key="66" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
  86. <Label Key="67" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_medial-Or_olfactory]]></Label>
  87. <Label Key="68" Red="0.0823529" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[S_paracentral]]></Label>
  88. <Label Key="69" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
  89. <Label Key="70" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
  90. <Label Key="71" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
  91. <Label Key="72" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-Inferior-part]]></Label>
  92. <Label Key="73" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-Superior-part]]></Label>
  93. <Label Key="74" Red="0.239216" Green="0.705882" Blue="0.235294" Alpha="1"><![CDATA[S_subcentral_ant]]></Label>
  94. <Label Key="75" Red="0.239216" Green="0.705882" Blue="0.980392" Alpha="1"><![CDATA[S_subcentral_post]]></Label>
  95. <Label Key="76" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
  96. <Label Key="77" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
  97. <Label Key="78" Red="0.0823529" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_supracingulate]]></Label>
  98. <Label Key="79" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inferior]]></Label>
  99. <Label Key="80" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_superior]]></Label>
  100. <Label Key="81" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
  101. </LabelTable>
  102. <DataArray Intent="NIFTI_INTENT_LABEL"
  103. DataType="NIFTI_TYPE_INT32"
  104. ArrayIndexingOrder="RowMajorOrder"
  105. Dimensionality="1"
  106. Dim0="163842"
  107. Encoding="GZipBase64Binary"
  108. Endian="LittleEndian"
  109. ExternalFileName=""
  110. ExternalFileOffset="">
  111. <MetaData>
  112. <MD>
  113. <Name><![CDATA[Name]]></Name>
  114. <Value><![CDATA[node label]]></Value>
  115. </MD>
  116. </MetaData>
  117. <Data>eJztnXuXFbXS8HstFRgUZ1AEDyhuUUDGcwRFQMBH53C8DZc1+P2/zEtedy1qaqpSVUkl6b2n//it7N2dTtLpW1K3HE7T9PQN/3rDzhvuvuHVG/bf8PoNH7zhf2945w0/vuH8mpT3k3X+dOynb/jPG/58w19vOPeG+294/w3fr/PdWfPuG/be8O83/PKGy2/4+Q1fv+HGOk9KD95w8Q2rdZ0/rbm6/v+fNVfX6eEbHr7hzLp9iWdvePSGm2/4Y1323TWpHdfe8Pv6nK+tz+MyIp3Pkzdcf8M3b7jyhgtv+GHNHUQ6n4/e8PEb/u8NH6J+BM4jflq37d4aaNef63Y8XbcJ+vVfax6u+/jquo/vr885cekN/11zdl1equsz0la4Dvh6pLa+t+6Pp+tr88u63at1urvugyfr/vlh3S9fr8v6dn3+X6z/f7y+hh+h63m03n+0vs6r9bX7aZ1eRelVsu3hGri+D9d9+Gh9rn+Q6wvXFdJr63OjXF+fV+IDdH2h3/63vr7/Rtd333B9MfiZ+Y3khesOfIKAewAD98KfqC+uEm5P/9wbt6e39wzcNyn9LyI9r+l+ubU+BtqU0sfTP89PSi9NJ++jO+t+/5z0/V20D/Kl++y9NfDs/b7u13QM3PdP13kxuJ/h+dxd88u6L+Aa4mf49fqcviHA++bK+rzg3NK2bxEr4Zw/RqT2p3sB7nPg4jqFZyjd8+m98Csi5fl7XS88Dzj/0cTfU59Mx+8huC/oexHSdI8crjmHgGfq0boP4L25sy4Xni/u/YGv9x/oev4+vX3uPl0Dz99lwtPp7X3PPY/AhTXwfMK3ggLvYUy6R35ep/BevjEdv6dW6HzOM0C/P1r31731+dxjjruLgHOCfoDvLe0X/FwDsA2/G+C9B+9B/FzDtb+/7qf708lvxHUE3PfwHriE+H7d3/fJ+eDzS+/H/03894Uj5Xu15t3p7X2D3xHvTG/frfBNStf0d/QbwO9w6Fv4bnHvDfz+gO/Z/62B98fX0/H77jI6Dr53X07/PLP0XfJ6Ov6O/GoNfp+kcdQX0/H3CP59sOZH1AcPpn/u45ReRKQ8q+ntu+LnddnAr+sUnhd6v8O3+BCR+/7uZLjLAPc2XHPt+5tS/P39HwKuOdwfu1PZ9xegzzc8Z/8i+RLctxeg31/Il96tt9f8xQDP3aV13lsI3K7Ha95fQ7+79F2Moc8f9/2FawTfXyD3/d0lwPcXoO94+u2FZwb4HkG/v98y50G/wXBv0O8v8DPiwzX4OboxHf/+UnL3FXyLE/Cc0O8y/iYDkJ9uh7z4e42fx/Teh+82/hbg7zgeHz9Dx8C+Rwz4nsLvZfiP7yv67sb3Eh5z4+dego4FtLEBzvNiDR0r0DEDnrN9hdC+V3BP4fuLjiuA9C76kKTct8c63pDGHz8x/3dQCtfz3nRybkm/4xxcXvzdx2OZP6fj7wwY2wDwXOA8cN3x+ClBx6/cWEjaR8dI+J6BPuGeF/z9gnkR5ep0cv51X+EM4i/yP/F8TSr7+pQfk3FjM+AsAsZsAG2TdF2Bm+trDCl3P3y2rud/KLWM+yxAfZ8h8D3yiuHd6eS7iMLVBfIOGF9Sfheg409KGpvgOSwH/cbiMStmb5LHsZcnfkyL58X0ew3j3F+mk99v/Pxw79Gn6PeT6eT4mI6TgTSWo9/9LxFXmP14XADf5MvoN5SNnwPuGv8wvR1LpjEEHYdT8Li55P79OAOM1fGYnoN+Xw4QD6a3MgWJVQaQPcAYCOYGHL8y/IC4wUC/bTTF7TiajteHv3F0vIP/07HSVSZfQnrH43ERHvukbfAOgfcJfT+CvFgb2+SefU2+8cF0fP4jjUkwWN4M4xBp7KGNKzhS38A3Wpo74W8F/Oa+x3ReBfJNbp7FwX3z6bWFeSp3j+Bvd5qXwfcY9Ab4u399evv9T9DvMchN0/gaZKcYkKNSbjKkb12a20nvMgm4T89Px8d63DdR+g6+N8lyWQqeJ0rfNTpvlOQw9HvFzSnpvJJ+g56gMuC3JO+V5L8g77k8nRxfpT7iZDiYI+O14r4LIDfW3v0U/E6F9ynMa6X3d/o+4G+v9N5eMWVb3xnpucvJWKi8hY7rMbl3Ap0rw3wZvwO4ufM5Bjp/BkDmAmU+Q+kzdDx+rnfWKXxX4Hcqi7sn6HOZm2tz8lLpGaVgOfynQh5O/5mDPpvpHfAEpfjZTHN0mN/k5utYFoRl/Zj0LMK963lXcvN36ZnD+gLQGeDfwIOJf464uf5qss2/pW80tw3uzUfTW90EHdfA9b8ngNtE9ZI5eYAEN8+RwPMOeN6x/ttyz3KyAKojBfA4go4nuPEKvb9BniCNKUHPCts4eQKVLXBjFGjbd9M/z0BKJVkDPFd4PIPBeZ4LvwGQtWsyiO9JHu43fo5BjwQp/LbcT3TslLsnPyNg/UHJnM7K5wiom84RONkFHavRd72kI8vpy6hcI/3G8wUsy8C/NdmGpHfT5BzSfk7mgWUf0jyGkzMkfp6O6/y5fPAO/78M8C7IfaNy+6lsBMamXJvpt+2bdQpjtL+n43pGyt/TcTlJbk6OnwNpnnEB/cZycjpupWPgHxm0MfCBkAfnPSBQ/ahFpvJgeqs/5YD9ObkKlt9IY2UM6JpgXA5yjiMC1dMCUBens8DjH23cwcleIMX10fEyHjMfolT69iW49zEns+XeBemZu75OP0Dg9/c7CHx9LfpfaKOm/6V6C4/+F9vaYP1vSrlvP8z335/e6n8hxe16n0Dn/5K8itP/wns+vV/pOErT/+L3KZ2je/S/X0+x+l8Y2wMHDFj/m55lrP/9darX/2J9Lr2vJP2vNO4DDlHZGCrbpPNWbkwKcHMEgOp7aYrvK6pjoXNNSqn+F2xwpfvqxZTXAXP6X4xlzoh1v3QOmcYLMJ7gvj3ae9k677PIaGEeWKP/zel9sVwXdL/4N4z18DsSZAocdB6qyXot+l9uHgf9wcl48LNSqv+lcy26LQd+rq+vUyx/5GTOz9b7QO4MfD/V638BfE+8RJyfeBlpBKl8On/D90eJ/leqC+YXnO43p//F9sq/r+vFul/Q/+bmPni/NgfKyc+98nT8zaYpJ2PHgCwP/CEAztYaw8nhJf3v1xk4/S+WNXDXGL/nNb1vjf73Y5RqOuAEp+/ltmk6AE3/i8f6WEdg0f/CuAjrDrz6XwmuPm7+wc1FqJ6X7vMg1aXpjnPjKyp7xbZ43Fg9N3bHebjxlDa+gu0WWY1HT63prDHYLpzK4bBNL7w/8XsU9NpAejawflsbX0n6boseixtfcXNJ0In/xqQe+T5Gk0NzOnQNbnzl0bPn5OS558P6jErjK7CfpuMmkLN7yOnxOV8oTqePAR9HQLuueHz1mPzH8/ua8RWnTwS4MX2Czg+kMZWnHXjcwo2vwMYgZ2vA6TKpjCI3vpLsECQix1cU7jmmcuIn08n5LcUyvrJAx1fcu536An1PrrFmF5GjZp6gjbPonF3T9XqAsQ3oG0DGi8dXFMkWg8LZZnDjq5UClTEnSmQK1u+iZu+Bx1ae76Dne8V9Q7ANiSTLzdmWUP9JqQ5qf3LIpFbod5GzV7HYrlh4jNDGuc8Yzk5v/UowKf9NoRxsG0OR9kEbLd8+y/yfyjml8bc0Xuf8Y6T6NDlCTi6qyVQtthFW8PdS+wZxMloL6Tj8/Xs9HbcbAtshzBMm5crG9kX4G5azNbKC7Ri+m07aJeXmP5zNEqbmO6ihff+s30nJPirHh9NJWylu2/503B/Pak9lYcVgkW+3gn47PcftMMfvMNslOzAJeP6pLJ7jbmY7Bx0X/Db55sWavDoazW4Nv7tyNm1PmVSbR+O++hSlubqekjro+9zz/r9H/ufm/xZdTO5cI+UQFru9P415JRmYNjYCOHmhNPb6SykL5BU7k6yXsso8JDvDnO8xdx3w90/zf7QC32w8fuT0ZJwPZQ5s0/h84m0dQd/GbddI/YHtJHP6OgnOnxPg5EA0thP2/+TsL7GdJtUNYrCOvOQapuO0d2vN+9wjVyv9hrxEKeghL03H7UipbpLal/awMx0FtW+lKf2N+wbrIrh5DIwjOD1HDs1PIucTnMtHt9M5o6W/pHz7CpI+moPa5GpzzZxPc65cDawT95B0PDW6KQ3LuClnnwzkdPQ5v21p3+701v4A0pwuS5L9eqAyZKt8WQPP+Thbam0/sDedtKGSxo8wL8/ZK0h224B27GWSloDLqL2GIF8Af3rObhzbV3yD8mG58t8MOLZliS4ByqE6Bckm3YLWHzgGBYb6r5TYJ+HxELZFTvuoHXYO0HVotvNWIG7YF+g3jSVWCo1BhokaQ3C6moMMNB/ND7EVOd8D7Tvr5cGk+xFgGRmkD9B/6nOA92u+Bx64/tDkYqUk3dLP08n4Wj+jfVjeJ9kbUY5Iao1Rwdk0cf2hyWolXZwkx6XvrSj5JU25/gfwNuprovX3IQO1leLsp7T4GzsZsJ1UwjJP4/Qi9LdlbIjjDcJv/K6He4Gb39ExbALbKOXGcxa5sOa3YpWjltgOlcji6HXVbHzALwZjsefB8g1IsdyIs9Hh+uUxA7a90eZ1mt4Qo30T07iXs43BUF0htYHB7KGUoo3fKTnbFU3XV2qDwsmn4N0qjYtWhn6Wxh90Tmq1C6HfPPqdA30WtfXAcZ5z/kaY9P72vjcA+nyn4w6F8gDNJoIixbHU5Mo70/F4T9K3R7KFgO+LZueAvzE7xmPwNwp/q3Lk3hc5ORT33tBkWPBe4L6FWEYG+fB/L5IuH7Do+kHfT7/D9DiID6LF9eTskOm8TRrbYR/a0rkMpzu36NOldy0eN2DdOOAdT66mungj1veN9T0kPUNpu0enTM9HilcSqUfO6YJz8kVurET1vBpYN3tvOq6nhf+lOlSvvtWja6X6U3rNtXcwN1+A74BH96nZ7ZXqLTldJdSb00s+J2C/P07PmNpo1TFy+r9cvFiqO5T0g1pflD5XoK/DKdXjce8vrLPj4tFiIv0TS0lt/nzi/Ru5OLf4e27RgVl1Xh7/SEqprsqjgyrRIeE5eKSeaE/Ia9X7WOdfpbqb3ent/E2a1+V0MVgng/9z73rL+Ospsw3baj7JHOvRj4B8RppTfsmQ5lwvMsdI81EcHxLmapcnXVfBvXctzxiVP4EOodTHgvq01sY39qL5aVDfWI8Mn/rMwjYqnz/I8GA6qU/wsnIC8lgqK0/kZNheGTggybpL9W8rZV/unHNyaG6ecTidnEdQ2QAnOwCs8otaf2Eg5fGOaTk4+YVGOk6SLdDxgWVsBnkleTs3FrHKE2Deb/0+52wzsTzfKi8AGQHEVszZ7nPvNcnGyzJWgfcd/i5j23gqC8jZhVj1C575fAn43uXm8pKuwdpOq/zCOjcFG2Qp1heNTU6hftWWOXitrXNuDs7JNzkOUVry/rPMnTlfbfDXpvNkDi42Dp7PYzz2ttRvLXFu0v2876PU4+uNuclA/b9xfqyLqvUHLwHsPLm5d5rD5uR18N2Ab4I056zxK7faR5baQ2LgvQ3nlfO/0OaV3JzQg3euSMnp+nL6v5weUJojPkEpgOeCl8k+2PZ64ueBpX7unrneFZTSvuPmdDgGMr5Hqa6hdO6G53Aj52agJ91HKf0d5V8vkZtfADDH4OyN8G86z8rNnzjffM4uSJs7aW3nzgPjGctFje1y4yJaP3yTa/RLFv1ECSW2Lh79t3VsZx2jeZDaRHXlOaT5KtZx5Oa1MD6jcWoTEFsA3pMwBsPn/Iz8xuO0XLvpGOs8KoeOt6R5szQ2g/3YRsjzfqVjHe+x1rhguZhiFr0AN76yjo20eb6WB8aIFh0o/p2Dy0/tojTbpUhgHGXRl0oxEPA+bjzFkWQh1McSj8+8cRHw2InbRmM4U79CapNhkb3guAkj4idIeOIleOMrSGMnbGeWG7N/aPivQeMwRNgyW8dEVt1xzTijBDq2qikLvlFUdgbfHGk8ZpEDY3kwltdie5FacteFs0/2xkKssdVpgUVfjO2CLHY9GpYYB5xdUc4Oh5NbSN9anEbhkW/icTMnG7XGdrCMy0tksB5bqIgYFBjLPIKzt6JoNrB/GerBei1JpsvNFTxEyKrptcW69u+m+LgWUowL8Hc4M8mycg1cNt6G19e7P72NifV84m3LzmT2eWJgcD6X0TEx8LjSUs8zY1ss9eXGtPhaYFs5up8eR3WQ1jFPxPfM8v2V4mlEfadxnA0vnE8WrA80Yj4wV0CPw+3L9avF7jCNAyU7ACuW+B043iKWYUh5aX5NFkL/5/oTy03A5vAO+c+tT6WR02HhfDCXlGJ0WOJ7eOKAlMYDwe0pPRaw2ojk4HxWKElGg8fHdKwsjaG9RMURAdKcfn86riek95dHZ5jbr5WDZRTS8dxvS9m5+nLyEGz7yv22sD8dt41Nsq8/0W+MNyYJxRqfhLOhLaknF/8bXx8sd8TX1XvNNHkfF88EA/s5fRzY+uJ4JFH6Ylru1+S3NaZJqd0lho65udhjUfYiMOa9g1KKFgcl5cG6ZLyeKC6Hi5FSEjcF2xBL8R9+VM7bGvsE8n00ndSZHyBajO88sVQonI6f5snFE2kVZ4UCsuiLU5kMndu+Px1f9xUTGYeFxmSxxGbxyMpL4PzWjwh07YIv1vlwbBYM3b5S8uCUs8PQ7N2559ryTeH8gKlPsBbfRXpft9CRQGwDDtyv3Hau7yVS/x0KULv3nQzcPJ+b93HjYkk2t2nr/2KwrQIn16Tr/0q2DZHr/+J5ApXPU/vGPQIet+O1Azn7QKqPhnFUkoVxtnc03od3vRg8ZzxgoOv/AmDjhZ/pFYN0XwFY9kzvq1I7Iq5s6mOCnz/Ox8TjS5KLj0rvLy4eBbXrwOT0Qvg+eTqdvHdy91XP9X9hnAdQPw5u/KK94616Zw3uemo6W6ssl7ZJ01/hdyS2xaF6RqpX1vRwVj0d5x+R4HRc+FmRYgtovg8lOhzq40D9GnK6E86XIYHfoZzPgqZHkPwRKK38ESS/eECSIQOpDKtfAf6u1fgO4Po3af3fnG0/9x59st7H2aFhe37aJs5uH8trsB0ZNy4AOFkhfia4a4zf814f6Zp5uOTfDODvA52X0m0HCjl/ZG4uYI3FycUu0/yHrfNVa/xJOg+R/HA1n12vP6/0feDIja9oXq8PLtaLabo0blyVm29Zwfp+7r2g2XHC+r9Ub3tnkmNp5tb/HTW+4q49F5MTo9UtodkQlaz/6/V38Iyvcs+H5Rnlxle3CZw/aYktUUKzQUnzb/A9kPxCb0316/8C8D9q/V8J7zuH+gx42qGNr/B7yuNjIPlgYvamMn/LXuMrbpxl9SegbcJyFYvPY873kULvwe/JNcbf/tz4asX8L5kfeHwVNbv7g0Jw36fxVG79319RKvkVYjTfwtVk0wVw476Sb56VUev/Wn3vct9BWkaJbx9Av3kleP34NBveHPgbpI1xn2WgbdLGzB4/hkdT/Pq/nI2YZoeG93ni6dX60OVkqlSeVgpuD8j5c3C2VRZSfo+tu+QPx5WtzVNqwDJkbo0Aix+bNGcu+Q5a0b6Dlu+kpFPPjX8SaW5G1/floPn2J1mm4GXFoMm2W0K/m7l8pd9p77uVyuBz3M2kkt4Ajwl+I6mGZ74SgSSjxb5dQM53S9Nvc/Nob1xoWl/tNwBf5/QfZAC1uhjufCNkEKX+VyW+V5wsTxon0f8Smm8V9XsqlXWU+ElJgB9LCx8pPH7k9GT4nCx6NasP01VHXuz3lPqD6um8vk6aD5InjrfXj8niz2QlHdfyveyRq0F+bx0vCRBXHFjW/z2+/q/HT0ubx6RvDo0bJ+l6qc5Xm7dJ87R3SWqd03nloBROh4GxxLXz+v9oRPj7WHx93kFpbcx2C5Yxk8WXx+Ozw+ntpX1eXVYNnAzZKmPOged8Nev/0rljQhrr4bm5xUcGx/aj/jXS8bg/SuUGtF85+wgrWO5A/WFy9hU5/xgAy0xqfGOoTsFjR+31g5HGO5wfuvcdLcl70r6S9X/BjwWnc47nT/UprcoFnxPJd0Xzbbk4tV//l/MR8cRu4vJDOfRcIn1Ncj4mqwqOmP+cTwm3LqJnXYOatQ++ICnXH5pviKaLK31v1covueuBgW3evjxUqLG/kvJJde1MvvUSdtAxku1VomYOqs1hcvZYNWNYSQYB32tOH4GRYmXk1jLGbIr9FWeHVSqnx3G3uDFoa/srTwwq7H/EURorKcnhqA0WplQemcjF77k06Ws6c3ZY1GeKA+u732f+U6zjxz9QSuUKpTafQOlYK80vc/KDUj0Btb+SoHNgC5a5pmZ7lbDaX+X8iqx2WJ55Us7+SvOJ47DaX3H2WC3G8pz9FadjPqjAOtaEOKYeYA4rje1WBcC4LOo7qNlfcbZYMK7yfgct9lceoF21cfwkoD88Y1kNzdaKjj89aHrFEpuuc1O5LYAG982j2yyUfBstMn1Obq99zyxjecsYP5Je9lcY+J7Rsq11vGBoYX/FyeYscR6+ErbVfgdz5L6D0rfRijYGkuRZ1PaKI0qOsUIp4NHrRhNt94znpnSOGmV/1VJvbqW2DdZ92pzCY39F9XraHLrG/kqC2lVhcvsSnnGPV14QXV4LeyxqfyVROk6yyBdrba8kWyzPtaX2VxawHZTH/ipnT+WxvZJ4zoDH2l47rJx9VGs7LGp/xdljafN3jlL7uZr3sMZNA9r3I6Uvme13me1gPyTpdymt4lHMCegbsE3zkPsG1c6BrHGWa4jsRyxv5Ma+VvurmpghVmpjJ3P2VxRpvNTa/orKiEFOi22uSmyvOPsrC+naW+c1XhspOEaSIUsybUkGTsnZVf0iHGNBG9vVzOk5GQbej2PKYDgbK4vtVYltG0ayv+L4EqUWWyyQlbwwlE1jGlt1CZxN1mWSemwatPFRzTta02nXrqdbY2fVw/6qBVbfeStaTFtJtlQCjtkb7c8vER3/Nz1jK5SWcsSAZXqcTozaRrW2v7JQ4isbZX+1Qukqk6fm2nj7UpNTHjJIeeg2i82VB04/6NUF9uY/QedOy42UN9Xg1TtGQNtAdXy5+LHavLHWbianP8RzU6oLpPNhbf8I/WD0PI1iic3gZUR8Bm0caUEbV9X4/UXN67nxGTcXhDECpyvM6QwpEbpBiU3U/0XqESk5HVGpHWouVlOkzjC6zGh/fwzovWr7FIPf2dw+SxkR+sFocnEhovBcu1ZjKjru48Z/rcespfrB29NJHRG236Y6Qk13h8ePoAes1YdyOkZ8/s8zx1r6r1QPaCHp+CD2Gaf/k2zYz042m3YLHv1gy3e9phuksU41PeJn65Szycd2+dw2C95x2txIcxccjwHPcTT9L75uEOsiN8a4lynz3iTP2UA3WKLba60DzAG6PKofqtELYp8LLRZgtA6RlsvVAfMI7jpK9lWcji9CP7g3ndQNzoWoOc5llFoo1d95obpCTc9aM97W5vRU70fx2D1zekRJN1iqK0zf2G9QOkcs+kF8DaTtFn2r9g3GNk+XUGr5RtMYCzSdC1gfMHrMYOFjlLaGk2NhGRO1jZf0gp5YDHOG00tJpPsJ4o6vSKrpB7+YTq79Iq0HI8Uut3JR+M3ly8VC5yjVD1p0hFr/RyBdK4mWss9NkpGCnLSlnBPLEM6jdK54bPujqbVpx0TIXHuca2+5Xol8VosLUcrhILz9i/v5XENKfU+Ac8xvKm+NAmSnWG72GF3b99FvvB2gY/hn6+3PENr9A215xhxHt0mAzDXi+mlyTO18bqKUUmJTcROlFh4pdT1GqUbLucUoe3+tDqu9SoS9Sc4WxmsTg21YaNqin5P8q4VsEmSS0VjKfSX85vJRNN+Gayi9hv7n8tH8kdA6te17mTZTGa1XFrdtUFlplN8rJ/fk8kk8MZQnyVZLZKwcyacBdJC5OHYcNJYEF1MiMs4E5hvyG5M7hssnxXS6MPEx+IHvJn3tIYxk+1ZrAyfF0+DwymJajjk2kZJYIFa0uFw18UhKOVBI79afp1g9F8g7udjj1C6SrleVKy+aFCMYy0TTfyrHtPo8bAorJzVjdGoPIW1f0GXDdP/ottJ203n7znRSpizxCKWAR15N80f5X3hI7cfj+3tM2pK7wWVFkIsdnDg/8bGEfyNpCaXvmKhzX5Dx2ix54OZ8tWW2xmu37bHfpjG4cnG5OLS5NO5fy3WMut6S/KWXvKcHljhjpfb/JfquiHu0Jp5ZS11edB+U+mTU9E8ULdtgkat5yY0ta+HGpnjMV0qUvpHqHlv2BQZ0wfC/1EdFOiec9uAq87/WBmGkHQN9t4CM8jsB6s9ygdm2CVxnUg5OV3174v23zij7RsCdO95/nTkmF+sR+uo52vZiOhlP0htD8jqqm5ZVWl4k3Hc4F/vQQyvfOAm8xkspXMzMUj8wSz9gu5NcHNCafo7uDyuS3okCz6/kd6jFLZXK097nND/9jfVklPQtaSkj2ESZTEsZq8Wv82ZBuaP7TOvHl9PJdcNhX25dbJxGoa31JjFa57mwAL7M9H8O7jhaZvSzxNmCYUA2puXjwDoOrJupKTOSd5n/2ruyxKZRix2d219TH1duRHmW89HsN6OfN6kO+P1Opt4/hHx4235DInzx3zOWj21ipO0Wam1k32P+v8dsr62jlOhY5aXg8/k3SufCOygFWsicqf4qskxq49mqzV5qy255HTC/ZLb3ZA/Rqg76bt0j7KNUo9a27DJKMRF2a1Hl5KBxnbXzKLHXth7b+lxL+2RXgMbCtOSx5rWUUUuubO5ZKY2vZ7GNz+lPW9jie+Himmh635btgWdmRD9o/VJ7ThTsR/J6Oulb8s00/j2K0fwivlH2a8fWAGV8ScrVYmNg/jYC98Oc4xflsJwb5W+S3kBpa74OrqvHs6LJka3rtXEyhU2M2ZjTpaX9H0xv/bbuoNSC5mdVAi7/4/U2GpcJx6+yxnK6Y8ijxcr6WPjdEm7dGgyOhaTlpbS433B/tyjXcp2txxwQRj+rra5HSV9olByDj7VC82tlgx/ajyiNoKWseA48UPYB4OPXy/dS88f0Hru/Th+g1Ev0uls5DjrXl2Ld/Ui2eZ8VbYy2En7n8sH/TYRb70zjiIHbrvnn1qyrBnV8wdSby19Dri2Wtd64Nd+0deAi15jzPiul83aNNG6GOfmX08n5eQLPzUrH6z3mob3nkKNYofTbqU0MT3iWvMflnlft2a0BPyuHDGDnT//T7YfM/50CLLZ3FjsViw4uycCpnTUXL4WTX2BdLmDVV3E2jjnfceibkrimnNy/JH6mpkug11HzEQFfBuzTYPGB4ey7sX/ELQauXyDenbS+CDfX4+yBLPerNofkbCmuKaS6Of31ngInW+d0W1SHy+lLNP1gTlYryWNpfCQAf6MkWU7p/J2z0TgwwI0r03gexobSHID77q4MeN8bQHoG4dmG39p7g3tmW/iHpfZx3xsJzscQv3ckP0TOF1LzXfTE1gC8tn2594hmM8i9FyzfRu3dwsE93zl7ICDnX5uLF0ex6CM5vxVu3P4V2VYq+7PYenEyEqzLh/dtK9uX1VQXa8T7rsmNXxKPyG/gHsMnU6w/i1YOVx5s42JKUDhbMm6sdG19bp44Elz/YHLvWG+MBW88AAv0PWnxHefmB9QH2oL2DdL8VC2+rDVw37nr5H+JTyH2K3yGfp8lWPwENZ9myziYQ/IT46B+Vi/RvrnrjrFvmAT3XFt9Mqx+BjV+BWn+QL9JFrvwEjt0zqb7XWY7nYdH2gTDnKnUnpaD+0Zb7J24cRI3b5Pmc9K8jstTahtH4xPjbRjYXmpXqtknSXZQqV4YS+J5qDYfpdD2crJTePfid7DlGeNkzSV2DV8w/ymt3nUe/TOF6sW4cTDVN2p5rHFmKVad3orhaDou511NJ+W+VJeU5AclOpOc7gXW1uLuq1J9AHe+GpbzSPN/LA+gsgGJnEzaekwrLG3BbbKOgy08nHSZCEUrkxtrSHILq3xUOpaTaVjkHBZ5xitSTi+/nwTWOXjsrUGmQfUTGtw72mKP6fVpS6R3uOY/ESnfkPQpLeUZJbIPKtdotW5dKaWx8iLWa5Owyje81MY/5Ch5P0d9jzzyjdsMklwCfytK4tXluIrShEWWwQF6PyzP4HSAViT5Rulzxck3HiO4/Qmqj5yLfOMP8ht0GBY57b3173tKXosso8W5cfN1i3wjjSN+R2kpmr5X0vmWyDc0OUUpJd9vSQ6Qk2Pk5BucnEPTZVvkHVSOUeJba5FzwDunpa+URc6RG4ta4tBxzxi1b2vp29HrnVgj7/DqDiPkGl64ub/FnpbKN75gtmmyC5BfaHDyvhL5xqoQKu/hGD0XscxVSucgh4RW85TIeYA3fnHLtad7xVwunZ9EoJ3XuUIsuuQoHjNo/fgss92DpS9SuedRHTcN7Ut5rPZN3FxFysv1Vc28I0KHmSvDI7PU5KClceAs59JifuHBopOW7FhG8Pt0ct5TOmbP2a1FItkY5daogHmJNhek8xi63dpGWNeVyrOpvZ7Xji+SnH8+xIjm5OnSdq+PkMWPp9c8pQbPfARTM6/xzntK5AUJbk1PztdP2m5dx5Ou3TnC32plwCLL21S0OVDPuug47JGQr8QOXSPVh7+R9yq568xrJTcf/W06vv4i/V+CV18dQct6czLgHJpts5WnKKVtgG2lejfu3pDOpaTdUr+lbdw4s9UYFz873P5SXWa0bjR3rUr1tL30t6WUlmvR2WC0OXwkXpnIX4X1gP6X296TEn07TmtldOn+gfkInp9oNvetoetQcfKmKB+IEnJrZj2f5rOGF37/WNftKrWH0PxALFhtD7CNc+Isk4fbxp0n1SNa9IsSdJ4f9TxJ5dB6asaBvcagpeNjj79O9Lm8RClH8qG5NOXXcYlaQ2m0POY0w60DdF7YTvFee07ebZGBc2N2i9zcimZjXbMWDacT8ZQTUW+NjZf32P1CatZK8a6hUmNX5sHbrlo0v78IeqyxgrlMUg+lcoqc/MLDnNYZwcfsTidtDblnstT2sKcMvtRW0Go/WMsug3V9itJjaTnUN5VeZ0m2Q2UxV1B6ZToph4nWN2L7yVI/2jnhsVt9ktlXAqd/xTaskt7VYv+K80n+wsDfGa4b64uC1q/Z8PaKG1mjy0xzNk0ews2/evpBcPIEaiPAHRcVt78kJn/PuPlSTElM73ki7Q9pO5dnFNo1PWCQttM83nITJXGqS+dTLZBijEfZoFA7FC0v1H9AUry9Zzxyjdx15t7lq5lREhs8wdnwtIi/ezSVxfa1+E144/9KlNq+0XEUZwcXHfe65zyO3ve5fVaOCJY8mJp78dCBNdaFJ05GVDwNqp/eqQDK4OynOFroakB2LNmHUNk0t59uayH34uJaSHEuOPtayc7WqpPBcbk1WWDCsoZmiVwp0kbQ47sFaD5Kv00xtnIcko1Mj9gRNX5RtTZF1vdJdIwHLp6DBNjqRMLZKkg2DJLPkjdGAxznuS85XyQJKSY8toWonedF+SFZiJ6j7k2+2Ag5SuIgeGw3oa3Y96cGz3cA5KW7KLVSE7sAiPJFgvNJ8sfIuASemIvUlydHukfpvKBG1rVaM0LeY40VQP1qDhoA90Hp/Pkis83j54/l3to8cBUEnlv1HtNRPLHC8HwoYlznGUuVjnHw+hSYnK2tpU6cxzsu3JmOj6/x9fDMl71zYm6c9FD477XXtqDNc7k5ssQzYfs58hvg6qBtaeETlYgaw3nxjvmi7LuwrVRuLEa3UTs4+puTQfw+5W3aYPymjRlb4PXNlux9SkjHWsZzr5m6JTy+3FhuAz7aPf21JXttTtfqlUFTX2z8ey7+154YUBHxoiieeYmmb8v5QEvHjJDdrxDwTsXjnbvkN90/Cs94UTo2Wu5Y+q1N3/17DlrI1ltdpxZtjcRjaxrpCwx45KvavKe0PTlyYwW4H7X9HB5ZdLScWiqzhUy8td8t9aXFPrWcfy03n3g0yfMLbl5jmetwWOZQAJ4DtvJ3pXB+rRHU+tudqTyezp9zvqS4P6L9VJ8rpD6/jlL620vqe6uvZ61Pqde3lOOsA+pTapUJl65r5mX0d50bi0g+mjU+nNZxTs5Pk9r2cna+HPSYlna/20a6Zp9Px9fOg2tyfrL5x3Lr1nFjIEl/l8jJgTxY5GAlMrEoWl5LbS6OaeGr2MsHsaVv4Nx9CSU8c5m96a0u/JfprZ+fVkcPv7+W+vcWWHXlVO8P23fJfys/o2NrfPEoluOg7z1zuhZyYjzfw/5pFr+1tA1k4ldQGukXR++BKLCdZK3Nhebrxvm8wTm/CKi/1P4D+7JF+LW9nmwy55L5TOQ3nuo/OHqspRGFxx599Fi5Bx77nxoOpr4+XB9VHGPxzzqY3vpbHRjgfMBy+Uf6W60GcITI2XFRO68Sn6MoLD5QVkp8nWq/QSN9l1aVHDHUXk+PvvNw4tcL9pCO8fgZWf2POOB8JHu5CPu5kUDbS/vHCq6z1LZtJ7M9Cq28R0z9OTu8Fuww2yTbtJzNGtitcbI2TR4XLf+2yP6sNmGvmN+lcsqWtmscOXu1VtTEN/YCdmsvJv862pG2at9N8joi0nzN60vtmU/g+Cg1cSp7yVPxHCUnz6J2ZDl5lWfOMUKG2MrmKEeUvddoct/Tew40m6K7mX0jrp+kb83lsZSj1dfSbkeC2h61WFs+kft+SvstZWr3XpR9jceOqzQvthuLtAejMftq7caoPVcL8Lj8cL3tkPk9ei5m8Y+KtN0C//IzKAXbLc6Gy2M79RD9jrJ3y9Un9aNU1nPn9YiyvfLwjEGyrzqHft/K5MN5bjH/c+B7wZJHw/PttH5btTw3HTx25tfssRK5NRq47bl1HHrGUdwUaNz4nLwC4s9LYLs3zxhVknHAfizbeEV+Y7z2Stxvzb6pta1TDrBPwDZD9P9I26drzvylwJzamgd+S/Iyqy8HtUeqket4bJqiKLFDKqWHfIHaonj9USVbIW1/Kyx2ZtZ5whVjHgtPpuM2RXQb9Bf+TXkikNvH1fEapdw9UEJkrJe5UGJvhO2OaEwazI3MdcZ4xmHfk9/fM3ks30jqF22JM70JnBZ7oV52QhwgK/83+Y3/c9u5/RSPnc9Hk8/mJxqw0bHmo/np//SOXRG4bXT7z0IegLPNALR1yr8gqRT3mMZu0mIQR9rq4HhRXOwoq43rDeZ/D9ud3LVbGfNYOTLst9JKLwUp/f2TctymsjPZ9BNwrtaYXxpX0XFYJtniuvZC8nGv8XuPwCJjr2FOsXNr+qi13qMH+D7b6cjhzIi6ZtRvvwVnpuMxAUptCSlanZF1SWD9VC6WMdUT4BjI+D6zzFOxbsly7z5EeXPHcborTZ9F+127LhY83yTuPKhex6IDirLz9OqeJB1Wrg5rXO0Rc2er/mKED3eu/JzNbbTdrGY7a6nX64vf2k/feg2SXL6HfobqhCL5nfxuXR/oFul/q/6Gcq3y2JZ426wdvycch/VEXp1NL54Orl9iF6VUb9TCRpHqLalehsv3J0k1LPofi24oimRrj+1upPhTV5j/V6aTdvovGKhOJSoOraUMi/6o5lisf9LiUl1wYvExgLzgr8D5LpSs9WaNxUvXd4ta+23EmHJbiYgn7MUSz7h3myw6KQ1uXYxd8jsCrL+xxH/h9D7eelrC+cXPyXd6BCtln4cWc8cco3UE24KkT5LyjG5v6TnC7x0E1p39NOVli4/Ib0ykHi9KPlcCPc9Xk93X+N6WEf2+orqx3wTOo/1aPkpvP8Le7/yFOlrYTGtwcg4uT1R9vbD4F0bFrS9dz6Ckzpp7o9U9BcdbZKP0/7byarLdF9HrLFjsFjg7BmrTEOGfKz0bJbLXnjYd3ry540bcA3MAt6t1+zzfzRpy849oLHOBSHrZpvTqv4fGfDk/bwslfTAnWtrjjbTl096XXIwmLqZTIum9QI8Cv7+b4tcRmRugv8K6P5on6djAXuo2Sik4zxkhjydGRI6/Ass6M8kxLaS4Flw+SW+K9aDQn3Q7bHsu4F0rCNr5XCgX530u/B4NfZ5z68bU0itmR46I8+B8Cjk9tDduRE2/gS1nrpyzwdcpsi9pn1q5oOyzgOOpcO8c65pXUrmWfFK7uHIkuwXuu9tT7jYHeaknPqo1b08Zs2ZLfJ75f5783nZZNpzLy+nk2mifof25dbcuKfsjsazLZuEdxCgbl4WFuULjTmGk/JYyWz33rwxcM+bTkPS/10gdkesLtsbqy8HFWZfGAZpfBfWxsPpeRPp3SO1pUUfpeUn7op95KdbaOwRum/QdlcrIlbM/gOTrQGOr0TxSDLZcfqk+sCN9j/zH2zGlcc2j/IRwW+h/vL0FWr9z0D7E/dorpnzU9RrdplJGrFFqtSuogfNFagGOK2exdSi1sZD6MKq83kCf0T4cxV6HOnYF4NumYf1ORtuTc/5dK/S7RT3R5yAB/hX4989kO26ftX+489DyWPzqLPX36jutT6kvixXLmsSetYylPJa1kXuyP518LyRy+mjwKczZKXp8Hy12M7X+lT34mjC3c4JndXQ/cX3FbePyXJn42KYl/UCx+CknGwPpHcT5NI9+LyawrirnA6vtt2L1Nc5hrUuLofi3Yb8E3HfgwxdxXnPE0he0Xyz9hqmJXVka57JH3b2fZYsOi9P5S3nvoJTitSuQjhuts6BItg04D7YR+AD99tYlxReIIFcvxEam279Fx387nYylzJWj1SHxLarjW6E+ml8qowd4jfMcEDP4R5SWwsnJ8bZc/0vXQbo2rZ8rWh/EI6D/gdw9xMUy+Hji4xiMfp+Mgl5T7fpjuH7UKD2OK6cWSz1cnAZMzXPLMUI/5QWvUTsC6PsHKH2Atif9wFzip0ixVErLhT6g2x8EoN3rrTgYWHcixdbHz2DUc95zTL/qQM+6AE4m6+XICBenh5YFazHgNSO4vHQtiaPJvxYBtyaFlHeFUo7Iuo4yefDxdH0MyzoZXDtqwOXSsTdGe5aj5FpRJLmBFGfOOl/M5esla/HIQnL5R8tUWgLnhOeZqyByz3bJsV6in3ft2T40spOBs13k7B45+wHJJ1OyH5f04+cROF4TtDG3fkouTkfOpxTKpr6n5xCczy2OwX9ukmPO03j9eF4K9p+S7Sid1+4h0nHXSIptTvYmOS4xZw+B9W9c/FjwIeVk2FhuSJ/pb5nzoGAbqAMGPAbhxrH4HblikO4rILemDr4nPL7OXNkJ7E+eex53ppP+548mOY6YZheL7ytqr3ptOmmLTe3AJahdF713tPsqFycYy5q58YLnvgLZGZaVUH2/13aH3isU7l7jeMRwb8rHScP1SO8Pmu/8dDLmBv2P72F8nWnMn3uE3DtWildjiYEC/cHFY8DPSi42An02Nd9vK9x7QPNlfTbxa58A6R3K+YLCdZauN+eXx9FKB8X5oOD7Q/KhKLHNx9+1GrtqXD+MTTS7Tbxfs2HEaO8S/F7M2Vpp327uPWqNO0/blO47SS/+DSo//c7Zp1C7j5TiZ4K7xvg9b11HFvDqCnLQsQb+PlAZpiQvlaBlr6b8PISu9ynBjZHoPDs3t1xl4OY32rwDvx9z+yi5fFJdkeMrjDSW0kj5LX520hisxq4bx9rg3gua/ZPmT8j5LmD97FzGV9y11+LEanVLaLaNPdZ59Iyvcs9HaZwnLi4QjhlUE1OLG1Nh8Dz8VobUjvso1a4rjK0eK9Cxn+dblFsTy/vOwfM871hOG1/hd5U2vgLZBKCNr+i4ycrI8ZXFV4CzecXje80W0WL/i9HG+PjbnxtfraaTslnv+MoyzgLwN0XTQ3vBfa+Nr7T1yylfTvn1yFdGuHaVfPOsaGtS47GV5zuofaOuklSCfgevMmVI8jnPNxP6QxvLWse5CSoXpljjTnLgb442tn2WgbZJGzNzsiqN1EbPty+XT5NtlsYS4OrV5Ac5uagmU5Via3uhbdK+Qfhba/lm4fyeeL1PhO1cHdo8pQZqr0z5YbLpwbl3undc5UH7Dlq+kxK58U8Cz9Fy6z1xc7ooffWKISfXbg3+ZkbMSa16ACz/zukINDzzh8j+9dZbiiSjBfC7y+urr82l8fhEiwXA1Vf7DWili9GOlWQPlnJ7xZCX5Hm58ZIFrTw8DvTKOLDuKiq+NhcLNAo8fpRiOQM5fZo3fvBVklpJ/aHp6ayUxJnF+r5cvu8zXGAovX4t38tWudrNijpeTidjcUo+flSWTfe3HNONAsci9MYR1OYxeG6V03GUzNtyczUrkf3IjXcxnlhbljhWJXG+WsemwtTopjS0cROW/ebKKYk9hOG27THXvmau45FdXxa2WeIq7KKUosVvycVK2WPKk8Z6V1BaEg+Dxg/R5PGRsTBKrx+WN1hjDnBwMQVwm0tiHLSITaD1R4nvvBU8HgJfcOwD8C1JJVr5Utfaq+Ro6dvs9Tm1+qS29Bfl/AGtPo4HKD9OAZwv0m9P87lbVXDEpJqfGdaHtfBh0uD6Q5PV5vRwNe+tWvklvg45vH15qNDT/mqnETVzUG0Ok7PFqhnDSvIHq/2VFs9GG5+nd6Bke2UZs3pk4jX2V5wtVqm8OSdv5HyDouyvStf8zN3zpWvsSfZXQKk8MqGN16z2V7cm2WeKA+u7qU8Vh3X8aI2TX/LeKR1rwRxTkh+U6gmo/ZU2r/agvUu4OSeHZn/FYbW/onM5zzxJi8GY84njsNpfcUSM5aUxvST/qbW9SljHmgnvuFkb260KSeOxqO+gZn9FbbHwOMv7HbTYX3nA9leldsER9lee+pOeLmdnhb+1Xv2fplMssek6ty5XswUogX7zaGqVt5d8G0tk+qld2vdMG8t7xvlRRNlfPWXy5/TeVP/t+RbSdWolf9xa+ytKWjOSm/d8hdLSOI+1eHQjLe2vOHJxylrKLzx63Wii7Z5zc1P67uS2WeyvWurNrdS2wboPdHaS7q6F/RUX78NrfyXB2VVZ8Yx7WthflfInSqNssDSbxlI0eWGE/RVni+W5tiX2V2ccea0xDCy2VxrPGXAfe223cjKknvZXHJBHm8NTWtlf1bzLbypYvyMvmbLB3ormpfZXki0WF5O95ZhuFLRvPEjfGPg+1cyBanxlRthfYXkjN/YtWffQGzPESg/7K23c1Mv+CstqS2yucvZXUfLnGjsebf6M526vUeqRgXN2VbBOXW69OgnN1r5mTo/vE24/jilzBaWcjZXF7mou9lecLZbH/sqrQ8jZY+F+8do0RNtcYTR/uh7rVXjtJ0aPDzSsvvNWNHsjTf5UgsXuqla/BETHUsfP2qqCI4ZcXG4cm3uU/RVHia9slP0V7VOr7NJzbbx9qckpDxm0PLDNYnPlAdqJ4y9sAhHnzukHI2RNtXj1jjl2jHkoMN+z2L9odjKl9jIcubo0XWCNrrCVfjB6ntaD0fEZStHGVTV+f1Hzem58Zl1L2aIrbKUf5NhE/V9LPSKW133CpKW07OdWtPD3B0DvVdOnLYjQD0ZTox/06BGttBpT5cZ9LYnQD96eTuqIsP22V3eHx48RulDQJeKU6kqfC8dZ+7EmJoMG6PnOTbz+z2PDXopHP9jyvazpB7HdvZYXSHori40+tdVv4Q86N2p8C/B1A90r/q7cnU5+a0rnVhb9H3d+rXWAOZIe6L3ppG6oRi+IfS5+RykXCzBCZ4jT30m9XB3/nt76dlA0/WCN/lDSBc6VqDmOx66W6gZbQnWEmp7VM0a7glILTxS8fVhyvOeapm/sNyidIxb9IL4G0nZJD4vRvsHY5sn7je4RY6EGTkczesxgIVpHmAPLr/ZRuo/+c7bxFj1gRJzv3nh0T9z9lUNb8wXv+3Wq1+0BF0may5eLhc5Rqh+06Ai1/o/Aew1bykDnLiPdYf63lHViGcJomacFj21/NBFyq09QWkuvcx0h3/PKZ3cCOJxOykJ7U9u/5xpS43/Sm7/WKcS/eGy4/hyX1ukzBu3YZ+s2cMdaibx+mhzT2ifcsZoNBUU6Nicn1cp87KDl3GKUvb+1ztp4LdhuxYJHhtrKv8LTj9G+DVTuOYJXKH2l5KNYfD8p1nwt4erk2mL120h4ZXEenjYuv5ZauehT5j/AyT2fMvkknihlRclWc+B4ELk4djReRKtYEjV8Y9ivyVu1+PuYD5j/OZs2zvYtwgaOxtXI4ZXFtBxzbCIlsUCsaHFHauKRlHKgEKXb+pBJNdtILDfVym4BF3vY6+uwaayceMboEjD/u0vShXLZ8Oi20vZyc3ZtP8DNqz194ZUDRLCDUgCP7+915m5QGZFwMYMxo+9fTPS5L8hQGyVqq1SDNYbVnGhlt534ZDpud/8vlHrs8XN1wDWUbM8+FfLUXPdrJB0t92lBS/v/En1XhI9Bzb3cUp/Xqg9aPtutaNkmi1zNS25sGYU0BqwhSt+IfTd69AVHra8KPY/etPAxwmlvOwb6bvlOoTQu3tywxjakeurbU53/Vm+4c8f7rzOphecI+v+5oxyt7IjyIuC+w7nYhx5a+sflqGkzFzOz1A/M0g/Y7iQXB7Smjuj+sKLpnyglfodcOZ5jLeUB9JvRUkawibKZlvIpzZ/TI+ei6Zyg7U1+qi+n4/FW30f7OOha4lFoa71JjNZ5Lizg9eXpfwtSmdHPE2cLhsHyMS0vBes6OHmbt7xo3kVpybo9LW0btdhjpfVGlNfbVtOCVEeNfz7Ov9+QCF/894zlY5sYabuFKFtZ7jxalm0lOlZ5Kfh8RreFg4vB3kLm3ANsoxtJqc6ttuxe/faLsq8X2Ia7ZR37kxxTw/Pej7IxozbKo23eLHBxnSWba+4cPViOH90fwC7qj90MXDxMavdZmsdSRglQXnqO9oXypWelVJdrsYPX4ryMhrO71/S+o9s8ql+8ZWjvBc23ZPT7gqL5SGB/Dq+vhCc2zw8kxXy53q7FxOD42wjcDyBn97R9TuTOTaMmpoiXqDp7PiuaHDm3Rpsmb97EmI2aLg2/W7xla35WkeC4TDiOVWS8p9ExuTi4dWswOEaSlpcy+t608DFKLdBjcxwQRp9rq/6zQPtCo/Q4fKy1XSX1eJ8FjZay4jnwILOdo5fvpeaPWVqGdF4WotfdynHQuT4O77OijdFWKF0p+bYBTi5m4Yik8Buj+efWrKt2RH5jpPy19FrrDceRrAWX631WvPN1K2nMjOfYX6HtkOI5Wum4vOX887WwbVtZNUB6zkqP457X2uc2B35WDhXA5j+3jyOXT6prpxE1dn81djM1usIkq8e24DTNxXxJaDKbnF46UauTo/aSFKsPPXc9W61xpelOWsUmLfXLy93zpb46nP8JTmt8mTQ7fVo3cItAt2nX1bOeDEaTA3jj/XkolU1g25w9ktbE3Evnotlh7DmBdmp6Zaxn/YVJc2j6v1JduVUvYdVBSLHCOPDYzSv7bCkP02ygDirQ5nXWeTcXf14bM68qiPoOcqT3O3xj8Piq9juofSOifVJr/UoPmb6xjFFzaD7O+Fvr9Y/WxqulftfpvD2xgiR2yP+SGLpWe2rtO1hqN619z2rG9aXfUA3tm8PZYFpp9R2k8Toj43dyulWMJqsBuP0tvoOA1Sa4RMau2YzV6Ctayl9Kv0UWfiK/f0Lbar6vnrmp9x17T6FGZuHpO3pc63q5fFwsFpxqwPwD/8ZylBzpvfvJpMe+9qJdXwnrmKdFbKUWcYNqYvXknp/SMZJl/JXGfy1iuZSObzV/+ZKYHNZjW1EzT6iJuaDxbF3Gs+lkDIiUns1QE5OhNK5MzftaI8q3/yVKKVz+0pgYLcd0o8B95fVj1r41NXOglj6vLXxfk7wRxrnUF7TWnzTKDzPnw8jleXe971302+p7GOFTV+rH18OvzYM2h6nxe9Lmz7uN0Ppql/zGtPSZwT4hXLmetUo8a5aUXj+PT8SXKLWA+yVKd2BB6iOLXQgeK0V/gzX7m1b24NQ+gtsmMXJs4LXjjoazZdRkTJxMyyqf8tiwRhBh57lSOBJYkZRDsk/8eTpupxhtP2S1B7zIpNozXmvbZpFFRlPTl4cMnB6rBG0e3arcuVHTh9K518qYaiiVe1n0fiWU2MBE2srkkNoEejxNz9daP2itJ+VpHZ+kBTimbbRfe9IB5mwga2y9k/wExln4N2D1ceW2WWIFcfN2aS6Px2SW2BKJuegHgdb6wRHsoHRHyUfBcjrOpvQ3lGK4fL+R/C37ugXRaz1gSm16e+PVD7ZgbuuMtBpfjRrrRugHbyt49XR4/NhCJxoF7sca/Z8G2KRLOkBqqx7FOZR69IMt38uafvAxg3YMkLPLt+oD/zsd1wfTcVhPuFipUj4PNXY6tfZGNfq/kdeCQ9MR1egHuXlfC50hxToH5a5fL/3gHvN/brSc98xVP1jjU1OjM8T6PYxH11dCjX7QoyPsTamOsFQmo32Tsc3THZRawDbd36J0zoz+rlnoqTNsYRPfQxfYCk1XJcUusaDFMZFimtRSoy/VbCai9IMrob9bYL1eHHOXcfaSowKtfP8Thwqj5aCUkbLAWpkVpVY+2uNcc3K7q0r+ntdmx8ihsm8ulMpSzzWkxv9kFJw8DmO9byjPjHkigWtQev2kdt4s7AMsu4zwwaZ4y32MUo2WcwuvvX+UbNBaZ60dyruTLguVyuaO/WM6KT+N8K0o7cc5yCejeVWBJhcddU5R4OsDstk95neipTwOy4tb1lPTPtpOjzzUIifH/g5eGbvkN5E7JrJ/UuyH3PrmVnliRByJOYDlnhcY8PrVXpu2VjZwWlyNGllMyzHHJgKyz0gZ6EeozB4y10gZbSu9V0KSgeb2RbPPpBfRfhofvdTnYc6sKiixd1gowyOrHdU+mkbImznbXO3YFnP/WvD4/l5n8HMYUUYEVF/A6RCoXTWG29/zfo/uj17M/Rw0W6UarDGsotHmibk8LW24NX1Oq/4o6bdPJ72vRsttSuDetZbjWvoAaLqt1j4IJfdyb91rz/5o6XvjpUe7vHK2HGm8+Ghq56fSggg941/M/+h2Sr4fV9f7rwp5N4Grwnm18jHK2TS0smGA55iThWJK4+JtClQurumta2Iu/lV5fATXUVrCc4bSsuYM9y2W1lz2+EONpDSuo0SJT5i1f86ut1H/Pmmbxx9Ns4+ndvLStlK0d+7Id7C13lx7T7MMQ2tzNJof56bJtLgYtRLnp+OxWS+RlILf395YrhLaOm85Rus8F04nnytw97mUz3NczbPEycGwXRj974HK36gcrrTcCDwxvTBWe8gS3/ESm86IejW7zNq23xG2bRL7DanxwY/CurZPLm733GjdBz2Qzm10uwAublukrLkH1N41mtY6PLzdoyOtoUWc+1r2GFqVy+F970fZm3F2yqNt4KLOg57TZWNe7rjc/rmxq6DFw7TEymxVfmm9uWclSp/L2bDT/Z64LlHQ2CRaHJOImDQSl1F6mdk22ueg9Hy49lveHZuE5i+BY+h4fSSiYvdosTAof1eAdU9wzaPOoyW5c7LGOrqB0k3hNUpbU6NT02TPm7imm6Yvy/lj5cr9aiBc7CpvbCd6TC4ulra/F3gtjh+n/FodPxK+YNLR92YU+Dpy26yMPo/WfWPloDE92oHjdP243kafCQ8tZcVzgPrwaYzwuaTbatrBnROtD9eD/0estbUplDwr2hhtdcr4uSGa7270emo1HJF01FpvEqX11nxXomMe4NgH2hxcmq/R8fYNkkbEVJDmidvICqWrTJ5IjhS04+nzKtHz/XHYEMu6fCXr87Vaf6VVHS36Nud/szMTaLuwT/rOFOcbNdpmtATOnixnW2bJx+XXbNS0dmBG2x+UIPlXXMnswzLwHDk5n6RXsFJj16vhtVux2rMkOH1m1Hy65XjCaqdeQm08kgh2Mts5PLGXf2NSLX7GJuH1S46MgzA3In1ANf9Q7Cc6J+DatRo3tRrfcv69EdfqdkPAf3yTkHz9cv5/Vh9KzT8Yc6sjUhtavpcfK7xvyGMpw8vcdNmc70KNT8XouZOFUX1dyh4i2mfBM8fj+J385qitA2NZf7DUHpxu22P+z42W8x5sV4rt+Sy2rzXU2Jm3jDHUI3Z4DfT6RdjQ3Q8qR6J0DUIPIJOJipHAIelYwJaI/u/NCqXA6O9aCRabohIbnESUP5c3nvVcgffICD06gG0jtP1Uvxxtm4Hth6N1sauZktNFbrNMtIQIGZrUJ4eI0TJPCy3lfz1kYBqeaxoljys9VurDXvJajFX/cCjkPSzEqnun+1vdP5p8jurHLfm443aYbXOE6v8jqW3bs+Bz1a49bjuni3vEwJ03l2/T0OYDNXFQamPJtKYktk4Nlhg4nKw4Ii6PJf4NRZIxWmWOuWM52xnJTkbLp9nm4POwlJ2rc+GffmwpZ3tqpGUbtPbR/1EyUCxf9PSDNd8TkrYA23K9mE6uI/hCYLQPfisuBBFh21Zidw9w23P5JZv60TLOuREtC8V4y7KU2ZqWuq/9Nfh3Cd71Bms4Lf4k+H8OOq6msrHcvpq8p5GW8tzz5HeveiPYEba1kA14y9xB6b2GjLYzKmH081RL7pxG9+0c0PpKgrNPwvyp7NeOpZSWVQo9P22u2NKG26Pb+ZT5v6locpV7wjYOj7wm8p3fQmf1L2e+0T4ImJa6vNHnZvXF2CboezC3Lwces1n1RjskzY0FS/VuEfq6kjpbgXW+o31PeuKxRZgrPde24jiz5j5KR4J11GdQGgG+d6LK7M1zBLfNCvfsYJ2FtH0U6VmpiQOa84Oz+r61Jur8IjjbAa7elvbzpYx+J3oZLX+YGzenf2QhNyd+TcCbDJzcSTu2lWxLk/HQ488Lee4a6nhpBK9bBv+ldwm3Zuz/yL4acvVeyuQZrfNcOJ1Iz+7LdYqfKcx5ZlsvNNlbjXwObP88dmijqVlfsPX6g3MGPweSzeUms4/Ym+rtHjDRfvk9qFkXcCTvkd+Wc+qxjt+ckWK1wT7v+oNWPd220FLvtoeAOAa47l/IdrrfQq7MOUH7Yi+zn+7zrjVYAn3vj7ZNmxseO2wuPy6HprsCcExuXw27JM3lk5DW8mu1DuAvhjxaG+k2b3nA3jptqacdbUNfAn4fc/tx3Blv2Zr/xBOBK8z/3tDzrfX38D7vEJtm1DuU86NoGYPHy5eN+FuA88UZ3QeUrzPbW0J9V3L7NC6TtCX4fq/xH2ipZxstryiBe3do/li5fNo6gAv2dQSlfTRtxeh7cyGW2nhnm8ZFlFrWTatZVy1SNpwD+xXmtrWuV6ozcv3BA0LLuHjWtQZLuYhSykFm3zYBz8pqCzlCKSa3D/DEOfyZ/NawrKlXs7beJqH1xWi470rLWAit52wt54AjWCFalTsXpHcVMPpZ5tDs8Q6nfKzAHIcC3L7SOrR6vcd54gtK5ydRc2xLpGuv+W5Y4mG2iu240A963Uffry25yqQSvX3oNH+6nK/fTua4uWNpt+TXyOV71OH6WON0bBK0L3P5cH7NJtJqA8ptv4uOucuUg237W9qsStydTrZjU2lh2+uJYZCDs1G+htKacnoS1R/bQLLZuDyNt0ucCzQOQWlcgk0n3RPetaK3nQsM3yE+QKkHqruWdNna/pYyOY47DZH88Lj9LdvhYbRtfGs+zmzn8NiBfohSS4zPCHvO3amdXpJjtJx4bmhy0dNGhFx2YV7guTy3TQPm+/caErHeV2tGP5tzhJMfnEdpRLmt2t2qT0bHtZsboE+ojQ+6iVxzEnVsNC3e+a1jzm0KrWOLWtsgxTydYyzWmhimlnzUl25kPFROJ3PaAB3foQC3z6PjXaizFQC4fDRtQcs4c7cdaHEt7zP/75N9NE8NWFeNt/+13sbFCB0d77aU0j7CZXifg9o2Py+st4Y5xgQdyTOFsxWcU7jF4K2DHsuVydVhyVcK9x61HMMdK5XXmtGylRo5TIsyufihUTwWaFknpbSf3mdSjZyvdM2xIxit81zYXLCN2OdOWtjfpXKt70Vp/8sMLXUotedOy3sXpV5eGdFsRmvQ7jdpe4t676B9uTwL/7CH4OJt7jF44nV6849GisUZAdYhtKxnrmA7osi+4uyUpO24XO+79lMHT1FqwVLe3PD0R449lO4J/xc2h9dbjhQH1BIrNJpdlEYRXd620CJ28GibEQtXUNqaJwK5fZjLyr4IvPXTY7UyrHjbTd9hlnfX6HctkOTEWjxLS56FzaB1DFIaczSl+D10A23PcYX81riM0svC/8skv5eWMmhpTbvcPpxnhJwb+zF9hVIv304nY4rCfTI6XueCHsuUY7T8bWEejI4Tugkk+dn+dFyeto+QfAn3DeR8EdP+j9a/a+KLcsdGxAilsUI/QqkUR/Qgs32Bj03aqnwpLmru2AMlD567rBi0/Tm0Y3HszRVKaziqRPP1xXzBpBw4j6fsXHkfkv+j43FGg+/vVuVKZUsxeb9sRBqX4zU5bjD750hLOcqqAa3KHc0R+X2UydeL0faPtWB/afqfou3/yVmflH+03/hCPDtTW790S95PDPl7PnvYN4G2I207nHT/LalsOHb0+2XBj+anafVjHe1buwlYfPu2idw7Mvc+miOj+3Ju9PSlG8FpfF4lPLEJdk4phyhd6BNTflOgz5Pkp7qNnDHsi44X3xvu3KTtXB9wjD6nnvyVQfPTxH6s8C62+nY+mmSfWFxejhI7GktZzwSiv1sYfE2k+nE7StqjlRsB+OzT/5ZYAfT5tT7Ho9Hm+TdRirHICGrvq5vMf64tFJzfi7b+xlwpOdde0PY9Djzv3Hu4Bvruv7NwjF5+wJbjvb6+m4Tmlxxxvlof0zVjtLV2NgEal6D1+kNRbd406P3SMqaA9V2h3fu9nu09xGg/6zngjak7Z7RzmnO/vJrarIP1SuAaSTk+HQg+h+hyPy0sd/T9PZKIfmrZz7ny9hikfNLvHCW+XwtlPEWMbstpZJf57/HDH+0jX8tTBez3Tf9zlNYD/Mmk3jKeOPNp5zSS0c9HFC+mf/zkIaVcR2kN2OcZ/r+Y7HEgOF4U4CmT+39a+YZB25+jZbus9ebycb79mj+7xoXBaOuKeuHK/m56uzaqVJdlndTe65n2xBJbAPv/WPLSY+hxvX2WRsvWFxY2BezbHul//lHDclsStWaxt+zR570tHDTkZwVJRpDbN3c+RCmFW087qt59hMen/sOg+neZsrzt2HQuotSL18e8p9/5wnaycuRZEbhtvYiy4xjF+eCyFhYWbNTGJjiP0tKyR/fBQvl9k37vMGkOz/2llVXKI5RaqH1ORmM9z4U83L0UZZd2j/m/cHK9stFtGHXe24AnRsVvleDvFS0PtuG0to6FOkbfmwsLC5uF1X5P41Nh26ZRY7fpKXv0eS74scQ7ssDdO97jaToCrZ0wDi3po5rYbFJfjbTfxvdRybs1goj3++hnUDsn6q/jbfM1kkp5FjaPezNoQwLkXVHfEy3+ast6Ir59QIs4hVx/aHnpcaP7Rfv2Rn+3a8puxeiYlyPRnu8e9XnfPZvyPhrJ6GfqNGDp+9N2LZ4uNI2buGlYdba1et5N4+Epg4u3OvoazIGHJG1B6mscIzoXA3cUNfeTlk+6/xb6MDom+mlm9PyyZF5YOpfTfL+/Y7D6kXMxLC4gpO1038KCh28y+7h4KFI++A0xR84J3F7DbbOCj6VrMtyejq894C2bHr8J4G/h6LaUgu8nabuFiHZo9dbGFEpwMX5wHbDNeuwL5pgz6/S5wHWUYrhtvdCuD22nlVyd1vMd2S/biHf89T8jJeuYjOK/lUSUsS1cQmmLa9TjfsBxt6TtFnJrBV0Sts2BVvd0bo2d2jafRVxC6ZzeE55naNP5nkl7AvNy7zG9Y+9xY9tbiJL5ZO4co+astecYVUdN27RjStuoyZlw3pyMijLa1n9uLH5McXDr0fRYt6dVHaN96ebmx9di/Taoz5pvbn2ysPnQ6/zSwWcM0v3D5fWCx8cR5W0yVjnSXHgHcWdhYWFhYWGhG5+T1HtsBDX1RvbFZ+syR4/jeo3vXjWE862cO57YVdeEbTnf0neZOrltC/OitcwuYs3rEWtNc2j7asr20Ls/evaztH90W0fdc63vCWt5dNtpkGv8gdIc7xCkbdpxErXnUFNvybH7C8fYW/NeIfvGbVHQ9kvbpPwl/Fsp17IGk/X8otZ8iuD3DeU9lFJoPg+jz6t1n80By7OSe8ZGPzMLdffh6LYvxMGNv0bHupgbNH5fbWzCTcK7Rvvo9rbkF4aW8SHnEEfTS6+4mQv6vdrrGcBY8iz8M5+HFPMLs72k7JLj5sCuwN50cp3XXZJKcpMI9pm0Ba83lNU65cYE0vYco8+nhG0+t0h+RkjbLWh9WtPn3vu15FpHlxvV5hb3rPYuGH1Pbhqlz87u1GZ9eWk99xZrvdNyvXjr8dTXqs0LPNwYCvc5/Y+3c0TGS75CoPF8rfGVtXJb0iqmb89zWJD5GqVelnvjOE/WtCg7NzYbfd7bgna/e/J6sLRnZL9w91jNXOKJAh7XanmBy+TYb6aYcbZFnjF6LrAtfID4IZiWZbfimw2lRV98OZC/hd9cviikb8WNNTSeayTwjh99Hy3UE3lPcvel5b4tqSP3DOS4sfD/v6WQUk5z340e38ydlvEsPLH8/ofSUsB/gdtmpVfsQq5Oa5ukdo72fdl2rPEgKd+TFMBlS8cCeC5DjxvVH3is/lUw3zYoMwJLv3zMbPtqvV3iTmbbtwy0r4BcHbRsrc2W4yx9EQnXF1ai6tXyRbV3W7m45sdgvhCg+6PrrYH6TtJUgvO7zD3LkVjeW7Qtpe+l04K1fz5CaPu5fLAt+l1N6zwQwMdIeSRGX6OFBQ7LO6123HPApCOoeX7n0Oa5coDSllwMYvS4KYrRcR4W7Hw4gzZsEtxz+0CA7uOOxT7E3DhzoZwDRG78zPERSucAdy9aj5Xuz9Fwz07Ut3TbOZjixx+nlV/XKTeW8ZRD848af7XUba4M+1eGfNH1Wtt0mln64iReX8lWHBn2HRnx5KV8WAFuM7f91wySnuELpR5KrhyO1fq8IfWAy6k5toTS68uxYpC2l/RTj77Q+oTbb+1Xut3Spty9rt3v2rFWavt1DmjnKI2BPHVEj7820Ua+JV+SlNv/ZWZ/jhsIzrZE24+R6oi0dbGWe2M62Xa6baGvnapUh7XeXL4W7V3YXHK2PiuUbhpR48M5ta83o8dkI7GMvw4NXEVoeXcKuGvAsi6MJZYgFzPjAwbOvp/avCU4XQP3jjrP8JMA7ptPGLiyMNw5cuVg/sOgxRqh15ErA3OO4S8D70//+Be8j+DKwnD98r4CZ1vDrT9iuV81m5296Z+45HuIawqpbi5O6Z4C9R9PvyHuYS4uIhcnQ/Oz5/wBLT503zPg8Z/0fS+1meLiUh8Y4ORokp4Ew42HVwY87w3MVQbtvcE9s1w5Gtp7wNJWzEMG+u6x5JHyYR45SWWWrm3EvTe0dXu494Ll26i9Wzi45xt/S6V3QMl74wWDJU4I56tkkYVEvjcsdgXWOGKWsYQF7VmXsLxbLFienXsMlm9rrv2W43Pl4O0lcaTScwFjJzyGws+VFncc8nH9gykZs/2r4jhr7DiAXm/t3Su9s9M3wDJOBCzfoPsMZzpi+Y5eYvivgWcMZzNwY6/vhT7CeJ41zE0G7b30cg3exvUPZrRdPrQ5t4Yw91xb10ClpDpz6/+VnAM3n+i5JhZ3nnQOXrp2A3dcaVz9HKXfcG6ctFuA5RxKYyI+WfelNWYaxE3zxmJO7xst7syXDLitnvkoBbdV0k3Q97D1HcSNT0v8Wi0ywcj3W63PCcyV8e+ExX7XauN7UIDFfnHFYJFHc7ZAJbJdSd6At2k6YI8ukDtfDct5HBbCjZdKjtE4JKn1GA/WcbCFEvmGVmapDNQKLrd0TXhNllGqL4jiOsEaB5XGXrHaydBxJqfPSNwh/63r9WHS+/u0yTcszyKnZ/nNQOm5eSmNla3pkqLQ5vAeWsg3St7Ptd8jq4wd5ui3BSS5BP5WeGQuJVhkGRxJv3cWpYlbBWB9ISffKH2uOPnGYwa8ndNH5mQbqR8ix/Ka3oGjxfcfiJJfaJTKN7gxRol8Q9P3Sjpfr3xDk1HUsKnyDYu8oybmvEe+ERl/9+vJL+ewjEW59xDIinPPGLXTbRHTa7WmxTuCUiv3KNUh1so1PHD3KPax8sg3AM0/AWORwXDyPq98Y1WBRd7Tcg4SRYmNWYKTZbSYp0TOAyxjZ0yreUrpuL6E3BykNdo8RrPjk7DokqPgxu7eeR+UxelmNbS+8LYF8No6WaF9Vfqd1eYfNeV45JlWG67c3KX2XEr1pyV2X6U2Zjlblh5ofVE6dufmVlHzAloHNy/B4xWuLU8y259k9pecD5VjW2TZVlu+KGBOcmHi45dL8vTcvlI/S4ke85RaSucoEfMb67ynRF6QqIndgKH6DG5fD3/LHCsDmoyul06iBbm5j7ec88xxLeZkrcZm8K28FwC+P6R9XF7LvcbNQX8jv6N1ZZE67ZHk5MA5uLGH9VivbLpU/8bNv0vaWHIOPcey3POG94NO06vbjNKNWq7VSN2tRX87CsvzkbDa51hlD5xdUYk8BPS3JW0B+3xKa13zX5m6I/TtJeD5iWZrPwpO3mTxb+D6vtZngpt7lnI1uDyJdJ3Btiqny2+F5iMBWGwOOHJ+JWcd5Ug+KBYuZGj5bFxA6egxn3VcXYLmr9OyzS8Vkm0jdz9hm8ac/41mH0ltJRfG8DmD5bp6gOtcKv/GY/Vae2aM1f7a4nNeopuIKIPTcbS069KgcjsrFtswD5ysFIjyoctR2rZafm9YNrZNt861RlIqnyiRu3CU+DyW+kWWHKM9k6W2hz1l8BabwAg7whJ2BTifDkrpcZZy9lGa8Mh4sD7Q489qIWdHWepHexmll9H/Hmj3XNIf93pOOB0stW8FPSv+b/UH1vjbAKf7jrTfpdD6NVtei/45gprrbJUL0DlYzzgPnDyB3ps4f2TsY7quNvAxSjE910/2+CmPnjfeYfqKMvf2JQ6Y/xpSOV4scURL51NRWNbQirI5OXCUievP9fHodZ2sazBx7/LVjDiayteViYrN0Aqr74RWhuU6l9i9pW9WqU9Gz7FHFKtKjgS4/a3uqcNCesbf8JbhPZecfjySVD62xbIe11NHVCr7ziHZuPSUsVn1tXRuXGoTbNEncZTE30gs8Tds8TcssTgibQpzcPKrUhu4ucbfiLAtkyh5B9fE3PDYAiU7GSn2Rg5sX9UaqwyG2pFwNkEl8TekWBxA6XPF+eu9T1Juv0aU3OkPlGIdK05z+tcWMbgo0TIOiT2ER29aalfr9YmT4m942UNpNKXfcEnv4yUq/gZHtJ+dpEezyuLvO/JSSuKOYkrt47j5c6sYHL3eG0BU/A2JnjE3MJEyrFbyQqyL8shuVh0AucnoeYoF63icthHLMFrOU0rH/hFjbQ7aL5Flt7Dzp9f7sJAWfcmNuy0+IJJ8qwWlPjCt2vNw4uNvwPWVfC93MvtakpuDaPOUCPDcJnouE2Xjqtmrls43Iux/a+Wsc6F0rM7Jc6PnA1Cu5K/3p7D/NdpnaWNt27l1skrXzmoFZzeToybWhrZuOJcnjUF7z1NKKJmjSPE3ouNwAKUyA699hyX2hsRc9MU5nTH3beulh2hNz7lUK51SybiLO+5eIT11wCPvlZ7nebewTq2tpTLiqPgbQE4fXqpz6xV/wwuMMa3PkycvR6R8oJV+dG7tmXNsDu4ZKXnv95I/SDIYC6Nib+RoLYPjiIwFgONUtIi/cWayx97g4m/Uxt7w8NwAJ4tsFYPDG9NiDvE4ouJvWGNz1MTfyNEy/gamdvzXY+zJxdGwUjuOTttw3AzLMVI+AOImeH24JLRyRstjTjP02kPslRZ4xvCjZO2WWBstdRO1+ozRcHZMVG7HER1/I0eP+BseWsbjqI2zIaHJIeZAqcwB37uczVuuzlYxN3KxNKT4GrVEyMVBv9VK7q7p1aT8uwYs9UvHcdtr42a0olSO01P3qOlhpeOeTG9jXViIaKtH79vquaBY4m94KYnDgaHxL7COG37X2OS2stf1xueg17ylb2ypvKHnGLHE906KmzF3vkBpJKPH+XOmxHa8NSUxGSLjb3xE0tJjI2NtjGJ0PA6O9F1YTW+/EavOHBngbHUsvgveWBZzjb9RQ038jUSLWBvR8TdWJIXfq4JyWsDd063uKU6ufrgmZ6t0aMBi83RIUm5/aayN0ngcFnB/cbrdVr4n28Z/Gl0fK1dRyjEHe4metLATifAhqUE7Z8lnRIPTsZbqZUb42Ofw6pQ4f4tX03G9GKcnsxwXRW9/Ey+j9RBWJHu1OaDFU5oDOR8UC6Vjcw+cvMJCz3VLRusfP0aphKY/kdZ1BT2MpAuJkrckesn2a4iw7W/NCJ+RTcIy/rxXSK+YZFwchDlyd3D9OUbb2lvg/BB63mMc0rhROyaibu/z2MuGfjQ9fFXm6u8yWlahcagwWvYVJT9rRakt/G0Gzk9D8l/xwMmbRvsSeXxjuGv6vKDOmnuoh99JLc8YLD4m5xhuMZwVtrfkfmZ7NKPHfBZKfVO4eKo1vi6av4s3TqslTwSt5CynHdAJcGvAJrC8vFbuzt1vLwmlc+SWOoBXKH01tfUR2TRfkxI4f5A9Qk9flEj/FDx3He3TEtlmKh9+d50/99xoPh6SnsOTt5Yav5TTTnpOIuTfEdTEfZPo6f8RxS+G/SX0kk3W6B6fFFJyb1iOjahXurdbPENpLlXrj7LtRPqq4HtX25/zcfL6PpXOwaxxKSLmbrkYlJa1XE8b1Kb2qLDfTxsfo3RTsdhz7DNoMUy5YzC18U0PFlzQ7/XKCPiAcNvgXUH3c3DvGIpk86Ot98rl5Y7DeXr4jOQAv6GSY3KU+PEmevmn1PiorDYQy31fwihdhMeuqfb4hc2wz+J0p4fMttF6tLkSGSN2bvSyybAw0kZt9Ll7r9W22ey0gD6zOzPlcEvpfT9yNjNzo4WfogWp/jm0LQdnM8bZpSTbGfpc0Tw7Qj4JSVaK83D2Xc8cdVDo+XvKltpiwWJ/hu+R1s8JNw6z2D6V9DlXlrQd09sf+CZKS5HK0ep+jNIo7mwA2xpHlmubtb0R/uYt6OWvHu0rD77okP5BtkfT4n5KNiOjbZ08tlDbzqvCYzS8NlXANWEbxlJGLv/oPrdiabfl/K3H7TH/c5TYzGwKT2fQht5INmK9fVOfEiz2W1oZHnC51rZY2xllexbNi+mkT41l7R+vfd4LBcuxo+OblCLZk9UeL5XD2ZNpdlsXHHxnyFMS20U6dg5xYyzxkXPQPK1086PnjQt9kOy25oQ13pDluNHnUstBIVw839F+BgDYZ5WunbE/5W3GPlTqpr+1skah2Xw9mNrGBV6Yj61aL1knBXQk1nwL20+JPZt03OhzmQOpH3YMcP1nOS6HpJfraevYW9/ZGuhbj+z23oaB3/1zassIJNu/3xTOC9skpDJa0uMbP/r6LSwkvHL/Up1lDRZ9yIh2bRKl8SJz26N1WlxdnxjaabVLh774JKi99HmIeGa0Z6/1M0jHaE+n4/rwa0LeT0m60IbS2K85W/5oWvodtIqDa3mfWcuKYLS/h+WazOmatka6/q3vg9HM/Vy949fe1MqqWlMr7+nJw5kBPjSjr6Gl37jt2P+L28/5C7VA61+at1e7WnHVka+XL+pp8IPVvvHUVuo7I1K87QuZfQvlgF1lbt91kg//1/zlbgvAfimmP80v5dtmtGtXW77F3jYBdrB423Ml34t1Hoq1Ti/SeXFt6NGeuWGZl3FrDbaIqy/Ra+2LXvTsO0/czF7rJ9RcW84X3FLPWULPe3Au1zcaj42+Bfh+3ZrartFyX6iftiO6fG6/5Tg6Fua24TH1aH2nhUVf36YP50ZN7AccJ6OXLcppJNc3dE0czGdr6DGfGcHjSesxPeHGvS14Z82dhYWFhQHQtdYseSxo5VjbNrf3/atCqK1JaTkWcrbNOfuXlm3aFGpjQbWIuZSLxWQh6rg5nNeoNpX0n9Ruz3Gjvw+UknNPvFNwXtZyuDzA/gbw3gyoaTNso77yXD1WX3wvo2O2YaQ+nmu7WtDqOs8drt//jdKFf3gnw2i7QgtWv4JWXM5slxjdZ7k+bMWINo7u11JwzD1v/k1mj2F0m3LsTsdj13Bw57SX2Vczfh0RFwWwxBYc1a6R/VIKF+cJ4PrV0s8l8SC9x9bUtanXquW19sb3orG3SmJxaWVYy/IcZ61zFLskzeF5Z7fw88NExCst8VnqEUd1LnDxVSnb3Ifce3x0m6KuK/fbes3pMT37X4KLOw3foVxsaogt7PmubeM3/YNpXnGGObT40NHQur9U2vdlIH8HQZ9bbBPauz+3kZprYUE7tud62JHM7TxGv39LKLUL1Gz9reXcQalEqb/BaD30nCjxkUjHfTC9XWfgAvoNRLZRWxdgBHdQSvl4vQ+nHN8ySHm93Akog2ufhlZOablz4McCvmAoKcfC6HcJ9xxw9+WcKH02PjKcV82zd5BhdJ8t1F9fy3UuoWXZubpaUtNGab2IVu9gL6Pt9xaO86DwmBzpfhu9dk7vdXk+QmkkXN9/ZLgGEWhr0GwCcH1GtyOKX6d/3qM93/GlMpWVcZulnJVy7GqhGs3GwMOH6/QomNL1tH5l4OaqGDgXLR+Ga7O2n+bxlt8DTx/Qtlry4f+/orQVJedTC9cOq0zF+86eu/4xyQmpno7q/aRjqb6hpxx0tG7lNOtoTiNYHrsagPW70Kr83t+sXnDv7EMHNH6sNZ8Ed5ynHszOQO424NoU73PfwifEE1PyAwX8vfXowz2+Yx6Zk+eded7BTxVI96B1HZ5PnG214LEL9rTTwn8cRK9LYX0/5GJvl8Ti5mImS/GT/2qA1QbkEtNWzK0CPPflYwQXw9SLR29VEpMi8vsRrYfz+HZfCyb1jce/ci8Yj63wrhOLP5/HNr/Uv0mi1r6yxGYSw9lOSdD55rcoLSX6OdKgelmPz/xBA7zyVwroCfBvScfAbffIF1YN6DWuk0hjg1HjOs+YZNQaJi3WM4G+h7kl/l0yz7XiWf+IjjEforSUR0y5EjX1SHWPQooTJcXpwin9XRKbzDOuq40zRvGMw1rE04seK3rwjINyMpCScVU6rnStvYhx3QsHLXwDNft3jFW3Q8nl7T2uo9TGR/qI+e+Bm4tIfvAtbMBG6TZW09tx3d2pfQz5CFqMK2vljRq57+09B59MfePaRxHVztL2csdJ3xz8bbF+j0riXdXIiVvGAANgXOC5Py3UzEUi5NQjZeRcXJBeaxlbx//RcxlufpYD5n8tZPUaUXNm4L6DM9PJ9Qu5bTVlzo3nazRZQE6PKh3j0cv8twFcPc+E7XTdNQmP/NeK957SaKH/93DTQel45iVKLdDjP5t896eF0XO4TQFfw6g1MTzjnxZyo9bx+D30vJZYL6nNsVvE7R4Zn5yTg0jb3xW218SeHh3bt1QHPod4uTV45Dsg34yUGXnkqh7d/2tn/lpbAu1YbvvouIA03tufKAV7BymvhJa/RJ4eLadM48pkExkR44r6PFig1+EblHI2HhG2HiXQ63CD/M75Ikg+CdxcRprftPjGe3xaRsdryVFioz56rFwLjVXSK36DhObbGxEnweJDXlqOxx++Ja19rFcOjlBK0Y6TyPmxUjuvkT6NOf/KUjzv29F+cbnr25oW1/Nwku2rDtF+LU8pJX5KPeveRlr1p9bPrfQ3reltXxfdfo+sTpN1W45t4U/haQfGY0PXwuaupf0croOrr6UsbO5Qnd0VlPYA2895/C6juOPAEqfYS8T6g14ZMZ531a5Vs09+e4mWR3npYWOVY6TN3GjbvHsMn5DfOX4z5Onlg7JJtLZn0oj2rZ4D3L1L7+1oG6aWtLavi1qfy8LIOZF1zjea3vZ1tzNE2K/ReeVfKN1UrjK/uWvZwmbOA46doNnN3ZoJEfZ1o7/rHvu6x4Sb5HcJ1vgUi33dcUpsszibLsnuK1rOhO+59P8e2U//t5JZeW3mRl/nSDx2SS3s63LytpG2d5QoGSK+50p8diJldiW2ddvAKBmR18Yq0lauhF9QGkW0DKDWvg7s3yJs4loRce/RMWaEnd3ciLa1i9JNeMagmi9PyXhVi7c82m6uFUeOPtp0RtvdcVh1T/vkvze2g5eDU0DuW7AiaHHOcnZ0JfZ1ANhElawrEYV3XRhLPo/d+Uj7utWMKLnHOKL0qKdJrxqllx2tPz00MFq22oLROj4PLXVFOVroaufUl5uk06tlpwOHk133Okeir/+5wUTYBG8qVMeWI/IZeLam5JhetLzn8Dc2ndtNdJ5UZxnZ71Cmx4a9BFyPppMtrcNz7wJ3BrMpsTJK21Tjj9BSB1vrDwF63Ehdb6/ruy36zda8aoBH/zr6/OcEdx959Mej9WpPZ9CGEeccoYcFGwL6nwNimGA024QcnA5Xwnos3tey/1N88fvrVFs/7spkj03O5WsZz3wT0XSrFxTAfyz9/m7y+5dpfmkt/dMstFyLd/SY/jTTQ6eawxvnf+4cOBhpv0X1qHi7Jb9E6XHRcGttPUBE6UlPC6tAImUIo/VrCz5qdMnnUbqJcPYDkO6sf+8Y+2JHgO4DWaunn1vLlnsBfaDJKu7NiLsk7VVnK0rtPX5jyD1bljwjaNm3m8i2940mn/LIk0uwyOdat8FDSR9JeUbHBCixE+LOI7dv9PWh27zXyKND8OafO7lvcEl5o+NmeOyyRrc1+lkfaeO2yX3fKt5PL0afz1OU9oTOMx8x27aVEru8WiAGy8jzluq/Kvz2xJnZZkbHVbpKfs/dvhu/T78j5HSu0WvXbSOc7YC03WP/GhE/axO5b8ij2W5oPCe/JWrrOS3kxqM0vu4llEYwOk6ah9zaPi3oEcMLnxfl7HRyTdazQjlnESX15+6FkvOi8R5K4kXUoNlD5bg1xX/nSscEFwKOt5DGMqNl06dZNzFaD+SJcRihb9rE6/sSpSWcJ/+l9XovCdvpWCBqfWANLeZ/CSW2gAsLC+V87uAls+0zZxkSI95PSR/1ajq53g7dltteg2bjgvVm0XX3IsIv0+tzGR0fN8IPtWU7a3xHc/la9NHo992oNuwPpkWs4x7UrgOVGO2L3IO59fkc0PpsdPuiwWuZ9da1j4b6BD8lv3vSy8at1BYxZ8fYk4j423NiL0Pv+ndRuov+S9SMLXr4cl1GKaVH/XMDYtmOjL0gXY9c/m1h14F1LVEPnrpbt0Vr5y/GtsL7BP/maGW7eQWlOTzlbRraGgLe/lyYL63e3TgOzej3dC0fZKDxRr4h/EB+l0DLrEUq1xPjXePvILA9FLQT/z4NWPrJuv6LRovY/ZvE6HdNItqWD8qz6t095Y6W5UfjsRPLfRcAb/3aukZzQVunKLeGTi2WdZKs+ebAjwzS9i8ycPktjH7mRsLdX7ntueNKGH3+m0JUfx8UUHqcVmbv8+CQ1nsqfZdYGK0H32QeVDI6zqAUe9AakzD6HKR+OiAp/D5QjgE8a7AttH0PeeZeq4VQtHUYrXxYcZyV3Nh6EzhS4PK1akv0mpat2xk5vimV80aQ5uYW+aw1FnatnGCR520OK0e+FfndCu2dBrQoM/cOnQvpfXM4AGscDpoXH9+ivii4uqV2RLSv57WzxvLZmTm5tj8yENmW0T6oPbg2vfWDiiTnOyTl95Tjactoe9ge5GKOUPsQaz4Ni64M7Ck4+wrO1kKjta8yRw+7fopmf9dCDjlifHp+AD9tAdq3q8U64lwcdGtM9G2gJDbnn1NdbM4W13FO/GeGjI5LWxvLtveYvfc8rnesyNsDoLFXt5Fka/bfiY/7xm3n4PLmOBfErYFIbUr3zYjv4uOBaHH7LGy6PaQlLkNtvAssM/DG+ZgTo69Va/YQvWI5RMqNImImRMuy0v3ecj0TyWcbX0t67B5Dbt8cGSFvwL5Puwhu20jA95vbptF7HQivz9mcke6b5LNzfxrvN9SCKD8jK1iGDGMsT7zfUuAbqdkXYDt+bttcWSFGj0Na09IXJUcrXYBmS7vt0PdtlI1hlB2htJ63FckG7iL5Hc3fDK19QldbwJHCoq9qQwsdg9a/hxlG65wiGKFDGS3/54D7QdtvwaN78OoprhqP9epCWutJaqG6bUnP7dGN557tUmpt+3rd7x59BuibzqHUmp/bbrVF9OSfCy1tDiWsbXtmzIORtmtladfcc/95+qLW7tNiR7oN9JyPAy1ii1tij7coV4qr3lNfFRFnviYGffR1kpD0OF79jkdP9Go6bmNMf1vskLm81zLbpXJxm16R7bn9GlhnFK0XO23ANRihl+D0gxQu72Vm/xxJ7euhqwL5oqU/a3lCfgM9+5Xa+L8gYF0M3cflWfiHC41IazNa41KO8kX+ivymSMdg/2HJj3jEmPU04NE/leqpKB7dV1SdvRlhG7Jv5ENjHgy3zYO1bRqLv7+flQE6v5R0BpZ8lvnraN3HNtNbNye1wdO2OZxHFJxscQftj5bn7VQeD3LZewO4i9JtZfT7gNK6Xdb+GH1dtomI/sQyik8VLHksaHIZmjeizmg0ec8Iv88W9jKj+7k1IM/Fv0uRvneRcufob3EL2w24H/Hvf5HtteVKZc+FETYzo885ito4CZsO/ZZw2yQdiVcvkeYRD6dyOwktv1Yuh2azApQc04OSc64lZ/tV4o9/WriK0p5xJObA/ZlzhmF0myxYbNy4c6tBur+j65kjzwnSdgtYP06f/+sopdB8m0B6B9SsOebFG5+lJ1obe/ZTKWcHcIn5zbVN8sO15BnJ6G9Ja0bLMLcVTkZ+M7OdUiKDl8qpKbNU3m/pj5ay7ZdOII4s3ZZ739LYsNZ8UeDyLXVtYjyrhYWRfM6Q3k34PXGe2UbfJfi999nMkPQMrXQcr6bjvievtoxaP51aH58Fn1/Y6HfMaPYd7K3xHMPRKx7hKJKtckT8wrnDnXtuu1ZGq5hKC/8grTHh0Rla7F/mwui2jrBp2UOkNuB4kLR9e9PJmJGt+sIas3KO7GXg8kaU2wP4Hkf6Hiy8pYUfp6c+2L67hubfFRjdbxxSW7X1kSKQ6ub4xZm/9DxK6thDKcVilxXNaN/dVuAYt9z5PhWOe4L2Xa6o3/IewXVScnU/mUH/RvdF7Xs38Y0hz5z5QAHHiab/58aXneFiqwL4XqTxFGi7r8yg72rpHUMcYthKsWy5vK25HFTOa5S+JttfG7Z7GW3Dsq06yQuE3Hv2B+G3BRxbY3QM+oU4eq45P/pZ2UY+nkEb5sDHCyYOGFIM/x8VLhrzadTq93rAxeDpVa8nzwNEy/hDB2tGrBnyoJCo+q1rYHjynjboO2C1IHJkzMORW4PGsy6NZ30bac0ZyhfM/wUea5/OnR9RShkRV7KHfGYko+W8FlZretfHYckzAun9bgHeIdL2OeHxC0n8xJDbx3Eo4M0TRVTZEWu5SOctEVVOT7R7zOPn7vXl77Umz8JmkbtnRj8vc8fSv6PjtuTiuXC/Nyk+TGseFRxj6YuHkxy7tAe07tPIjvDbc7zHV4dbr6jE58fiL4V9hqN8rVr5dtX4Q9fQs+6ePnEen8VaOD9BaZ+njLnQsy+3Gc7u0OJbsXCSkliLp5nL5DfArRuFf2P7xutTjM1uVDlzg9qBccC6T/g/xWoPZrUfw/J37dgROgGOOwOQYqtIeUa0sYTRfqmbiGS7Y/Xf+dCw37q+UrSf0GjbHmC0Hmyb8OpxFnw6roUFK1jGyW3zyF2BewNoseYIJtXByYlgP7fNSjoGP9P0/0IdHrlfSdlSPaPOi9sfVefoNSm2hSTbwHrbnmspbSLXgogqu/f59viGemxZFk4yct0la53eNaJGr8HUc60noHSdqN4xSzxwuvAF3s4jZ19zuN53yEDL4vLQvKNtyRZ027poG71IRqzVcFvhTOb/GeZ/bXtya/JY8uR4mNn+MLMfiFgbbG6U9mXiOkqvk/Lg2TlD8tB1jTiizu05w8j3EY1J8t+FYp45OLfmbCW4HKm8W2vOorQWqZxbGaLKKUF7x5eUV1pXL0bIQEfLJGvLlOq4OYDHDFyeHm05b/gfxfvTP+t1vK9gjbOllaOVVVLnEjtsYcFGslH/nNnOrUlEsfghlNroc+shRXwHX2aAtYpG6LijfBu0eqTr9IqQu6Y0L0eNT00td8jvO0Ie7llo1Z47zO9c3oU27BG4NWQAnMeSXyun9Pi58vsAOH3tiHZsGtSu2NrXtfXQ+v4t5Et15b45/1b2A58aeWrYb8Vap7fc0XjOqxb6Xt4m5rQWzybz+pSjrQ/hWVuiZG2KSHaZ/zVIdSzE0Xr9s542M+Ar2aue3jzJUJIXP1dPppPPGretFFw//e9BKzsa7Zyk96/3PS6913Pv+9EknZh1bZf7zvy5cnqsRbMwH2rW95G4YdhvpaYdlvc+rU97d9B3eymjdXLfZ7ZLzFX3p8Uk+CoQWPvlxjRu3ZmF+a/7M1puv3B66b0uzmlknwFk89J2CldGjlzcEy6Pt3wv0po3ljyWNXOA0nx0/0L5Oj74N127p3XdHrzlSPnTHHxl5LUzv1YOBefh1pGprVfiSMGSJ6HFTCqFjrlg+6/O46xwx/ZaD4ZrT6+6NS7OtN7ce+LL6Z+54ZeduDH9s+60JV8Oa76ejJCPrhoyos7e4Hd4y7It34cI4J0I/1v7dswJiFUlbadY80n5Le2xtnlhwcLO1C++Dr5PS4715Bn1zuD8a2k7D4V8FK2uQ8Tod+XCfPDElfmP8NvLaYh/1JrRcT7mjuU7wb1vN53R/b5NjIyzMXdGX5u5ExXHbmehChjz/jSVrc+4MGY9TG7bpiA98+dOOWcM+ynSvocdgLp71IXr0/DktfRxr/PbJP4y8r6Dx+j3jvPYBNhzcnF+MJ7vIy63lB3hN+WZgqfdtXDXnLajVTu1fmgBjpVG/9PYcF5K32NzpFSOdrPi2Ny9cnONJQ8AZebamkMq1wuN8bwtQB/V9s+ceNygn7TvVCT0+wrcWQijdXyhVnUtMYr0fs7l6X3PzHGt9560WOt9VH/2PJcRtIq/Jr3DWhxD3wO92UO0iCN1mohal2pucOdoPfeI/hzZt68G1qvVTfPAe/HTmQLt/BSlPeqMaPNCnqh7o6bcvU7nsEeoOW9aFsflhY3kKWJ0Wxbq2J34uHG7DkbFLhvJU5TmeJLZrqHVr1FyTCv+RH1hOfe5Mvp57Y11nZ/rzP/r5LeFK8p/vF3CkzfxIoO2/4WhfEs9nnLmSq9z+EbBms9aTo82W9tjzZuLn5aLBVbKhRnygcAPzP8fmP8WtDZ8h8r9DqUcUntL2lVKz7osQHy2mthv2KfdGxdOO2a0jz4wWhe4sLAQixQTrCT2lpUedYwgF2PNS21do/ti4S0HneHifElwsjZLfks5LYiqyxon7P8yRJ/b/hquHZZ2R7XDWh6NidYqVtu2cDGzXaPFeF6Lk2XJs7DQitWUj6mWO85S7mgi7BQ3HfDtiChjYWFh8/kpgFZ1SceN7rOFMViu/44B7b6jeSxllgA+cJY8j1B7HglEPMuRtG6T1A8Lfui9xu3H9+QOsx14xXCN+R/JvQ70rGthvoyex43AG2PwtzXS9hznhW00Nu9v6Dfdb6nH0o5SpDjFC+WMfgYWFhYW5sIo2/8aPzIrveoBInxIauvqeb4L86Q0Xr7EnyilRNczFyzt/STovGtjsX/qaEtPXzirDxj+Joz+nkR920Z/+2r7gDuHtA3Ly2i+krpy8riSYxYWorDKmTk5Nd0e/U224In/Pxcs35YeayrgPvTkzx07oi9rvvlRYwZrO0ePWby0vg+3Fe/z1aJeqQ3a+5Qrs7TeBdu7YWEzsFzD5draeLpQRCs7q9NEhK2P1Q5o23m4ULz2zehrt8lAH/esE69Npl3bufEQpaX3cstnYWHeXEXpwvYAc3i8DWLIjZajeOUOUfIILSYVpiSmFQcXX/ACIbfvAtMOyIt/a3UuLPTgG4K0nYuDaSkHgDiT5zLcXpPb5yFXF5SJ1w0tqQPDrUW66cC4Y3Q7eoHvWW5bCZY6rW3y4Il9a0GLIctRUw537HMjUt6ofvD2lbRNuze4Nj9H+6x9kcOat0VfLsQB42b828L/CoF1kOn/Tea/lUSWdVqxXqfI6z3qfqOxrLX9VrQ11y8J2+bcd73vw9z649Am+r+UswKj+rZXf9N6Rj2HI2gRC782fv62xua/teY+Sr1Yz7elvKb0/LUyo+qMaPN3hnLotty5SPV45MKcXNcrYx7tg7kNWPztFz98P951tLn8I9bjztXbsj2j40tsGlwf3mwMrt+bn+LJ26PvFhY8SPfWywo+Q+Tu38+CwXMoKc//GtS7TZTKfK30rAvzDuHOwsLCwsLCwsKCi88bUtOeOxVllJw7jGVpnaPH8bmxfcux96uOaHFQNpWoGM+WmDFYBkr/v2vs123r/9NOTxk98C75zdXPye1zbc1tH8Efme0cJeVHMaqPvHDvsdprpPXFpvdZa+Z2/0WVP3rMPQLoL21/Dip71YgqJ/L8a9sinVdJOfsLYewh3iNAHrpdyofzc3Vp5UTgOffS4yzQ9eVxPbQ+zzr32vnTPPg4Tz29gXvw98a816EOXJeF0uO0ck4r75Hfc8TyLHPHaMeNfo4XYtDucWuehQUNaZw9OpbgNtB6rYNt5bKDpyg9rfyi0GPNCqBl2SPpvQbIwnaRez49eRdi2cts38vs95RfW8YmsUvYW6f7zD7KPvm9N4Ce8tfXW85qTW789jqzb5UpA7aPPsceaP234OdngrTdC74m0vWJunaeeZKG1ubWbWh1Xt66ufOL7oPR9/4287MxTy3aWKaG/8tsx7RuQw5LHksbtTyWOix1cXk8ZS+85ZcOdeBxsjRXsKLF+rtuzHMF8S/yH28vXVdLys/V05ue6y/1PKfR/Xoa+Zr5b6Xn/df7fuzFkzU96sqNg0f3w8JxrM8gzu85rgRPO0f3nwftmbDOJZ8IWPJIx9DjuXkrrGmAtz2Z8vMurk66r9U8mso4oK9Hz1e3hQ8IP6zh/v8QAFcX5ZugunpC1wzZJiznHnHdvuzE353qsPK1YX/iBoLblpDWsGkB/i6OvkcX5kfEs+FFepaksWerNnigz/CCjnV8s/R9bH8u+OkZM7A2jn9EG7Avam6fh1HrGkh1R7dztM/0go2SNSMsebi6LhiAufQFlFJG9xnFMhf8SsGab07cMeaJIpX3MYOUX9qH2/et0O5vEVAP7OPaYG2T1M6a461lRvJtBk+e6PZ8XFl+rs0LOqkPLyJ+bMwXGbg8rdsTCfaDvDPx/pG5dwCXnyPifRP9Top6p40eG2wC1r78iPzG5I7xYGlj6b3A1XegAMdq+TRGX+OFhZ5Y373e93ar8WzEM94C3La5trHmvLaF3v13sRHSWPTAuG3TGB37bmEMH64Z3Y5N4kFAGRfX5Wjgd5I1H44nBON7+n+hHwcC1rmXlmf0+WlIz4CnDMuzsom0Gr8svOVgaj9eXND5dQ2MOfFvTFR9o8fUlNH2KpTVDNpQ0uYFH0s/xhMRs8DCUcd6rHjzS3wYBD0XbtuvAl+gciT9qaVOCSjjZ5Lm4PpqVdHPUpkl5dQS0Y6V0h+rCiL6exP6UGtPi/OSnsFfjcdbyqkh4tpsCpZ+kMaxke2IHmNTv0fNJ3Gh3Kcvopwb01v/ofSbs0G8kdkn2Y5K9bW2Bc3VmWtD7vxuLGyUnwwuM7o9ufytz+s0cpr703K+1vswZyu72jLgvGrmatxYqUfbW8x5ejN6bD1HtHG7dXz9/wCdlFVq</Data>
  118. </DataArray>
  119. </GIFTI>