tpl-fsaverage_hemi-L_den-164k_atlas-Lausanne2018_scale-4_dseg.label.gii 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Wed Mar 13 16:09:12 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0.980392" Green="0.980392" Blue="0.980392" Alpha="1"><![CDATA[unknown ]]></Label>
  20. <Label Key="1" Red="0.478431" Green="0.258824" Blue="0.321569" Alpha="1"><![CDATA[lateralorbitofrontal_1 ]]></Label>
  21. <Label Key="2" Red="0.152941" Green="0.717647" Blue="0.121569" Alpha="1"><![CDATA[lateralorbitofrontal_2 ]]></Label>
  22. <Label Key="3" Red="0.984314" Green="0.698039" Blue="0.796078" Alpha="1"><![CDATA[lateralorbitofrontal_3 ]]></Label>
  23. <Label Key="4" Red="0.458824" Green="0.517647" Blue="0.827451" Alpha="1"><![CDATA[lateralorbitofrontal_4 ]]></Label>
  24. <Label Key="5" Red="0.756863" Green="0.027451" Blue="0.470588" Alpha="1"><![CDATA[lateralorbitofrontal_5 ]]></Label>
  25. <Label Key="6" Red="0.501961" Green="0.937255" Blue="0.243137" Alpha="1"><![CDATA[lateralorbitofrontal_6 ]]></Label>
  26. <Label Key="7" Red="0.854902" Green="0.384314" Blue="0.619608" Alpha="1"><![CDATA[lateralorbitofrontal_7 ]]></Label>
  27. <Label Key="8" Red="0.819608" Green="0.984314" Blue="0.47451" Alpha="1"><![CDATA[parsorbitalis_1 ]]></Label>
  28. <Label Key="9" Red="0.270588" Green="0.207843" Blue="0.243137" Alpha="1"><![CDATA[parsorbitalis_2 ]]></Label>
  29. <Label Key="10" Red="0.52549" Green="0.972549" Blue="0.537255" Alpha="1"><![CDATA[frontalpole_1 ]]></Label>
  30. <Label Key="11" Red="0.815686" Green="0.403922" Blue="0.772549" Alpha="1"><![CDATA[medialorbitofrontal_1 ]]></Label>
  31. <Label Key="12" Red="0.654902" Green="0.231373" Blue="0.819608" Alpha="1"><![CDATA[medialorbitofrontal_2 ]]></Label>
  32. <Label Key="13" Red="0.784314" Green="0.960784" Blue="0.47451" Alpha="1"><![CDATA[medialorbitofrontal_3 ]]></Label>
  33. <Label Key="14" Red="0.721569" Green="0.337255" Blue="0.14902" Alpha="1"><![CDATA[medialorbitofrontal_4 ]]></Label>
  34. <Label Key="15" Red="0.823529" Green="0.894118" Blue="0.701961" Alpha="1"><![CDATA[medialorbitofrontal_5 ]]></Label>
  35. <Label Key="16" Red="0.129412" Green="0.796078" Blue="0.858824" Alpha="1"><![CDATA[parstriangularis_1 ]]></Label>
  36. <Label Key="17" Red="0.866667" Green="0.219608" Blue="0.756863" Alpha="1"><![CDATA[parstriangularis_2 ]]></Label>
  37. <Label Key="18" Red="0.945098" Green="0.592157" Blue="0.780392" Alpha="1"><![CDATA[parstriangularis_3 ]]></Label>
  38. <Label Key="19" Red="0.282353" Green="0.545098" Blue="0.709804" Alpha="1"><![CDATA[parstriangularis_4 ]]></Label>
  39. <Label Key="20" Red="0.784314" Green="0.584314" Blue="0.443137" Alpha="1"><![CDATA[parsopercularis_1 ]]></Label>
  40. <Label Key="21" Red="0.627451" Green="0.270588" Blue="0.933333" Alpha="1"><![CDATA[parsopercularis_2 ]]></Label>
  41. <Label Key="22" Red="0.776471" Green="0.690196" Blue="0.92549" Alpha="1"><![CDATA[parsopercularis_3 ]]></Label>
  42. <Label Key="23" Red="0.0156863" Green="0.788235" Blue="0.239216" Alpha="1"><![CDATA[parsopercularis_4 ]]></Label>
  43. <Label Key="24" Red="0.388235" Green="0.160784" Blue="0.0117647" Alpha="1"><![CDATA[rostralmiddlefrontal_1 ]]></Label>
  44. <Label Key="25" Red="0.890196" Green="0.760784" Blue="0.682353" Alpha="1"><![CDATA[rostralmiddlefrontal_2 ]]></Label>
  45. <Label Key="26" Red="0.752941" Green="0.682353" Blue="0.203922" Alpha="1"><![CDATA[rostralmiddlefrontal_3 ]]></Label>
  46. <Label Key="27" Red="0.313726" Green="0.682353" Blue="0.419608" Alpha="1"><![CDATA[rostralmiddlefrontal_4 ]]></Label>
  47. <Label Key="28" Red="0.25098" Green="0.152941" Blue="0.47451" Alpha="1"><![CDATA[rostralmiddlefrontal_5 ]]></Label>
  48. <Label Key="29" Red="0.180392" Green="0.556863" Blue="0.368627" Alpha="1"><![CDATA[rostralmiddlefrontal_6 ]]></Label>
  49. <Label Key="30" Red="0.188235" Green="0.364706" Blue="0.831373" Alpha="1"><![CDATA[rostralmiddlefrontal_7 ]]></Label>
  50. <Label Key="31" Red="0.921569" Green="0.172549" Blue="0.501961" Alpha="1"><![CDATA[rostralmiddlefrontal_8 ]]></Label>
  51. <Label Key="32" Red="0.352941" Green="0.223529" Blue="0.890196" Alpha="1"><![CDATA[rostralmiddlefrontal_9 ]]></Label>
  52. <Label Key="33" Red="0.831373" Green="0.929412" Blue="0.243137" Alpha="1"><![CDATA[rostralmiddlefrontal_10 ]]></Label>
  53. <Label Key="34" Red="0.686275" Green="0.156863" Blue="0.980392" Alpha="1"><![CDATA[rostralmiddlefrontal_11 ]]></Label>
  54. <Label Key="35" Red="0.192157" Green="0.113725" Blue="0.301961" Alpha="1"><![CDATA[rostralmiddlefrontal_12 ]]></Label>
  55. <Label Key="36" Red="0.682353" Green="0.301961" Blue="0.321569" Alpha="1"><![CDATA[rostralmiddlefrontal_13 ]]></Label>
  56. <Label Key="37" Red="0.372549" Green="0.286275" Blue="0.87451" Alpha="1"><![CDATA[superiorfrontal_1 ]]></Label>
  57. <Label Key="38" Red="0.439216" Green="0.054902" Blue="0.937255" Alpha="1"><![CDATA[superiorfrontal_2 ]]></Label>
  58. <Label Key="39" Red="0.415686" Green="0.72549" Blue="0.862745" Alpha="1"><![CDATA[superiorfrontal_3 ]]></Label>
  59. <Label Key="40" Red="0.411765" Green="1" Blue="0.686275" Alpha="1"><![CDATA[superiorfrontal_4 ]]></Label>
  60. <Label Key="41" Red="0.435294" Green="0.886275" Blue="0.294118" Alpha="1"><![CDATA[superiorfrontal_5 ]]></Label>
  61. <Label Key="42" Red="0.145098" Green="0.317647" Blue="0.235294" Alpha="1"><![CDATA[superiorfrontal_6 ]]></Label>
  62. <Label Key="43" Red="0.321569" Green="0.698039" Blue="0.482353" Alpha="1"><![CDATA[superiorfrontal_7 ]]></Label>
  63. <Label Key="44" Red="0.733333" Green="0.439216" Blue="0.0862745" Alpha="1"><![CDATA[superiorfrontal_8 ]]></Label>
  64. <Label Key="45" Red="0.164706" Green="0.298039" Blue="0.807843" Alpha="1"><![CDATA[superiorfrontal_9 ]]></Label>
  65. <Label Key="46" Red="0.184314" Green="0.282353" Blue="0.831373" Alpha="1"><![CDATA[superiorfrontal_10 ]]></Label>
  66. <Label Key="47" Red="0.160784" Green="0.329412" Blue="0.988235" Alpha="1"><![CDATA[superiorfrontal_11 ]]></Label>
  67. <Label Key="48" Red="0.156863" Green="0.317647" Blue="0.647059" Alpha="1"><![CDATA[superiorfrontal_12 ]]></Label>
  68. <Label Key="49" Red="0.301961" Green="0.0117647" Blue="0.494118" Alpha="1"><![CDATA[superiorfrontal_13 ]]></Label>
  69. <Label Key="50" Red="0.262745" Green="0.247059" Blue="0.227451" Alpha="1"><![CDATA[superiorfrontal_14 ]]></Label>
  70. <Label Key="51" Red="0.682353" Green="0.537255" Blue="0.478431" Alpha="1"><![CDATA[superiorfrontal_15 ]]></Label>
  71. <Label Key="52" Red="0.0392157" Green="0.25098" Blue="0.223529" Alpha="1"><![CDATA[superiorfrontal_16 ]]></Label>
  72. <Label Key="53" Red="0.152941" Green="0.509804" Blue="0.168627" Alpha="1"><![CDATA[superiorfrontal_17 ]]></Label>
  73. <Label Key="54" Red="0.196078" Green="0.0980392" Blue="0.886275" Alpha="1"><![CDATA[caudalmiddlefrontal_1 ]]></Label>
  74. <Label Key="55" Red="0.74902" Green="0.741176" Blue="0.52549" Alpha="1"><![CDATA[caudalmiddlefrontal_2 ]]></Label>
  75. <Label Key="56" Red="0.862745" Green="0.639216" Blue="0.780392" Alpha="1"><![CDATA[caudalmiddlefrontal_3 ]]></Label>
  76. <Label Key="57" Red="0.607843" Green="0.666667" Blue="0.0313726" Alpha="1"><![CDATA[caudalmiddlefrontal_4 ]]></Label>
  77. <Label Key="58" Red="0.784314" Green="0.105882" Blue="0.054902" Alpha="1"><![CDATA[caudalmiddlefrontal_5 ]]></Label>
  78. <Label Key="59" Red="0.211765" Green="0.333333" Blue="0.65098" Alpha="1"><![CDATA[precentral_1 ]]></Label>
  79. <Label Key="60" Red="0.537255" Green="0.435294" Blue="0.552941" Alpha="1"><![CDATA[precentral_2 ]]></Label>
  80. <Label Key="61" Red="0.0862745" Green="0.639216" Blue="0.337255" Alpha="1"><![CDATA[precentral_3 ]]></Label>
  81. <Label Key="62" Red="0.4" Green="0.764706" Blue="0.337255" Alpha="1"><![CDATA[precentral_4 ]]></Label>
  82. <Label Key="63" Red="0.760784" Green="0.545098" Blue="0.0392157" Alpha="1"><![CDATA[precentral_5 ]]></Label>
  83. <Label Key="64" Red="0.345098" Green="0.345098" Blue="0.968627" Alpha="1"><![CDATA[precentral_6 ]]></Label>
  84. <Label Key="65" Red="0.615686" Green="0.752941" Blue="0.447059" Alpha="1"><![CDATA[precentral_7 ]]></Label>
  85. <Label Key="66" Red="0.972549" Green="0.87451" Blue="0.0431373" Alpha="1"><![CDATA[precentral_8 ]]></Label>
  86. <Label Key="67" Red="0.137255" Green="0.768627" Blue="0.258824" Alpha="1"><![CDATA[precentral_9 ]]></Label>
  87. <Label Key="68" Red="0.698039" Green="0.0352941" Blue="0.745098" Alpha="1"><![CDATA[precentral_10 ]]></Label>
  88. <Label Key="69" Red="0.0392157" Green="0.211765" Blue="0.113725" Alpha="1"><![CDATA[precentral_11 ]]></Label>
  89. <Label Key="70" Red="0.0509804" Green="0.643137" Blue="0.27451" Alpha="1"><![CDATA[precentral_12 ]]></Label>
  90. <Label Key="71" Red="0.478431" Green="0.745098" Blue="0.0862745" Alpha="1"><![CDATA[precentral_13 ]]></Label>
  91. <Label Key="72" Red="0.552941" Green="0.0235294" Blue="0.764706" Alpha="1"><![CDATA[precentral_14 ]]></Label>
  92. <Label Key="73" Red="0.588235" Green="0.952941" Blue="0.937255" Alpha="1"><![CDATA[precentral_15 ]]></Label>
  93. <Label Key="74" Red="0.0392157" Green="0.945098" Blue="0.458824" Alpha="1"><![CDATA[precentral_16 ]]></Label>
  94. <Label Key="75" Red="0.556863" Green="0.686275" Blue="0.247059" Alpha="1"><![CDATA[paracentral_1 ]]></Label>
  95. <Label Key="76" Red="0.0392157" Green="0.882353" Blue="0.513726" Alpha="1"><![CDATA[paracentral_2 ]]></Label>
  96. <Label Key="77" Red="0.137255" Green="0.45098" Blue="0.941176" Alpha="1"><![CDATA[paracentral_3 ]]></Label>
  97. <Label Key="78" Red="0.588235" Green="0.729412" Blue="0.2" Alpha="1"><![CDATA[paracentral_4 ]]></Label>
  98. <Label Key="79" Red="0.776471" Green="0.0509804" Blue="0.054902" Alpha="1"><![CDATA[paracentral_5 ]]></Label>
  99. <Label Key="80" Red="0.145098" Green="0.227451" Blue="0.87451" Alpha="1"><![CDATA[paracentral_6 ]]></Label>
  100. <Label Key="81" Red="0.537255" Green="0.00392157" Blue="0.32549" Alpha="1"><![CDATA[rostralanteriorcingulate_1 ]]></Label>
  101. <Label Key="82" Red="0.427451" Green="0.901961" Blue="0.203922" Alpha="1"><![CDATA[rostralanteriorcingulate_2 ]]></Label>
  102. <Label Key="83" Red="0.109804" Green="0.611765" Blue="0.12549" Alpha="1"><![CDATA[caudalanteriorcingulate_1 ]]></Label>
  103. <Label Key="84" Red="0.862745" Green="0.776471" Blue="0.52549" Alpha="1"><![CDATA[caudalanteriorcingulate_2 ]]></Label>
  104. <Label Key="85" Red="0.32549" Green="0.458824" Blue="0.780392" Alpha="1"><![CDATA[caudalanteriorcingulate_3 ]]></Label>
  105. <Label Key="86" Red="0.439216" Green="0.501961" Blue="0.231373" Alpha="1"><![CDATA[posteriorcingulate_1 ]]></Label>
  106. <Label Key="87" Red="0.337255" Green="0.784314" Blue="0.0431373" Alpha="1"><![CDATA[posteriorcingulate_2 ]]></Label>
  107. <Label Key="88" Red="0.713726" Green="0.576471" Blue="0.756863" Alpha="1"><![CDATA[posteriorcingulate_3 ]]></Label>
  108. <Label Key="89" Red="0.278431" Green="0.992157" Blue="0.376471" Alpha="1"><![CDATA[posteriorcingulate_4 ]]></Label>
  109. <Label Key="90" Red="0.54902" Green="0.227451" Blue="0.858824" Alpha="1"><![CDATA[isthmuscingulate_1 ]]></Label>
  110. <Label Key="91" Red="0.572549" Green="0.717647" Blue="0.2" Alpha="1"><![CDATA[isthmuscingulate_2 ]]></Label>
  111. <Label Key="92" Red="0.403922" Green="0.498039" Blue="0.654902" Alpha="1"><![CDATA[postcentral_1 ]]></Label>
  112. <Label Key="93" Red="0.0470588" Green="0.0235294" Blue="0.34902" Alpha="1"><![CDATA[postcentral_2 ]]></Label>
  113. <Label Key="94" Red="0.462745" Green="0.423529" Blue="0.0588235" Alpha="1"><![CDATA[postcentral_3 ]]></Label>
  114. <Label Key="95" Red="0.188235" Green="0.709804" Blue="0.376471" Alpha="1"><![CDATA[postcentral_4 ]]></Label>
  115. <Label Key="96" Red="0.333333" Green="0.619608" Blue="0.223529" Alpha="1"><![CDATA[postcentral_5 ]]></Label>
  116. <Label Key="97" Red="0.0980392" Green="0.619608" Blue="0.32549" Alpha="1"><![CDATA[postcentral_6 ]]></Label>
  117. <Label Key="98" Red="0.717647" Green="0.686275" Blue="0.309804" Alpha="1"><![CDATA[postcentral_7 ]]></Label>
  118. <Label Key="99" Red="0.435294" Green="0.819608" Blue="0.415686" Alpha="1"><![CDATA[postcentral_8 ]]></Label>
  119. <Label Key="100" Red="0.72549" Green="0.2" Blue="0.560784" Alpha="1"><![CDATA[postcentral_9 ]]></Label>
  120. <Label Key="101" Red="0.509804" Green="0.282353" Blue="0.572549" Alpha="1"><![CDATA[postcentral_10 ]]></Label>
  121. <Label Key="102" Red="0.6" Green="0.231373" Blue="0.733333" Alpha="1"><![CDATA[postcentral_11 ]]></Label>
  122. <Label Key="103" Red="0.0784314" Green="0.0862745" Blue="0.231373" Alpha="1"><![CDATA[postcentral_12 ]]></Label>
  123. <Label Key="104" Red="0.894118" Green="0.854902" Blue="0.854902" Alpha="1"><![CDATA[supramarginal_1 ]]></Label>
  124. <Label Key="105" Red="0.215686" Green="0.611765" Blue="0.560784" Alpha="1"><![CDATA[supramarginal_2 ]]></Label>
  125. <Label Key="106" Red="0.560784" Green="0.968627" Blue="0.333333" Alpha="1"><![CDATA[supramarginal_3 ]]></Label>
  126. <Label Key="107" Red="0.905882" Green="0.960784" Blue="0.207843" Alpha="1"><![CDATA[supramarginal_4 ]]></Label>
  127. <Label Key="108" Red="0.490196" Green="0.145098" Blue="0.207843" Alpha="1"><![CDATA[supramarginal_5 ]]></Label>
  128. <Label Key="109" Red="0.345098" Green="0.603922" Blue="0.823529" Alpha="1"><![CDATA[supramarginal_6 ]]></Label>
  129. <Label Key="110" Red="0.196078" Green="0.101961" Blue="0.0627451" Alpha="1"><![CDATA[supramarginal_7 ]]></Label>
  130. <Label Key="111" Red="0.262745" Green="0.972549" Blue="0.305882" Alpha="1"><![CDATA[supramarginal_8 ]]></Label>
  131. <Label Key="112" Red="0.827451" Green="0.847059" Blue="0.843137" Alpha="1"><![CDATA[supramarginal_9 ]]></Label>
  132. <Label Key="113" Red="0.572549" Green="0.180392" Blue="0.0235294" Alpha="1"><![CDATA[superiorparietal_1 ]]></Label>
  133. <Label Key="114" Red="0.403922" Green="0.0901961" Blue="0.490196" Alpha="1"><![CDATA[superiorparietal_2 ]]></Label>
  134. <Label Key="115" Red="0.180392" Green="0.756863" Blue="0.929412" Alpha="1"><![CDATA[superiorparietal_3 ]]></Label>
  135. <Label Key="116" Red="0.580392" Green="0.0862745" Blue="0.72549" Alpha="1"><![CDATA[superiorparietal_4 ]]></Label>
  136. <Label Key="117" Red="0.0235294" Green="0.909804" Blue="0.337255" Alpha="1"><![CDATA[superiorparietal_5 ]]></Label>
  137. <Label Key="118" Red="0.0117647" Green="0.054902" Blue="0.631373" Alpha="1"><![CDATA[superiorparietal_6 ]]></Label>
  138. <Label Key="119" Red="0.254902" Green="0.12549" Blue="0.996078" Alpha="1"><![CDATA[superiorparietal_7 ]]></Label>
  139. <Label Key="120" Red="0.0117647" Green="0.607843" Blue="0.945098" Alpha="1"><![CDATA[superiorparietal_8 ]]></Label>
  140. <Label Key="121" Red="0.698039" Green="0.466667" Blue="0.901961" Alpha="1"><![CDATA[superiorparietal_9 ]]></Label>
  141. <Label Key="122" Red="0.662745" Green="0.431373" Blue="0.788235" Alpha="1"><![CDATA[superiorparietal_10 ]]></Label>
  142. <Label Key="123" Red="0.890196" Green="0.27451" Blue="0.992157" Alpha="1"><![CDATA[superiorparietal_11 ]]></Label>
  143. <Label Key="124" Red="0.541176" Green="0.576471" Blue="0.556863" Alpha="1"><![CDATA[superiorparietal_12 ]]></Label>
  144. <Label Key="125" Red="0.717647" Green="0.803922" Blue="0.482353" Alpha="1"><![CDATA[superiorparietal_13 ]]></Label>
  145. <Label Key="126" Red="0.117647" Green="0.560784" Blue="0.411765" Alpha="1"><![CDATA[inferiorparietal_1 ]]></Label>
  146. <Label Key="127" Red="0.25098" Green="0.580392" Blue="0.854902" Alpha="1"><![CDATA[inferiorparietal_2 ]]></Label>
  147. <Label Key="128" Red="0.815686" Green="0.733333" Blue="0.0588235" Alpha="1"><![CDATA[inferiorparietal_3 ]]></Label>
  148. <Label Key="129" Red="0.152941" Green="0.129412" Blue="0.890196" Alpha="1"><![CDATA[inferiorparietal_4 ]]></Label>
  149. <Label Key="130" Red="0.941176" Green="0.509804" Blue="0.443137" Alpha="1"><![CDATA[inferiorparietal_5 ]]></Label>
  150. <Label Key="131" Red="0.901961" Green="0.831373" Blue="0.176471" Alpha="1"><![CDATA[inferiorparietal_6 ]]></Label>
  151. <Label Key="132" Red="0.498039" Green="0.839216" Blue="0.0627451" Alpha="1"><![CDATA[inferiorparietal_7 ]]></Label>
  152. <Label Key="133" Red="0.682353" Green="0.368627" Blue="0.52549" Alpha="1"><![CDATA[inferiorparietal_8 ]]></Label>
  153. <Label Key="134" Red="0.8" Green="0.462745" Blue="0.145098" Alpha="1"><![CDATA[inferiorparietal_9 ]]></Label>
  154. <Label Key="135" Red="0.886275" Green="0.870588" Blue="0.388235" Alpha="1"><![CDATA[inferiorparietal_10 ]]></Label>
  155. <Label Key="136" Red="0.929412" Green="0.0901961" Blue="0.933333" Alpha="1"><![CDATA[inferiorparietal_11 ]]></Label>
  156. <Label Key="137" Red="0.737255" Green="0.215686" Blue="0.419608" Alpha="1"><![CDATA[inferiorparietal_12 ]]></Label>
  157. <Label Key="138" Red="0.0470588" Green="0.152941" Blue="0.188235" Alpha="1"><![CDATA[precuneus_1 ]]></Label>
  158. <Label Key="139" Red="0.878431" Green="0.0392157" Blue="0.529412" Alpha="1"><![CDATA[precuneus_2 ]]></Label>
  159. <Label Key="140" Red="0.8" Green="0.682353" Blue="0.698039" Alpha="1"><![CDATA[precuneus_3 ]]></Label>
  160. <Label Key="141" Red="0.854902" Green="0.572549" Blue="0.584314" Alpha="1"><![CDATA[precuneus_4 ]]></Label>
  161. <Label Key="142" Red="0.0941176" Green="0.631373" Blue="0.447059" Alpha="1"><![CDATA[precuneus_5 ]]></Label>
  162. <Label Key="143" Red="0.498039" Green="0.568627" Blue="0.729412" Alpha="1"><![CDATA[precuneus_6 ]]></Label>
  163. <Label Key="144" Red="0.619608" Green="0.870588" Blue="0.137255" Alpha="1"><![CDATA[precuneus_7 ]]></Label>
  164. <Label Key="145" Red="0.615686" Green="0.0784314" Blue="0.545098" Alpha="1"><![CDATA[precuneus_8 ]]></Label>
  165. <Label Key="146" Red="0.898039" Green="0.960784" Blue="0.458824" Alpha="1"><![CDATA[precuneus_9 ]]></Label>
  166. <Label Key="147" Red="0.635294" Green="0.356863" Blue="0.360784" Alpha="1"><![CDATA[precuneus_10 ]]></Label>
  167. <Label Key="148" Red="0.772549" Green="0.027451" Blue="0.631373" Alpha="1"><![CDATA[cuneus_1 ]]></Label>
  168. <Label Key="149" Red="0.980392" Green="0.513726" Blue="0.321569" Alpha="1"><![CDATA[cuneus_2 ]]></Label>
  169. <Label Key="150" Red="0.364706" Green="0.729412" Blue="0.552941" Alpha="1"><![CDATA[cuneus_3 ]]></Label>
  170. <Label Key="151" Red="0.564706" Green="0.372549" Blue="0.498039" Alpha="1"><![CDATA[cuneus_4 ]]></Label>
  171. <Label Key="152" Red="0.976471" Green="0.0352941" Blue="0.0235294" Alpha="1"><![CDATA[pericalcarine_1 ]]></Label>
  172. <Label Key="153" Red="0.435294" Green="0.858824" Blue="0.580392" Alpha="1"><![CDATA[pericalcarine_2 ]]></Label>
  173. <Label Key="154" Red="0.627451" Green="0.0392157" Blue="0.290196" Alpha="1"><![CDATA[pericalcarine_3 ]]></Label>
  174. <Label Key="155" Red="0.537255" Green="0.0784314" Blue="0.647059" Alpha="1"><![CDATA[pericalcarine_4 ]]></Label>
  175. <Label Key="156" Red="0.752941" Green="0.101961" Blue="0.54902" Alpha="1"><![CDATA[lateraloccipital_1 ]]></Label>
  176. <Label Key="157" Red="0.780392" Green="0.262745" Blue="0.160784" Alpha="1"><![CDATA[lateraloccipital_2 ]]></Label>
  177. <Label Key="158" Red="0.34902" Green="0.898039" Blue="0.698039" Alpha="1"><![CDATA[lateraloccipital_3 ]]></Label>
  178. <Label Key="159" Red="0.176471" Green="0.321569" Blue="0.435294" Alpha="1"><![CDATA[lateraloccipital_4 ]]></Label>
  179. <Label Key="160" Red="0.32549" Green="0.764706" Blue="0.270588" Alpha="1"><![CDATA[lateraloccipital_5 ]]></Label>
  180. <Label Key="161" Red="0.384314" Green="0.0196078" Blue="0.74902" Alpha="1"><![CDATA[lateraloccipital_6 ]]></Label>
  181. <Label Key="162" Red="0.345098" Green="0.945098" Blue="0.74902" Alpha="1"><![CDATA[lateraloccipital_7 ]]></Label>
  182. <Label Key="163" Red="0.878431" Green="0.658824" Blue="0.545098" Alpha="1"><![CDATA[lateraloccipital_8 ]]></Label>
  183. <Label Key="164" Red="0.0117647" Green="0.513726" Blue="0.243137" Alpha="1"><![CDATA[lateraloccipital_9 ]]></Label>
  184. <Label Key="165" Red="0.486275" Green="0.12549" Blue="0.0901961" Alpha="1"><![CDATA[lateraloccipital_10 ]]></Label>
  185. <Label Key="166" Red="0.596078" Green="0.619608" Blue="0.780392" Alpha="1"><![CDATA[lingual_1 ]]></Label>
  186. <Label Key="167" Red="0.521569" Green="0.933333" Blue="0.745098" Alpha="1"><![CDATA[lingual_2 ]]></Label>
  187. <Label Key="168" Red="1" Green="0.917647" Blue="0.745098" Alpha="1"><![CDATA[lingual_3 ]]></Label>
  188. <Label Key="169" Red="0.635294" Green="0.0352941" Blue="0.0627451" Alpha="1"><![CDATA[lingual_4 ]]></Label>
  189. <Label Key="170" Red="0.815686" Green="0.843137" Blue="0.192157" Alpha="1"><![CDATA[lingual_5 ]]></Label>
  190. <Label Key="171" Red="0.0235294" Green="0.827451" Blue="0.521569" Alpha="1"><![CDATA[lingual_6 ]]></Label>
  191. <Label Key="172" Red="0.980392" Green="0.235294" Blue="0.992157" Alpha="1"><![CDATA[lingual_7 ]]></Label>
  192. <Label Key="173" Red="0.0196078" Green="0.364706" Blue="0.341176" Alpha="1"><![CDATA[fusiform_1 ]]></Label>
  193. <Label Key="174" Red="0.396078" Green="0.341176" Blue="0.592157" Alpha="1"><![CDATA[fusiform_2 ]]></Label>
  194. <Label Key="175" Red="0.0352941" Green="0.913725" Blue="0.309804" Alpha="1"><![CDATA[fusiform_3 ]]></Label>
  195. <Label Key="176" Red="0.701961" Green="0.741176" Blue="0.0745098" Alpha="1"><![CDATA[fusiform_4 ]]></Label>
  196. <Label Key="177" Red="0.658824" Green="0.690196" Blue="0.85098" Alpha="1"><![CDATA[fusiform_5 ]]></Label>
  197. <Label Key="178" Red="0.847059" Green="0.458824" Blue="0.282353" Alpha="1"><![CDATA[fusiform_6 ]]></Label>
  198. <Label Key="179" Red="0.686275" Green="0.470588" Blue="0.0745098" Alpha="1"><![CDATA[fusiform_7 ]]></Label>
  199. <Label Key="180" Red="0.588235" Green="0.443137" Blue="0.521569" Alpha="1"><![CDATA[fusiform_8 ]]></Label>
  200. <Label Key="181" Red="0.294118" Green="0.584314" Blue="0.478431" Alpha="1"><![CDATA[parahippocampal_1 ]]></Label>
  201. <Label Key="182" Red="0.72549" Green="0.619608" Blue="0.0117647" Alpha="1"><![CDATA[parahippocampal_2 ]]></Label>
  202. <Label Key="183" Red="0.403922" Green="0.780392" Blue="0.866667" Alpha="1"><![CDATA[parahippocampal_3 ]]></Label>
  203. <Label Key="184" Red="0.87451" Green="0.745098" Blue="0.121569" Alpha="1"><![CDATA[entorhinal_1 ]]></Label>
  204. <Label Key="185" Red="0.0862745" Green="0.266667" Blue="0.521569" Alpha="1"><![CDATA[temporalpole_1 ]]></Label>
  205. <Label Key="186" Red="0.658824" Green="0.929412" Blue="0.258824" Alpha="1"><![CDATA[inferiortemporal_1 ]]></Label>
  206. <Label Key="187" Red="0.392157" Green="0.505882" Blue="0.984314" Alpha="1"><![CDATA[inferiortemporal_2 ]]></Label>
  207. <Label Key="188" Red="0.215686" Green="0.745098" Blue="0.772549" Alpha="1"><![CDATA[inferiortemporal_3 ]]></Label>
  208. <Label Key="189" Red="0.262745" Green="0.403922" Blue="0.560784" Alpha="1"><![CDATA[inferiortemporal_4 ]]></Label>
  209. <Label Key="190" Red="0.509804" Green="0.635294" Blue="0.0431373" Alpha="1"><![CDATA[inferiortemporal_5 ]]></Label>
  210. <Label Key="191" Red="0.921569" Green="0.121569" Blue="0.25098" Alpha="1"><![CDATA[inferiortemporal_6 ]]></Label>
  211. <Label Key="192" Red="0.258824" Green="0.847059" Blue="0.572549" Alpha="1"><![CDATA[inferiortemporal_7 ]]></Label>
  212. <Label Key="193" Red="0.501961" Green="0.905882" Blue="0.427451" Alpha="1"><![CDATA[middletemporal_1 ]]></Label>
  213. <Label Key="194" Red="0.827451" Green="0.752941" Blue="0.301961" Alpha="1"><![CDATA[middletemporal_2 ]]></Label>
  214. <Label Key="195" Red="0.164706" Green="0.909804" Blue="0.0470588" Alpha="1"><![CDATA[middletemporal_3 ]]></Label>
  215. <Label Key="196" Red="0.858824" Green="0.384314" Blue="0.270588" Alpha="1"><![CDATA[middletemporal_4 ]]></Label>
  216. <Label Key="197" Red="0.235294" Green="0.286275" Blue="0.85098" Alpha="1"><![CDATA[middletemporal_5 ]]></Label>
  217. <Label Key="198" Red="0.498039" Green="0.533333" Blue="0.321569" Alpha="1"><![CDATA[middletemporal_6 ]]></Label>
  218. <Label Key="199" Red="0.909804" Green="0.313726" Blue="0.647059" Alpha="1"><![CDATA[middletemporal_7 ]]></Label>
  219. <Label Key="200" Red="0.356863" Green="0.968627" Blue="0.376471" Alpha="1"><![CDATA[middletemporal_8 ]]></Label>
  220. <Label Key="201" Red="0.32549" Green="0.631373" Blue="0.858824" Alpha="1"><![CDATA[middletemporal_9 ]]></Label>
  221. <Label Key="202" Red="0.0941176" Green="0.498039" Blue="0.34902" Alpha="1"><![CDATA[bankssts_1 ]]></Label>
  222. <Label Key="203" Red="0.356863" Green="0.72549" Blue="0.207843" Alpha="1"><![CDATA[bankssts_2 ]]></Label>
  223. <Label Key="204" Red="0.34902" Green="0.113725" Blue="0.12549" Alpha="1"><![CDATA[bankssts_3 ]]></Label>
  224. <Label Key="205" Red="0.686275" Green="0.972549" Blue="0.454902" Alpha="1"><![CDATA[superiortemporal_1 ]]></Label>
  225. <Label Key="206" Red="1" Green="0.776471" Blue="0.309804" Alpha="1"><![CDATA[superiortemporal_2 ]]></Label>
  226. <Label Key="207" Red="0.858824" Green="0.580392" Blue="0.352941" Alpha="1"><![CDATA[superiortemporal_3 ]]></Label>
  227. <Label Key="208" Red="0.607843" Green="0.611765" Blue="0.666667" Alpha="1"><![CDATA[superiortemporal_4 ]]></Label>
  228. <Label Key="209" Red="0.458824" Green="0.729412" Blue="0.631373" Alpha="1"><![CDATA[superiortemporal_5 ]]></Label>
  229. <Label Key="210" Red="0.145098" Green="0.937255" Blue="0.678431" Alpha="1"><![CDATA[superiortemporal_6 ]]></Label>
  230. <Label Key="211" Red="0.505882" Green="0.309804" Blue="0.556863" Alpha="1"><![CDATA[superiortemporal_7 ]]></Label>
  231. <Label Key="212" Red="0.686275" Green="0.0470588" Blue="0.266667" Alpha="1"><![CDATA[superiortemporal_8 ]]></Label>
  232. <Label Key="213" Red="0.764706" Green="0.054902" Blue="0.0745098" Alpha="1"><![CDATA[superiortemporal_9 ]]></Label>
  233. <Label Key="214" Red="0.952941" Green="0.34902" Blue="0.431373" Alpha="1"><![CDATA[superiortemporal_10 ]]></Label>
  234. <Label Key="215" Red="0.988235" Green="0.647059" Blue="0.301961" Alpha="1"><![CDATA[superiortemporal_11 ]]></Label>
  235. <Label Key="216" Red="0.490196" Green="0.054902" Blue="0.494118" Alpha="1"><![CDATA[transversetemporal_1 ]]></Label>
  236. <Label Key="217" Red="0.145098" Green="0.792157" Blue="0.596078" Alpha="1"><![CDATA[insula_1 ]]></Label>
  237. <Label Key="218" Red="0.686275" Green="0.423529" Blue="0.905882" Alpha="1"><![CDATA[insula_2 ]]></Label>
  238. <Label Key="219" Red="0.87451" Green="0.301961" Blue="0.380392" Alpha="1"><![CDATA[insula_3 ]]></Label>
  239. <Label Key="220" Red="0.372549" Green="0.376471" Blue="0.160784" Alpha="1"><![CDATA[insula_4 ]]></Label>
  240. <Label Key="221" Red="0.137255" Green="0.631373" Blue="0.603922" Alpha="1"><![CDATA[insula_5 ]]></Label>
  241. <Label Key="222" Red="0.886275" Green="0.631373" Blue="0.698039" Alpha="1"><![CDATA[insula_6 ]]></Label>
  242. <Label Key="223" Red="0.309804" Green="0.611765" Blue="0.717647" Alpha="1"><![CDATA[insula_7 ]]></Label>
  243. </LabelTable>
  244. <DataArray Intent="NIFTI_INTENT_LABEL"
  245. DataType="NIFTI_TYPE_INT32"
  246. ArrayIndexingOrder="RowMajorOrder"
  247. Dimensionality="1"
  248. Dim0="163842"
  249. Encoding="GZipBase64Binary"
  250. Endian="LittleEndian"
  251. ExternalFileName=""
  252. ExternalFileOffset="">
  253. <MetaData>
  254. <MD>
  255. <Name><![CDATA[Name]]></Name>
  256. <Value><![CDATA[node label]]></Value>
  257. </MD>
  258. </MetaData>
  259. <Data>eJzsnYn/b1P1/7c5CpkiGW5IiWROha4MqUhEGsQVkW8h81TczA1oMETJFZpQSclQuYaEEEKK+FN+v/d63LMen9d7vV9rr73P8P58Ls7j8Xzs9zlnn33O+7zf55y913qtdfZOKZ06YocR80bsMuL/Rtw44jsj/t9oWnZUPjXijhEfHrH+iPeNOHLEcSOOGXHiiB1H/HDEe0a8Y8TBIzYdsfyIdUb8Z8RzI54cceGIB0acPeLSET8e8blmf3c35d9H5W9H3DJizxE7NeUXRywY8dERR4/4yIiPjdhuxLsa3j1i4xGbjHjbiA1HHDrivyPeMuKwEcePWDjimyO+OuKcEeeO+P6Ir484a8QPmnn5Lp8ZcciI1Zrjk+nl0ed/j5DyoREPj/jbiOtG3NCcx8+P+GPzPXYbse6I94/4wIj1Rny52f8RIw4fccqIM0ac1JxX+W32H7HviI+P2HrE9iO2GXFAcywHjsqtRrxhxHIjVhrxphFrj1hzxJtHPD3imREvjHip2af8Fo+PuGTEzSMuGvGPEeeP+NaI65vf50cjrhzxkxGfHfG95nv9PzLdNVr+pxGPjLhnxL0jFo/464jfj/jliF+PuB2237P5bfcesVeD/L5HNcv2bn7nec3vK+UGI97elPL77jrig2nJf/gLDf/X/MZSHtt8lv/7mc05PqX5fXdoflthdfP7/g9+34eac7hoxM/g9721Yf6IDzXINbIz/M5S6jUjv/Xuze8t28j/8eTmeE5qvveXmvry/5Bra7+GYwDZRq63bZs6yvbN7y//j83Tkv+G8t6GldOS/8tmI1ZpeGOznfxH5TqR/89GI9ZKS/5HwguAnO8XG15JS65z+X5fbcqvjThhxBMNct1fnJb8z76Sllx7jzfIf/F04LyGC9KS/6f8D69IS/6Hct/4Rlryf/xpwycb5B50WVryH728Af+fch0LnwPkHrVMA/tPPzta/q8RUt4N/GGE/N/vT0v+48Jf0pL/+l8a/jzimhHXjvj5iNtG/KIpf9eA+7q1mZd7hiDXitx392jYqeGLaeZeKP+lowH5/+yTltwXhY8222zX/D/k/vzONHOv3Kr5neV+vXGz/q1pyb1e75//aTi0+d3l/yH/3+Mb5Lc+t/lNFzbIbyz3ML23ntv8NnJ/lWvwrOa3/EGaudfq/fbTDfp7rdb8Tnh9/q/5TZ5vkPkH05Jni5RyP5bnyHXNuZd7sly3v4U29PrV+7Mi17Dcp3duyrc2rNdwLHBcmrmu9T5+WIPcb+Rec1qDnA+9tyvShtyDPtEg9/uPN7/dx5tzo/eHLdOSa16ve0GeCds0bQj6XNDpoLTkPrDFiIOa8yv1l22QZ8aKI1ZIS+4H8vxYFXhLmrkfCGs0vLlB+whyb5TnjNwb5Fkv/xd55r7UIPeIrzacADzZ8FTDTYA8l+T6kv/VYw3/aEo5r/IfkmeVPLMuaD7rs0uQfow8v+TeIdfhVQ1XN/ykqSf3js82/LBB7g1yH/luA7s34PT55lx4z0VB7hnyfJT7ifw35TkpfYhH05Jn5T1NnTua7y7I//W+Brlf/L5Zf0fz3eSZ+qu05D8u9xa5Z/wmLXnG3hEctxzL3g57mfl5wAZNuV7zedeGXZpSn78WvR5OBXYA8Njkuftyc07/mZY8f6Vc1KD9VGV+g9wv3wd8IM30WZUPQ31BnqdyXcpz9yhTV5+/O6bx5+8x0PaOBu/5K8i1u3KDXG9yv31jmnn+yn133abcCJD6+PyV5+2LTakcB3ytAZ+/glxLcm9+PPHn74lNvfOaUq4ref5+uynPBn7alPrs1efv5an++bt88p+/yt0Eff5K+Zc0/uwVZHxxbVPe1iDX1G/S+LNAJnkW6HNXkeerPHv3BHZKk8/iLzbrdgfscxnZB/gocHTT7kcMUk+f3cK7CRsDb294R8PbgA0b9L8lz3V8vit675dnmT7XDgXk/7UQ0Ov8K8A5ANbV/sCZaaY/gP0CHYNh3+D7zTYC9hMOIUifYfU03mfASfoL2m9Anm/qyzNG+hFy35FxnY7vBO1X3JBm+hXIzWmyj6Hcknh/Q/scivb5dByB696aJvskiPZNZPwgfRK8L8j8gjTTfzw8zfRbLPOb31xKua9LH0T7MieRUv67X2o4McOXAdv/2RfYv+FjgNx3P27Q/4kcn/aVtL+EfSZF+kzSH962KbcHtD+1TTOvYyrsXykHAp9q0OtT+ltbNaX2vd4LpbINoGN4KVckSB99swZ5XuhYX8tVm1I/r9ocp/7PsB+3NsyvD6wJrAHlm5vjwn7f08ALBu0Daj/wxaZUXkrjfUNE2v6qg9xTpN94PPBkGu9LIvr8k2O0/cuL08yY9P6m/CYgfc3H00yfE0t8fv6zKc8A9Hmq9zPpo+p9UPuryrcMlwDaz5E+rDyDr0wzY2FFxlTSr/0GgH1cRcfL1wN63WEfGMF78PcAfIbLvPQNLm9KIdfvlOnTTZ1PB3Xl/olIX3y5NDN20X5itD+c7oL6arNSngH+1SD9dOyvK9JffxS4N43345G70vi4ZjGU2sd/oCn/atBlv29K6ddoP+eOZp8/An5pkPGBPKd+nmbGCb9olgva15E+kdolbm/29/vKc5ub7mzO8Z0Ncux7GqSvsxcgyz5qlml/aO9mHfaTpM+jtuB5ifeLNjDIeEX6MzqGQTuisjCN93PUbqx9Hlmu9kW1MaKdUcc7rM+yeprsq+j/GnnIIH2RRQDaJRW0T+6Wxu2U0s+U/gXaKy36nJaxkNo4pG+7IM30H9DmMT/NPH9PAtSuafsHdpyF4DMf7Z5abtkco9pCpA21c6E9VD8fkCaf3/L/0Gc12knRXvoGQMZh8ixeJY3bTnX8pqgdVUp93kqfW+yp0ude0yBty3PKPkdfzCDPSnkWs+ek2l9xHIjPQ332oV0Wn3363LPPutMJ0peXZxrabb+Vxu23304zzy99ZuHzyj6n1C6Dtl0BxwI6xvTsvTrpuBPHnrLcjkOXS7E92E44PlVbsT4fdIx6Txp/JsizQO07iwF731dwPKv2ZEHv73Ldq31Z+U2auZ9793D146i9GZH7s9qf0QaN7JT8sTDapxFp62iCHR8Lcs3K9Y/2bDtelnvB+9KMjVvQZwHeC3QcrP3zdxnUFi7jg00N4ktUn+Im0JbaybVEmzmOr/9jkP6vHWurDed4whfSuK1d+CZhYZrxa+IYXO+12v88N43b5dE+r8gzTG31+hltPz8wfD/543QFn31o31eWTzN2fm/crpOML9D+r2N5nNfr74E04xewPJxmfAXCjxtuABal8XG+2pDY9cSevTLe137FboR104xvWP5L+nzeOc34ILzxv/zfdNyPnwXtm6g9QH1zDLlej8gg/z37rFfk/yl9J7TrnuagNkbpA2jfQPsD1jfC7AVqM1C7gfWdaKmojUDuHWpX0M/MhqCgHeGU5jvpeVWbwpZp0sYg9yLtj6iNYWtA7Q9oY1CfvmcL1+lAs1zsDerfUdTeoDaJg9KM30d5r0H2h/4gBW0Pcl2u0JRqg1gJSmWFhtUA9CfJdS19L70e3uIg90K5n2rfSfpNa8A82r3RH4X2CUX9U1qqFuJpmH8uTdosLFpHbYVqv9D+udov9LpjtgtFrie57k5wYLYM6ysTbmzAseXFaaZ/cT8gz4WL0kxfTz/rer1Poq/tHzAvdg7PxqF2jrObZWrnQNS+cXYa99Xh5xsB9d9pib48RO7X0rdU/9430qSvT+pI3/K6hp/CZ9nvorTk3iHPJrF7ePaQHwLfM/OfM3w+jfsQFdVXDTmhvUSuAbWRLGf2Lf9jeUZGfV71YXrIuF79m3pNyfhUfZ2I2FHk2f3vNNNffrRZrkhf9940blNRTZH2o++A/8rNht8C8p9enGb62PcBWkf7ycJf4PMdadzfqvZ7tbPcYkAbS87WojootbXcbvbX9/8BbVyI5/+1zCN4/l/B8/9avGee/mfV/6vY+4PyYeB9BOv/VeanGdvC0aae2iUU6//Vtq3/F5/H8rzfypQypli5KdX/qyXa4mX9RlBfbQLyfFqHgP05HG+g/1dQ7R+W2N+60HApcDYB74E4hpD6Bze/q+oomf9XYf9b7efn/L+K3Fv+bPgxINe59t0V3Jdcv9Jfx2vU2ietD9j6fxXr/5X1R0Fdz/+req0h/b+y3vp/FbmGmf9XOdSwMI1rvjz/77GmroBjzbMI3vgSx5Vd/L85xL6K/l8L+n/lXqS2V30WyT7sOLDW/ytjP/kvqC3WjgGlZP5fHCvhGA79vwrz+6L/F8Hx0EkE/L+X+n8FfAZY/6+O1xTr+7X+X0TPB467lO0A9P+iP1Ztx3h8nv9XEVsS+n8t1rZs/b8K8/9uAjCbs3IAlAKOq9YmeP5fZqNGcv5fAcdOffl/Fev/9UD/ryD26JuaUsY+avvGcRH6fz0eJ+TGRjL+Ubub9f9aH/AlBnmOSh8H7efW/6v29J9AWeL/VZuJN97B++73MlxqiPqjagus9f8KaKOI9pObWH/Y8/8qzP97D4H5f3F8spig42/PD6Co/xfHR6X+X3lOSb8mNybB8Ujf/l9E9oF9JhxvMF/w3qa+9QtbH7Edw2j/6iNmvfUdzzO8uymxf6Xz2s+yPmXrX1Yb6S5p3M/MfM05v7MFtejoixbUH626WwvaNtm4TPtS+Dnns8aJ+a89X/bf0mQ/a1Ea1/pi/8r6uHUMiP2s+cCHCDg2VDs7838z7BjR2srVP767OY5c30o4Kfl9K/WhK7JfjRNSTkyTx2bHsNbHbuOKSji5Ac/JtgY7Ji4F+1ebp8m+lo51WN/K6295fnxF+1fMp4+8KfE+17oE7F+hjlv6URhTheAxyTGyPpUXg5VDbAOqFVAwVus4mEf9AGoHUEueA+0GF0GpaOyX1aB7fapIe8DixlSDoKXlQiitPsHqFDDm7Bvm808S718hTMNg7SU6pr08Q23/ymoerN0lB9pkliF06QNYvYRF/LaonbDck2bi72z/anGA1VREWgsEdRdWfyGIXUl9wzlQl8FiANkkzzPRZGjpIf23O02Jtk6m4bB2rZy+I9J7oO5DkH6Y1X/k0ONk+pBIK1LCPoaPGfZOvk3Oxmgg9rygbcHa8T5i1utzbx9TviNNalaYbkW1K3begs9E1LZsnLjWBfu2b0/jtod3OFhdgmWDNK6P8cDnpRwT2rIPTZNaml3TpJ6GoX5lReaZ3sZqb5RD07gWB/U4iByX1eV4Wh2LrvtKBrSlYXyN6njsOMDqfBiyX6v/Qe3PmRm+DjD/gNULfT9xzVDEZQSmL0IOSZM2Yqs78kANAxvvlOiUvAl1SgwbkxSBz8ic3klt2srDGcSfovFOVh9lNVKolVJsXJSNkcLnJdNT4eRpq24l89YnG+mvmC1e0WWo0bLg83VnKBlse8ZbM+j9VMdezAfA9GDIsQFqm/f0YjmwL8C0ZAuAnOYMx8vHpZmcA7jcatFy6H1cflO0wUS6NfQpeLo2T+eGMXEKjumZJh7xNHGlWF8L6ucY6Ov4RBrX1gloN0A/jQf6aWx/a1+D9fPsa0oPq91jWj7Fxggy9L+Aej8tUe9nYwu3JNjYQ0H6iKpZtnYT1Q0qbP3WBWxDQD/XDlBa7aFF7C+5ezPzibF6GiOpiC5R+rSbQ2nZIgDbshycJrWPngbSQ88dng/UFi5HyPnwVEsp5QqA6is3c1Ct5SpQrlQA7oPpMXUe7VmrElZPM/GkCNqx35Lyms4cGo+K/fP1CWhXWwtYg7A2WbaOKRG1ja2ZJvWkVltqNaaqM1XQN/pM8n2kL5h6Mv9cM/9cmtSlslgC5l/1eAnK55oStawWG2+kvJwmfbZaKuiTiPy5jNwYiI3VTkiT+WUicrHDnj8ZS0+Xa0GNLqL+wIsNVs9otbxW14tclHyf9mOkjrYj6x4gYOwz4vnGbb1/GuR8eD4p6z9XHzr60hE21pSxsI6Nz0+TWuTzoLwA5j29ci2XmHn0t99IQB3jFQ3oz72CYDXQwlWmFP+/jJHVpn0V4RsEXH91BtVUo64a9dXWJm7rXG9Y1JyPTzigNlthmoUctm9o7fFM68Ds9qW2dB2vYpyi1YNbbbiWQ+vEUZvJ1qsdZMhjYPoO1K5/3pwf+8xVnbAi/onlUrmfQm0s4j9An4es6+rrkCnSzd9l9hFp7CO9itXea0yq6vCZHl81+Uyjr/w74FHCI2kmL8Ijpswh/hymobmXLLPIM9U+a9mzNOK3BHwmYgzB4jSZt+G+DLZd9AX9nvAXwh1pMj6B8SMC2sWubZZZf9YtpvxV8mMdPGwMhAX1R1reksb1SL9J4zntbk/jPrTbCb9P4/olPB9dr+e5OKEP0IvzwLwbipwPL95jr2C+Jk5E/D4bp5m8gVYftauBaaJy2icWX6L9yFy8idX04jllmiXpuz6UZvqxcp9dlMZ1SrY/p8wHcnEqHzCfmdbIxq9YRKNjbYuoG4o0QqoTinRAan/24mAsaGNQ+06k3xFb1soGsX+IvzGn02GanI3SpBYHdTdsbC52AtXQrOPMMxu49QnmdDKqkcHxLdO/yBgz0r2g5oXF7+hYgI2bfgKfPe0K+t6YRoXdn6xfLdKcYB8smpiGxNOOKNKXkvHu4jSZv5kR6UByOg99vrNjR5+VIM851XEoTLfhxSJF2gyNS/Ko1VrYOKZS7QQeJ9NHCDtCe0wLkdM6qN5BrvGNE4+LsvFRVsOAuoWcPgHze2BcVKRDEJgfC7UGmGdTP6uvfmHydcHMXnYOYaEhygdi8Wwxubwgni+f+fFZXJf14zMffcl9I4r/Qt87zos9y/rTZaz1cOJxYuo/R7uH+soj//ht5rsw37eFxZd5vm0bc6ZxZ0qp/5r5qD2/c+SD1ji1Wv8yXkueD5nFtx2WxvtOu6aZXGnqC2S+YPThnpYm4+Csz3cI3y3z1Zb4Zq0fVpD+XI2P9eQ06Vf14u9yvlDLdoTtDeoHZT5OZcc0nrfV6/Nj35/F81mf5TsNGueHJSI+ROuX9HyMFvEhLgel4PkUEdHMWf+h9Is9HyH6/dD/5/kE9ZzhvcX68dBPZ+eZX89q4Zk/z/rqcn46OWfWD5fzwSnM1xb51zzfmY1rtP4y9ZGV+sL0s/irPP9XbS4ZHJM8nSb9VsxnZX1Vwv1QMp+UxlOq1t/zFVm/kh0DYb3Hm2OM/EfWdyR9FPULIeoTsnED30o8T68XrymgDZL5d65M3KejMQfie0FdJfPTCMwvE8UlWL+LYH0tpb4V+1ywvhPrQ2FjP/WL4DhS7f2l8Q7eVBpnGk3Wn2P9FILcn60mRGMmXs7sf/XUPa4C/Qg5v8Ezice4ItYPgL6AyOavWJu+FxfL4jiYj3yxAeNorX0ebe02voPZ43+XJmNAmL0dY26ZXd3G3doYXMGzkzO7uI3NRZs4+gys7bvvuN22k9iYxZ5h7c5of7a2jBza57exvrZeLi5YkXY0r4rAbNk2XjgHi8uYl2beW+flacnZJzBuwqK2CNkGbQUaZ2zt6Yq1M5TEHSvMBi/9EXl2Wlu8jUEQ5NlgbQinmnl5dp+VJu0F1o6vy63W34tXtjHLkZ0gil/2YpkZaAuQ8f8iAo79WYyzjvttnLMyP83k9xY+BKUF7W86rm8TB43acztOlbE3i422+m9Bx+K5sbr+b+cT7LjTi5+2MdR2jB6N09VXgt9T88N4sdU4Hrfj7SjGGmOtbew1jq917Kxx2DrPct1gzBlix9hKFKPNwPGz3PtwPBz5ewQdF+NnL44b47mt7lbGthqztoqD9RtFiB/pLSmO+Ras3Vhzv6tmlcWAM/R76RgtGsMKJXHhOex4VcbUbFxq48YVNib1/GF2HMrQcZWON9F3huNQq3e02PFnLp8PImNINq5kiO0cx5Kef86OKS+B5TiWtLHpXpy6kBsrenHrOkb0xopiM/xkBqafQ6yf0I4Nc/HuNf1N62dkfke7TaTbs9p+Fg/fh07Mm2SMxnycCo7brCaL+T7vIeTGYqiJWhwgPhAWU5+jxN/KfK5WryRYH0oUi49+WhaXXzuG+mPy36dQgh0fyXjuwymO4bd+YW+9F8dvNSjMd4wsAHCZ+pEXGLrG+5f4o2vyA2DMveYBYPkAPpa4X/tj5nOuT3d0mon1yuUJKMkV4PXdEOvPtv4K9J17+QRYfgEvl4D0MzctRPphbKy7CcHLMaA++vXT+Hs38DPC/PglPn0v/0AO8QVYDQDOqx/hxcR1AagpivISIGw8b+uwPAVevoKIhQ5YJxe7o74HHFsxfYKAOQ10fmEqy2kgaJ9L8xtcmia1BzaHQU2+g1zOA6uF8PA0EqXaCU9HEeVGYHkSkKg/pVjtlqA2Fv2sz8guORNwwtg4lg/h2TSZS8F+jrB9JxYbFeVYkM8Pk/U214LahzTvAsu34OVcYCxKM++tifQm2B+K8jDglIvdYLarnF5lFwPTrwjrpklNC6uDvB8+4/NC+x/Sxh5p3EamWhemf/F0MKXaGAvmc1gvjetnrBYN7cFMUzMv+fkhER2n53I82HF+iSbniBTnfWDrcuB+8JmWsxMeRuYtnu1b7ebW5pzLE3EKWWbzQSBsmTwHmU3S2jBx+YlkPdJGd4TP5Bo9EkP+g1Z7w2L7VJuEy9RuiuuRT5rPAuaaUNsrft438XwTXk6KnCaqJPeEp5eyuqkfpHwuCmEegNe79su93BMsL0WkycLx4LYOOiaRz9uT9ZiP4j3ms2VrAuqjmG2aaaY8vZdS08ew2rCo/qegjnzWvhfLa6GonZzlttD8F1aPZvVkiu3zsWUHp3y+C1tnB+e82hhMlgcjlw/D1sG+I+bEQKymTUEt2yZpMmeGrbNSmsm/YXNkYC4O1RWvmsZ1xgrTxq1q6qO/kWkObZ/H5tPoCo4pMYcGy6ehy9ci2HrKGvB5HQer26uBxftaUK+mupan06TWRZdbLaBX91moK59xzMHG/9YHE+XieM7gLVc0T4fVqL+cJnWHOM981q+YeTmPzL/fJndHbuyv43/bp2N9zpymsTS3R5/k8ntgng+FaSdVz6Q5P26Cz7l45PszqM3lojSZ24PlAPmm2YblAmHYsS/TbpbkBbH6CJsfRJD+DtN1euT0nqr59PKFnAjbqd1J51lekPOc5V7eELbPnyaeH+T65OcSYbpNlk+ExaGqRg0/I+JLtHpUXXdNAWqfuCzN+CWvSuO+ydKcI1HuEWsTEU0Ny0Giy9HHyeqgJuf6NKnNYeMW1BWJDjbKSXKIsxwRvyP6Un+QeO4RtQPK51yOEovuoyZvifXT6mfVvKL+lTGNPCZtp89M6bg+b/Zj/dCR7UzPofZ3Xk4894lQoz3+X7Nc+xFo69Q+91C+btUm353i/Cg5bXMJqn2+I3ENtII6vZw2GuP6Ijy//b8T99s/auYfITxKlsm+0G9u9ddWh61+f/3M6nq6ADmPrJ+Dy0pyrCAs34rVdS/OgPpuq/PWOph/heVhYflYWF4Wpl/4vUMuNwt7Flu7uNWX62ebi0X5pbNcnpOimWD6c9nmFymvSWfadAT3xTTriurUmebidoKeQ+9c9nEvWhonuY+pboTleimlJKeLl9dFQY252s7ZOJLZ0T3bnB3f67jA69+iRsbqWYQjAaupQb3GkcnPi2K1Hdq21WCgfY/ZOlEToZoGrY/aBaufULuC2BqYnQXH1NYugXpJNrZFO7/NTXJpqn//r9ZHuyPq8FjeD/Y/R/sH07Ph2NQ+AwUcJ7B7Pe6L3btKY1K+SNZpvouj06SGCmNPbI4ML8YENTws5wVqa0S3g5oZ9B9iPdG4oEZFrmHRoqANEX1mh6b8+3+9vBPHpkm9COoW7Hhd8DQSVufAYj3Q/sr+V9InVtuZfka8+A2M41DY2Jv5vvEZif5q8RPbXAyoE8N4C+tfZj5gG4eRi7+I8iMgUYwFavByfkXrQ8RngPW/WT9dzhdnfWd6PphvCTV1XuwDyx/gxTmweIdcjIMX7898JTaWQcjFK1g/A17LzIafi8NncQgKs6V79u8Xkx8rXxprwOILhJzNFmPbBdTVR3ZSz47pxQsweyTaBVGXdkGqe/+vp/dXzb/CtP2K2LZs/Df6z5lNCu+7LK5buTS1e/9vZINh9hC0cUT7yU2sP4z2AB2f4zgbx+ZMS6+I3UE19EqkpddxbqSjZ2N1O060oA4sNz6TcZYdf3U5xzgxfTv2l3C8oX0ejNnVddi/Umx8bxTPa9fJsnkB2G/C5aJhZjG6CuqKrM6N5bpkcbieb85qbTDuFsdZzGfi6Ux0XFYaS8t+65qYWWt7ExalybyaXv9Kx4A2HlZhMbA4NpR+1c6p3ft/Wf8KYxzwOFifChE9UE7LhTEMdpyaA8emLDY1ikW1saeKng+mEYriFDyw/7J5muxrsRiEXAwpojGiNp+o5hT14kItLCY0FweK8QS5/pU9JtanQmSc9mKK3wOs9gHUVeQ0n1J6sZqWF0yJdgPWv8KxYS7e8kkyH8VdejGWlpx9g/WzrL0jF0Np8eIkS/KpsnjI0v4V6vNLfX7MJtO3/ycXyygwGw+D9a/EDrQ4gxd3aOetDUnjEG38odrOpSyJNRTEzm3jDKNzhs+1P2Zg/bkodtDarGSZFydoiWIDtS+2e4C1x7aNAcwhx4axfEz7y/qKXg5bJBfXh/Y7fM7ZWL59DCyGryQ+z85vlere/6vLND7vHWk8Ri+Ky7MxDSz+LsLG4KEt+9A0/t4rgcXSMawuUsootg774mrzZHF1/4HSxtMtTOUxdBZmU2Vxc2hbwO1L4+QEGxOX46zEY+JK4uBq491ycW9oB/bi2pTPVIJa35rcQSVTFHuGtuio3t1pXL/hxaTZ2DTBxqEhTM+Amqtc3JngxZvZmDMWd9YmlozZ2dHenosr+1DycyQL6yaeL1nA5+nOAX3GjWm8WBuiuJ0o3qskFiyKA1vgrFdyvgkW7xWh93Grs8/FdWlsl5KL8VLw/hzFc+HyLrFapb6WKGYritNCuwGLybKgf4b1uTDm6phU5uepib8qyVPt2cD0WqmJmyqph33FXFzVds56Fl9lYf6lnF8rh41ZsVO0XiebS1vik9CnzeKjpL/KYqMUbKs0LiqKgcK4MxZXFsU9eT48i407ErwYJwVtVDamCVk18ff/slglAe1ZXp1V06RvEZ+rXeKU0F62Tpr0SzK/JcYnrdEjYot7c8rnF2exSRgH8jQhsucpLPaHxRspmFdE/awezP+aA9u1flqExWWxePM22PGPxPbgGGyaMUJo+3wqlccFebFAGP9jKY0DimJ6cN1jzTItsR2M4bFxPjaOR33gWNo4H0W1e0+l9u//9WBjTcwf48XvoJ24NI4nAn32uNzG7FitNOoYWfwNLrsm5d//a9F4nG876zEG5+pU/u5fAW3fNp6G2cJtHS+eifU7BdUkRLE2ObBvmIutiWJqauNo0JZfEi8zjbgZ7A+x9WgL6XO/Gv+C54fBzg97zqBfudZPgXYW9Hn09V1L4lNK65foVWzcyrOJ5/W3sDgTG69iuTu1exdAhBd3UoJ9rmK8repusKyJR8Fn4n0E9C+x9crvUlmcicJyZObiSpAfOWhsCfqzmG5IsbEeUrJYkpIYEhtLktMjYZyIapLYMsZrJV4EfYC5WA/5/nea81Ea/zEN5gWgpiq3zrJrGn8XgtVhsdxPuTgWpr8qiXexfVwWD8PiYnI2Ge8/YXM7WP0Vi7lHFqW8/sr2Uyzz0/i7ji0sRieC6a8YbH/zC0CtE7PbttFeWf0V02KV6q8sqr1idNFfKZ49ri1Md4X6K/Eh53RXkf4K7UWox7L+ZIt3TJGdhsVglRL5UKz+ytNhof5KsNomRMb/tfortH3gmBx9DDqP4+oLSelhtU2owxI8n3KOnzZljf4qp8Hqqr+q0WEt77BM8uPkSqe+9Fe5WDzL4jT5fu0/J96v9fRXGr+M8XzYd410V9JX9OK9o3OGvuVfQ1mC1VrltFeWNvorLx4x0mAhfemv7PFYjZMlp7mq0V8pXhwlo0R/FcVfliLPnI0zvD2Nv59cy4ic9srqrzYipYeN+bS00V8pkS//CwX7ZzAtFIL99K+Q+RznBHj7VM5NXJ9l9VeeDitnD2f2cRZLW6PDYrqrNvqrWnL6q64aLBvv2xbbppTi80CtldVfsXjiHGinQ/s501/lNFcIs3nhd2mju4r0Vzk83ZWnuarRX2F8T6n+qkSD1VZ7ZfVXXzalgDqo3DjBrpd5q8cu1VWVaq5K48U9doNSiPRVuZioCOwnsDH9EJorT3dVosVith6rv9rXIdJieforBW0LpfqrSIdVo7+y4PVSqr+ybE3mtwvwcgFsa0qmscqBdpa2+isGy0PgYTVY2KfdAkovh4Gnw8KYO9Re1eqsSrB5CBTVXkW6qxwYByHxDlZ/Ze1Qnv7K2qg8rPYqp8Fivz0+QyNdVS3rB3hxjExPxZYLbyblG6DUz4xcPoou+iumw7J6K8tQ+quc5srqr6wOq4vmKqfFsvorxpNpXF/Vh/bK6q+eTuO5PQSmvYv0VwLTX1lQU5XTX1lyeURQT8W0U1Z7heTst48329plT6XJXCUl+itPh3U+lIrVX1kdVi42F+mivypBf3v0W307TeqwriSfsWSohgpzs3yjkhr9VUksssA0Vxbsb34SyraaK09/xewQuRwzDGY/Z/U8O77HNPRXzF4y5P50stq0CNRfMb07Ij4K9TG3ObY+YutKJ6a9Ep1EqfbK6q9Y7iCPGv0V015FmivknuTn+L2H0FZ7JeeJ6a9wfnEhqJf6bVOi/spqrf5awH3kc8m2np/Kws6vp79ScporT3+liL2vVH/1KzKP+qtIh4VaLNSr5fRXTMs2rWt7mhPmtCpF9VeRDxD1Ubl6HyHL1Aa4VwHRcSDoiytpu4QvpnF/XBv9mOcvzPn9cPsaf6GXi0GZ5+DlbUByvkHmK7SlR04jV8KGTWmPQX10qp9jOjqrv2PLa3OjtUWOdWFApPvzkDEyjn9y+kAkOh5B+sfMH6h4OkOs4433tP99SsrrEj10e/wsRL5AtHPW+geZT9D6BnMaydxk9ZJ98lBHcr7CRRXk/INM8xnlZMBxdKmvUJlfQc5XyEBNiOoj0T/4Pme59SFOA/V3oI8ItaQyf4RZlsuhEOVfYKBe9nAoa2BajvktQZ/QSaSM8iaW5lRk/sEj04zml60v8SMe6SzL4fkLmX4Yya3zUP+h5wscipMzy6zfkPkO9VrRawf9fHhNbdvA/IPbpvF8CtummfxcNkdXF7Y3pX7e3ixrQ+QfLMHzF0o/dYum7KL9LkV9gnYZrovw/IOKp/e2dZh/cJOGVRzemHj+ULasVN/+psxyD/1d161gbVLmsHpChekJxf+H+Ro832EJK6fxfKn6m60Z/O5WN98nL84S66Q4N4PA/KeRrw91RbV+QolXwPx41vf3tUJYzMMQoJ/vQlLmsD5C6yuM/INePMY302Ruhba+wFpOHxDUvJ4XcEGwrtSP6K0r8RPaeBQLrr8y+e9pYET+QY1niXyFOV+g5x+MfIWe71C0ZJ8sJJdDIZd/wUN8eFGuZIvnC6yF+Qn7syJPThhD1Bb0i9r2S+ORSlA7wPJpiR9w+cTzSNv5EoY8x0NP4guMYq5y2BwOCPoC74ayLcwXyPyCuE2tfxD15ot7psSPV+InLGkjF7tWEs+mYP6eayuJfIZoz7uNzPfBb6AsIcp5MeS1KPenP84yOZ/gr9Pk+3FYLLuyR0c8/55dH7WzE5R9oLZY/KxEMY+lLCCgv3R3Us+Ll7TtRMtzfJjMe0Rxml2Qc3BUB442n2tjR0vR30xtYTaOU+2ZbFkptk1LadxqKWoLtfGunh3V/nZ4/dQQxUXU+MctUds5e+s+zvIIL05W4x1y8b1I5Osfitq4Ys+mqrbuTQPQpx/V1fgIpUSnwNikgpIY6FK8mD6NbWDLShGNhBeDbeOwkdw6D2tnLcH+jv/pif+myfiINrHjuXoaX4E20CjufB1S5ohiGw4vqOOB/tBa3UrpPkptqwz7m0a2y4UFdXLb5oj0MSX7iGL5S8D4E/ThntOBcwmoFWL18buz7YfivKa05zaXF8CCGqSvF5DTOdVQsi/ByyNUgxcDW0tkAx2Ky6DsysGFsBiIGg5xllnYtp+BsgRsr9YOi7bQ1ZpydShzeS6inBe19efC9Fyaia18vgXPZtaJxs7L12F5PsXvWEL+XVjvbjKfA2MbHiTzXWAaQlz/MIG18zApc9gcJvr54ZTPRSz8mHBDTyxy0HVWC2nrKD9LdTlXmD02Z1utyVFWOn2+aas09ku1nUrNdl4byi2m9GD5ZDy9uLDbwDCNabRNif7Gy0OzrikVHKPm7IRyfGivzWllUfOq+1H7kKeNZdsg3vK+8MbyXWFjd6vV1fKtqSzvT84uoKwH5QaF7ebAcZTNN9MG1PmgNvW4Hoh0SH3g+QSOcJb1oa22dWrbjTgcysPNuty5YHaNWq23p/c+LFjXB8xO4sUg2XX2uXFqwGlQImyZheU3irYp5XRnGVuO6zzUvoE+hZz2nVGiu6/R07fV9yM5jf60+DKUX4b5XP0u9HG/t/FrXp4qzBth5xksR5m2tZ+zzb5pMgfa/pn2IlSnlluneLnPxEe4Y5r0G2p8BS7D494v8e+DRL5JPA67ndcmUpvnjeV9y+V/6xMWE+JxirOsK6dCGTEvzfTB5hm8vpqtJ7nu0Me3JdS1OfGi3Hhe/VK8dkuwOg7Lth3I+ZNlvc3hV8LWBXh1a84La9fmu7PrMW+ezaPn5S4spST/nnf/b0Nkr9A4lja2Di/WSbBxTm3a9yabY1GxdQ5K4++olVJ805tnQF1Crh6i39HL3VjLgVBa7Hc+qAOR76CmrsXGm/XBwaZk2Ouo5npaNsNyHcE4qRVTfR5NbYctY3pwReuu4LA8lBbVL2zWkZUIqDsp3WalYF0tK0CZY/k0+Z5ny6rAalCWkIsz1DbflPLvjbb7L/F3HZD8vKeIvf/mbMPWPpyr95YWrN1yuz7w9Cw12qW1oSxhw6b+Wg4Yt7lGpl7p/pQ1APyuuj7S+His4aDrME+tBb+rl7O2K+zen1uX4ynCM8DTwDNQloDbvpDKcvHaOjX7U3LtPRfQVf/2QprUv72QZvRq/x0IPX78jMty25TwPygVlquY+ddfMuXLzbl4Kc3o92w7LH7Z1nk54BVnmYVty66VkrxPWObqTZM+9G9MCyd+AvQf5PwKxzl1hBPIMZ/Q1Lcx43OFJ+cQTwBttmfPgC7cCNzUgZsJEld/SRqPt7fr2fIa7oeyDzxdKssNcFElkfb1cdN2m32x7/RY4Xd/oJLHOlCSH6EkjwJr+yHz+SFY9k8oczwFpYK24jN65vQ0mcvdzpdwViGqgbXzNTD/Fx5LpKmWOue35DygbRuWXK56S+681LSjXG8+I9G2mPsi2ofHjVB25TsOP2rQ+StSnG/Zgnk8rqhE27imBVeaMgJ1kKKvvrQpWT4S0bNfRbjSlIwozwhyFZQ1XN0Bpgv1uC6N5zy5rhIvXwrLm3IdlG1YBLDraRHhRigVzx8fYfXynyVllOvls3MQ8Rv/MM34kG2+mR9k1nXNVYM5Z34IZV/YHCz4vfvM7eLlekFsjp1czp3vAt8z80Nhnx19+vteDRP6xvpuG+NgdL7vfbxaps+Ta8yr1ydeH0uotSsLzK4mx22X5XySyzR1lslsr8u7TLn4oLsJ6INcJtXns1K6Hvc0p7vS5Dtx8Jyw9V0pPY6++ZP5/Cey3sP6UNryN8KzaTwvWBtsnNXfyLI+eTbg34m/48jW+ReULP8Z41FCrt4jhTzaYhs5F5j3614y34Vc3jbhDwBbX7KPP0DZhTuaMhr3e7ZhW+9mUk6T3/aEZxddnGbeifVAmnkv1uIK/prhPjJfwuKKuvd1OC9ezjibO85bZsHvynICYu6+O5pSt4vaVu6Asg+Y3auUKJby2mB7m1fQrmdtloBt1m6Ldp6f98AvmuOQ8mcFddvyqw7kzseve+B2wm8C8Jq8PcXvhGP0fS1Nu2/8+vT6JH3/Pzro2ODOlB87tOVOg1fvDiiVvXtmHmGDBp1fz8xjjKZqL23sZqS/EUpickpjENSGgTYN5tddlCZt8MyGwuLyo5gY4UgCa2s+fMbckBpPydpBdiR4+SYVe6ysDYTFJmyVxvMU4mdlZUD13u8A3miQdpm2VbbdyKBtCi8QSjSjTNckOkDMp6YaHW33QoLocVRj9TiAeh31iaOPnLWFXEoo8cczn8NlhMuhXWY/Rvuv51Ng+v6S+67oEq1NgdnsLEyvorm7c/m6mZ/xtsRztiDs2G2eE9Yn2zPlczUrOxlYfgO7ze6Gowks1y5Smw/3aHOcXr7YfaDU6xxjn0ryoUZ5SN9BYPk4onybpXktFdXrs3wGUb7MhQR8Bnq6TauVOdZpC7HX+ZmpTAtk43aZb9S2beOzPp3K3gFqY1UkbqTkvlGaHwyR7UTr9WAqfx+n2lfVz38DIH2FnyXf/nVz4rmaSnIksRxENtfP+wl7ADsn/u5Lth3mzZH59QrQ/ASYr8DmNdHnKS5bQGiTs2R+BjlfpxBOKsDeQ1k+ixKi3A6sL8ti/PdPcU4B7dN9PIO9rtn5QezvzWKe7TyL4a6NV5blOzrnRymJCWbo8wfjYbcq4L3Jjzf14qzfQCiJxdT+LMYw2j5yLqaPwc6XF/8Wwfrma1byZuf8ICyeiPXxEY2ZsXE8LwIsnobFw7B4E0XHlG3jOo4ndI0fYOdLNKA3QSmgzr5Gm16iv2a67YgzCDkds+pzJafxOU2pyy7IUKKXZaAdQDWaVxaA+YlVc/mTNKnDVG2k1ScynaLA9IXyjPhEGs97U6Kvk76c7eNFWjAGG6MiJX06Nkk/0tKmnRINDdOwtD3utlOkT2BaA6sRYP5r5jePfM6RH5ohxy/9XhsDtDhAfaNKzt8ZgXYA9AWiL7zET4aoD+cGg/UnWZ8PswmI36XEnzLt/56drF3aIsfKbBnWpozr1D6wF8HbRrG2CNaGBW0Sns3btmttGViX2TrQJjGvEM++Yeu93bBBJdImy69o7fUMlpsxYiGhxPYf5az7P9Ku9Q2IfYP1JSx2nFPid9BnD9oucDzi2TdYXoySay+Kj/Z4qBBr41iU4WcGtHFEWlRm6xDmEz4EpYfaHZmvZefk2zzaEPlcrK1DsXZZ9l272DaUWruGcpShxL+Edo2orueT2q8QsWOgTaMrJzvkfvttHSIfWV+w8XqJvQPt5yV2jVLbB4ON2VfOoPaNVQjWvsF4U6qzfawb4Nk3mI9AqbFxsHPwBigjW4bHiz0hvs9XoFQwXw2zXaCf1LNvfC3giZ4Q/+jFKe8/vShN2jrEp8Li7S3WhlFq00CsLaOU8zLk7ByWC8n8JWncv8ziUCNbh7VtCGen+nfcW/sGs3eweMW2MX6Xt+DS5L9Dvot9A33rjD7j/piPfq7FuUTxBh7Pp/F3qZdyD1mWs20Ii1vCbBVMv+yhdoycvkHB2PNrHZidQ/v4t3Ug0pkqbf8jMn4QXZ6OJTzdXoTYYu5M47YZO291WnsU4uk8vPpW/1ED03UwFhjQTmLHLG1h2jamSynBjlOGgmlgFOZrVWq1MzlNTY7o92c+V0+Xg7DtFB2H2O+3o1nHNDjvdHhXwLtNmauXA8cu4p/elKD2NrZOfa857ZGyiQM7Lx5vJTAd0/pmfoMUv5M4IjfW2Sj57xc+1FmOftcaTVWkt4o0nMyfWgKzYR4K5aGZbaMxjiLnhPlTFzrLbR2LZw9FPB1ZDqtfsZoz5FwgZ6M9tyfkXDDt6pkD8HVCid5WsBob9a1i6WnqusDODcPq9FSrF3FIijV9n0nx+1gPCdYLogNcPpXnmdZ+Ya2Nvcsk44025PSJte3oZ29sg/7UBytg/oKHW4D6SQ+rxbb+VY9FBOunqIWNZTztd27KaQysH4Qtt/Ml8ZTWd8f0o6Uwv4tdbm2pTFNqicZSO1dQsr8aWB8sB/bD0G9QoptdL42/K7IG5ictAXWnLN6lT3JjUM9n5umCc/U9mD/tODN/vFMPYfr+tnj+d+aDZ/7n0wqwfu2SbUqwdmnpG6ouOgfzPbJ6kY4at2+jw67Ra9dquFUDXwvTNOfy++3fwPyl+6ZxrXgbmF48Z/v4WKp75x22i3VzevUaLXsNzBd8Sur2jjl2zdp795YGtgx5j0Num2hbhGkoPL83wuxFJdttncrfzebhae1t/IBlh8zytogPXvp7WpZOkR+/tJ1PJf6eMuGgBrG7bZ7q3zm2RQtyx5Hj4MxyD0+TUAv+b7zfeVkC0wpb2sR+WFYoZLMWrJSWaC82aUpc3oXoWHVMvyphtTT+jimm62DbWVaHUoi0NEz/KHbH3dJ03iG1timZjZPF3SCenmUtwhoBui3O2zqeLTZqW1GNCcYEtYFdnwz7rgvh6RS/r6hUl+O1o8ueS/F7jDybemRr9+KaankpTcZDPRfMl8D0Ryyu6uVgPorHEpi+uG2cVg01tvbIL3FCw3Hp1f0OHHZNliDa45sq0DiUiwNuLuD+QiLfTk3s3ePBNgru/zFA7cD3p/w7XP6RZt7H8piDF+dnl3nbKywfj6K/M46nSrT9LHYwIpcLocTnI/6wnL/sfIfz0vi7S2z8oredxYtr7BOMh/Tq2JjEGwv5DuGKNPmeDsu3U/yOj2sKuArw6qj/DHWRVxXgaSGVaPurC7F+FKuxZO+suC7FGkxvO4TFowqL0vh/IWffUtSX+FmAaT8/OxCR7ahUZ2rjY0u0qkKfek/0O+lxoKb1uy241Fmu122tr2w2JrQj1Gxn/dRDHV+fU0ncs+W7UHqUjLdsbJocj7WRqL5Y17eZPH860zlL/WlrmnFSDXEX+mo3F2eeizfPoT5/1GZHOezborHtTA/O4t1LeDQAY+p12b1knaLx5n9O3XLCe5r0e5xtvfoeMkYqGVNJnZIxUi1e3j2EjVfuIyxO4/nVPT0927aE6DhtnvMIjQH4i4Pmev19Gs/9audL8PrSCNOXXNusuzaV5Uv4JWkD8yj8ytmP8POW/CK1y+9tczZYfp1mcnRrmUNjHm5P+VzctTm32X/n9Rzac2+ycSYlz1nGnRkw//OeqSy3s5drw6u7t1O/tI0a5lWgeS00x0WuXglWj8PI5cTYlcyX5LxguS9y9ay+4Izk28WYHoFR4ufWMbn1meWugZqcFWLveyjl7YHav1wUwHJTMPuSZT7hw+azah+ZboKBusD3QWnXleSawHwTcixerBX7HhFMD6PaLPmcyx1RmguiNEeExeaF6BP7G7Df7H0Fx1gL82l7OoytekY0D7kcDYhoAWpzNFjs92R5GNZ3lkexSSwfQ+77lPpxBfFjfzCV5Y9/sbBejYa2z/wJ8n1y+REwT4Lg+Sxr8x4I6ufrK++B4uU5YHgx+yzvQWmcj2Bt57rc2tBr8hbYeJ3LoSzJUdAlL4G1bzL6yDng5R7o1uvmE7MNeXhxNG1QG5v1CS82nxFv/B+RywPA4v5/7CzvEuevtg8c29bG+NvYGIuMre3YKhqLe7EmNTH7ligeG8nFQlik7d3T+Lsd8HNtHL6NI8/RJX7+i2Q+F1PfR8y8xs2z+PnS36YkRl7ZMc28z8KjNA7exsJH8ewlSN8O+0U2dr0klt3SJYadxa+3iVUv6QNaTZyNO+8jBh1j0S1RHBFi48xzfC1YL98VY6QXBpTaI7R+iY4tp3uxRMensPhvtjwX53xmAarxwc9M/+NpgXI6AasHqKFNHPenkx/LnYvZtvHbnymss5pDLj67z6kmjjpXt+12tfHUD6fxmGjLwwV1BPV9Wg1OLla6S0z0jfBZfXW3Ob+p2tvwM4t5LsXzDwld45lzlMQLR33JnQOmFatcGldcQ02c47TiixckHmNsn79HmM+l8cNtYHHA8xtYfPCuidtn9X9cEw9s4xNZLK63LVsv89K3trG7bFlJTO+QlMTs1sTu5nwjVr+Yi81FamJzozhcBO3bbWNr28TZejmWS+NnLTZ+NhcvWxLrWksuN5qNa82932p7Ul/x4ldrYl13TDPvy+oazypEcXL4vNdlNn6VYeNC2TIhN2a28avo19AYVPycQ+M/c3GpB5E6NbGnJb8fwuJLNXbU6ibbxJJ6aFzmpmmJz0dL+xlBv5DGfb4xlcWHqi8IP7MYztzyN5ltvbpK7j/N+owl8ZoetfWjuE6M79T4Tev3UkpjL2vROM22MZr6P2bxmE8XUOO7y1Eba4nxlUrbuMq2lMQ/1sZIYv+mS8xjjq8kHhsp8YdR/KONg5ytGMecX/XplI9hfJosq4lZjGIVkfuhFGwsYGlMoo05tGC8n5CLEYzi/1gcoW0/B9vHP2G9jSdkOimPLjGDzF4ocXolNlKMDcz5uhkah4efu8b6RdhYPll2E8zL55zuysbrXUmW5eL6rnTAGDqWzxOJYvQspTF5io3F8/Bi8CxevB2jJOZuyNi6krGj2LxF+2Bj5jxYzNz3Uvs4ORsXh3qKXKycpymZC3Fw1gegy1jdz8zi8XrxirXxaoiMj2ws2nLOctSfYJxalwn1LUP5P9pMuTiyvmLGSmLEbDyYRxT7ZePAbCxY11ivHBqX1TamqzY+K0J+m9J+pfhwFmeIYrSkDouDYrFZXoyWF5NVEpvF1rOYK22LxVuVwOJq2Do5/yVxVaVxUyXYGKXaOKk+YqMi7RWLifodoTTuicVAvR7rVD5J3JBo5nJxRUJN/FGpZs6yd4dtre9vrw6U7E/1Zl32Y1GtHM7r91GdWU5vVhNbFenoSjVwezufa8i918Uyj+DVzWnjIi1cDZFmTo4FtW65uLMNg/VaB9HYtw3hmJg2DDVmGsP2wRTHuVm92y4EsWcz//UQ6PdZWEFO01aif1ObpdhjPJ+wbTsXv1d63Kr/KtGuqQ5APp9RUF/tWtZGxbRqp5Bl309xLGGJto1p1A5JXKe2g/O5FqZJ8zRqfenWauIfS0DtGS7DOg8NQE6LJqAGbVEHcvozS6ld4Fbz+TupvQ7N+gfnE1Q/xtbZOiUaNKZZ15hEqyezsac57ZmNexwS1W/gZ6RGq8NiYduwoADVcO1OfsM+dGGRPoxRUkeo0dkwXRhSUofFBSNWG8aWDaUfs/8bS+l/j2llWIzyfs6yEqxGrFbv1RXVfOn8yeYz4rXh6cCYHszeC+QeIdorq+ny7i2edmtb+Lw1wLRcOzrLSlGNF37O4dXrGlNeot1qQ6TrkvFOpLXaakpY/VVpvYg3VKCx5vazJafHEl3UJoZVCnljsC6K1Wcx+5aSOjnkf8Xi/RXUTeXqKTltFeLFl0m5lsGLNbP1PB1WF1bOrMv991STovqUvjRTOVQP9eIU8fLJ53iFzJcg2rUazZONVajZFmE6qK8lrnPK5YmwdVDTVKt36hPUkETaJi+vw4UF2wqa16JG+/SVNJl73WqjcvqlUkp0TjWINqlEv9QXolU6F7DapbaUap08zZP+t7ztazROoun4doBql3J1Pa0So0afdHZBHUupJonpk+yyWv2SapgktoXl9u5CLreKUGKjVHJ5V7QO6pIuT2X6pZJcLm1yvQjdvYT1k+iH+kbb/lzhd/qc2aYr1pZo4y+E5dNkLutlkp/fJqIP7dHSNqkm6NkeKNUVRbogoU3On3ugrEV1PNpWVy0Q0+8sTjP6nsUDILHrka5nmpTqfBAvj5Lqt0Rz/KOmvLYBP9dSovUpidNXvc5tAVbfg8utZsdua/MXl8D0PkyrNRv3HptLKsetBXVY2133i3odb7mH6KU+XIDmLMDPbVAfVU5LY3Ntdd1XH1jfmYf6DFj+gS4syID1dne283KAeW3m1uXaKyX6v9XkJRsC9Ut5yz1Y/Vz7Q6H/Q+sDQH2Y9RPl1tXg6dGQj6bJ3G65/Vs9GtsvLkd/k25zTHPuIx/X0aaefLbXeZd7SS5vgBJp5KI6Jfvo4tNqQ5Qf7p0AW1YKav7Yclavb3Jawxw53xX6LzedEuhf6qp9tP6qUvS/YH1V0f+pBMl/tH6ayYVkPyM2dyGrE7Fhyuc9VJgfqqZuhOe7qgH/JyVx8n3x34YoN6KXy9Gr+18oEesnYm2Wsk4B4ss5LpXHv/cB0xkhokWKdLi1+8z5pNqC/5MaX05fLOyJWj/UEKDPL6efOqcj5zowvbTdjp07r702oL+ppu558PuoH1I+i7/g0lSWvxM5Ez5HseqWEq14G2qP4+yeKYkb70KNH2ia1P53Ig5uiWrz7XxfMJ1+zfZD+JxySC6D5StYLfn5cFdv6pTEGdTELixN03NpPBeT8DzwbJrMx+th/UBePRtHgWidaH0J1pfE6twdtFHjd3qgggczlNYXP48XL2LrWXL7Z/tpg8am2OXo5/l7w5/TeF6BHwdoDPUNKc673IZFzvKfpfFYmUVAaduRD0n9PCV1PDAfwDTvJ+KjF59ILh4IY4HY5z6I4ohy620dzHfN4jAtNkapLaq7Lamr8Ur2cykl+l7G+4P16zd1mI0n55vQ74C+ptKYLRu/pTFcuVgsi25XUmdo3grl0OTsZR9ojgNjP+z2LLZMKd2Ph43Jzu1rvcI681L8LtC2fDX5eR29+CarWy7h2FSudcY6bfYVIf5Q65+Vz0cAOR/sERUscGB1atqtRb87LjvcqVNCZNNrG+vo2RxtnWibrpTmHNi1YL1Fnr+ntuQ0suwMw2kNdjmL6TwtTb4LwC6rgem+c8tL27Cg3VH8slGMaERJ3KrGrkbtWLtoadu19BX3OgTnmM9Iyfa5+NqSenaffTwr1QbNcnewmF8Ec2iyZTn2dyhpZ780GTNc2n4JqKcvqYPY90eI5l7sragVUB3Hfgar+bDrLfs61GpavG289hns3Rn7O8uHegdHn0Rx3KXoM+kH5jOzx9fkLbCUPGfnFZDrr1tyWg/djr2vJHpvSW4by7sz65i+ZEvncyklOsltO7J18uP1EakbvWOldF859Lvn6teeR6Vk/9uQZSVx69ukOB9BaZ2uRM/SWmpsgwdU1s+146F1Dkw8T0If+89NnyrYh75jx/r6Ni9AdXVRPf2+dl6JckVsXlgHweXe+WfvGjqoB2p8ql23V+R+XpvDwmLbZMvseotei3qNv9d8rrmely1kuTSZ07stXh4FrLNigG2TLUNyPmNtcwVDjd9ZEM3eZj0hx7NSBqvnZG2sAp9Xyuwrtx9kRSjtOfO2seeU4Z1PXb+aYVXncy25XCmrpvF3Xq1aQHQ8kZ5A25HP+IzDOrlnoEw1/qpdoMzxFvN5aSfSino6Y8x749VZuxLcVnPb4PzaaTzvzRppMheObZMtK2WNhrWhZJRobiPWINg6by5gzdTtHWm1RM/KkjolPJXhGcPTBFunBNaOxctJ5B1DzbE8a8i1besybZPCNO/2+CONvK3/X+c8WK37EOi+ct9Z8doo2bYU1XC9RPC0XR4vO+1YWN6oXP2Xoe2XK2H7irax1zPzO3ehbY6rvhlKK2/18oL1m5b6U1m96Hvh9ieYz32A++qrTYWdu2mBebFK6j/R8z6F3LOzD24k3NQjLI+I5sWS9Rc729kcbKydLixO/P2WbRGtay4O56LEc8hd1JLcvmpos+8+zxuev1Ie64hqjUvz65XUi/ZVAm73zwb8HCHXc6QD6YuzCutFmg2vju6jBI35Ycva4OkP8Pi8eLVcnsPzzedSNGbMfu4bmxMxh54r/FzCT4Fc+1jv+oCS48V8jFHdaH852PO0Ld/J8CMDrruCrC/l22k8J2VbsM1ryH6uGRgbd3EpcFniuTUlDvEqw5UZvDpR7syrCtZHeMeiXN2RKI6FIfEsNufndS2JcolKnZ86tN3nouS/h8a73lldi17POf+VxjB+IgOLefTw9FWWz3bA7pPV+UyaiX8s5TPO9pJXE3Ox/iDxHK1WGxTldG2b61XqfM+h7T4teF5wuT0X7Dx+bhaw8Uze+UEuTzO5b7/bwOp9l2D3x+q0Jff8HU6J8dqaDi44lyV1Sia9lyB9tPtamPT6Kqmr9wLdrqRtu5++yV3LOd+VZwO360uQ7xdpSqTNZdJ4Tmc7j+3h5C1nk/ooovXI3VBacnqSZVqix4Kfl9bprrQkr7KFncu7zXpv2y6UHGfuuGeDPwB/MtwBML9yG/5WANYvzR/uoW1qLgG7r79PEfGFWr90jn8H6zVvett86o86nxn/aurgPh6p4FFDzbZ4Dr1c4CwvuEdpvXsK+APB1on2E8H2kUOvWTuvlNjJPN9Trb2tbx9TG25LM3kwdNlvO+L5URYDbFkb/prhvga2HNcji6FksG3ug+8ere/K7xx+n1mn6z1y51D5i4Ouz7Vfir0Wu2Lt17YffmvK26ZvJdxC5m8J2lF+6XxGbukJfRdD13Y82+u1DT+v5Jfms31vRLS9fR/ELyrqKbq/X/VEdA5/PQC3O/ymgNx9Qut47edg17Au73qtT2/k9Pr0+jT7059S2ftZZJkdm06DO1tsI9fx3oXMy2DjLCSfCdN5Wm2KgD4wPI+eftzzj2MOLhtPLBwJ2Jxd+H6HIw07AvZdENr2jgaMLWQxu5sC7wCkPsZRbJr8POosDgE1oVbzfSHAdIeoc7nQgL5zpulAP9RlaSaPsYAxgMxfhHZCdt2hNpvZyXA8Y8feNh8j67/jvlgfYc8AzAFl1+E7SWy+KHkPxz5N+VGD994OfT+F9w6JjQH7zom3ARsbMM89izPCHEg2L/5CgGmoURu10CA+1Muakum6bH4HBP9XzP+N8Wrsf2Vt89bWjbo8ZvdD3QCzJaDvQcco+P/aDXg/YScA89ZhHZlfj4A5b1jerwVALvfWfECO8xTgJMLRgKehOzFN5uXBZ0CUj+XjGU4x6PnYmoB5ILbPYHUaGK/I4sT1epN48q0ybEPAGGIbn2pjZXMxnzauEq/lKHZvzQw2zjmKpcIYnZr4F4k7q4lpyOnpbawV6gAjXXWkC7acAYie8qw0rq/E9wFckPz3UV+S/PdHMx0a5tHPaaaYfml/gGlI8J6b03BcmureI1zqg2e+XPSXRvvJTaxPzPw5aN9HP0PO1s78Vzb+wPJwWtKPkTJn+2N2d2vXstyQZnI45+wYYguwNoLoPOo4iI2HcJIxCiL7wf4SG3fsBWgd1r/ay8Dawv5V7RhHkLys2mdi6zww7yOLS8/ljpRx08Lkx87ZPHT/B9tEcQD4rMyNy1j/CmP52W8daSGwf8V8rYvSpH7S618xu/B8gOVXxrHhByrB8SHrX+0OzK/g5LSkH6Wl5ag0+Q7HEnBsyvLg2XGtx8kGPR8sL5YdE5ei/RcpN28+S3lgU+J4J9e/YvlmVgY2I+UqwBsz2P7Wumk8p4JlIyDXv1rZwPpUyAeBFzOwHARRLt+vAU9ksMeEdgPWv8KxIetDYbylLU8POA+w/SskZ99g/Su0deT6V0yLjlprpu+9DLg8Q5f+Va2GN9JuRfvOTZGOxNNDefooBOMJFxNK/KcC02lITMm1BvRv3VYI8/FE5wyfa3/MwPpzaOfcg4D9r50qsTatBQbsj+2ewdpjjw44qhB7fPuk/HuEWV+RYY/Hnhe0LaD9Lvfcs8eGduHonbTMFph7RspzaNOm3DiN25jRLvj2Zv9abpLi96UqbyNsWMhGBrRji80R7Qoy/8FCmG2T5VhAsC/O1usz0trbZYyvdoSFgJ2PsPZUAW1paltF2wJuf24F+Cw6M+AssuzryY+9zdlya7gs+e+n+zQBxyyfqQRtyCzPWZfnoNiYNdfM8wS0RbP1rJ7qsx8MwLHXwxmYLlTs3T9O/rurFqWZd0zlQJ2blnh+mN2HjfM8TZBltwA2RmQwWz0+T3cOYNtb3loIs/2XEuW0j8YHOfCZy8bH4ltYkCbfNcLqeRzWgi80Jf7u9r0bpxHQTsLWI9bX8SUCjulxec5nUkvuXQm53x3tPiwGFe0G+xei/hnb31LUx4O2hpyfB7GxnhZrs7A+opwNTK+VLQlePu6SethXZLYT7D+y9QrzaynMv5Tza+VAXxJ7lkXrdfpUmsyd/M6Uzw0t/dUtoPQ4KMPBBGYfYrDzgdoUFsOFPrIVM6xAkD74ZhnQRpXLcbsqlCukOOcr2rNy9axvEe+lXXKZRn5Jtn6tNJ5PtC/QJuflzmS5MVGnZP2Ono+UwfIS2vGFBe19/81Qko/Q+mZfTDxvIMJiI/G5Evlzc9jxj+SFwzFYl/xytfnZ0PZZk2fNi1FRbL4zL+cZy50V5fTCdSxH1f3OciTygdt1uC07H8wfhaBdl2mDFDbWRM3R+QRrJ2Z1hJp8SMxv7+USsr896hivSOM5dKS8EpZdk4HlicGxMluPeWeubqjNIcNyvUQ5WXI5lLC/+UkoVZPQJX9JlBcEbQ25vBw19nTMcSHU5JzoYmOIJuwPsfWlGo3aKZcvBGHnJ4rDb+On0Dj4SIvaZbor+fHUtp5HqV4FeRY+5+J9WSyrje+1oD/GxswiQ8eQInhfZc/PxUAuDjOKo2QxhSzWkVEbF4i+qdo4HRbThqA/i+mGcrFZbWLDGDk9UhQ3dXuG10rcEvoAo3gPS2n8xzSYF4Caqtw6y65p/D27VoelmqtdCZ7uqgRrT7J9XBYPw/RXDPndc/YW1FrZPDUyH+WSXZTy+ivbT7HMB6x/14vRKSXSO7H9zSfY5Wh/ZHbbPvRXjFL9leUDmXPURX+lePa4Nojd0+qbrB4Lfck1+iuxD62b+HtupLT+ZIt3TJGdhsVglTIN/RWi4/8a/ZUFx+TM54Djau84GFbbhHp3gY3xS6nRX+U0WLOlv2J06Sv0pb9iMNuUIn1mq7Gq0V/lch4IJdorL4dHdM7Qt/xrKEvwtFYl1OqvLNhWTn9lmZb+ypLTXJXorz4CZS0l+iskp7mK0OeOjcNE3ZWS01tZmObK019Fz0TExnxauuivxB+f8+d/oWD/DKaFQrCf/hUoSzgnwNsno0Z/lbODR9Tory4jpUeN/qqWofVXfcDaRt+HaKwehFJg8cSMv6fJvH9oQ2f6q0h3pTCbF36HuaS/ivRSkf7qA1CW6K9KdVh96a+sNsfGbefGCbaelFaTXaOr6sL8QuxvH+mrWCxUKdhPYGP6PjVXpfqrnBaL2XrQH7ZvhkiH5emvlDb6K9RheXos+V0j7RWjjf7KsjUptwvI5QNAmMYqB9pZ2uqvGCwPgcenDNinZboqa8fx9FeleipG7Xm0eQgsOc1VBMZCSLyD1V8xOxTTX1kbVQ2l2qsS/RXTTZVi7WmWXCyjwPRUVmfFdFX29/T0V7l8FF31V1aHhVorpqsaUn9VAvOJd9FceahuKoqb8fRTbTRXnv4q+r2RGv3VRYnrsXSd4umvLLk8Ih6e5srTX9XSl/6K6aYi/dUFhXTVX0Uw/dW306QO60rzuRTRUGFulm9UUKq5KolFvj6VvUfP019ZajVXnv6K2R5yOWYYnt4qyk/jMU39FbOXDLk/nXKaq0iHxfTuiOiu1M88je/S94R6CU9z5emvGKjF+nvydVhMf8U0V0hOc1Wqv7qH0FZ7JeerRn+Vg+mmUH/1156wui1GzleFsPMb6a9ymqtIfyX2vp9DmdNf/YqUSqS/sjos1Kvl9FdMyzbb1/cQk81r5XEHlErkA0R9VK7eR6BU9goobduCvrhoHzXgsbfRj3n+wpzfD7ev8ReKb87LxyDMC9A6zD/o+QUjX2FETiNXgz0Gm78sxy7OMo8vDMTCgLaaPxkj4/hH7bpe/eg4EOkfix/w1MT9g6optGO5M03JOKVp/5SU1yV6fN98ViJfINo5a/2DzCfYl38Q9ZJ981BPMJ/hogpy/sEo5x4Dx02lvkJlfgU5XyEDNTOokdw5Teommf8Q/YjTAn1ELN9glIMwx4IAPNdtfYFMyzG/JegT6uILZKBeifkH8Tyz9SV+xCPJfMSXoUTQh7QfIbcuwvMFThObryGXu0F8g/a6eQ9Zti2AvsFtHdpqp2vZ3pRtifyDpTB/IeYYa6v97kqtPzHyD3p67zeYkvkHVwnI6dZL6eI7PABKYd0Kav2DNXpC8fVhvobId5jD/mal5HTzXXlxlsCYgpx/kPlPI18f6oxq/YRfM2DOBbsuRy72oU/Qx1cTu6Aw/6AS+QcjX12Jv7CLL5Bx+oCg5vW8gAuCdW25BMoIG4+So8Y/KET+QYxlyfkLI38g8w9aPyGD+Q5FS8b8ghhn48XbRETaZC8+Jwf6Adts3yUOqMuEMUS1eLFF0i6WfaE2gOUzLJPyeaUjhjzXQ03iA4xirkpguR3QF9glbov5ANEXaH2CuG3kD9RSaeMLLCXy46mfrou/MPIBsti1HJi/59pKIp8h2vNK4uPakMvPoL5CW2KuC5vzYshrUe5Pf5xlcv5B9LvqPMaw75HyudxrYb49b32unShOsQa0xdp5IYp5LGUBYa9mnZQYD7kglcVNsnql2yofhjIiitPsgpyDo3qmJnY04otQCmoLs3Gcas9ky0qxbVpK41ZLUVso/h45m6n97fTaqSWKi2gTV4tE7W+XuH0Tz3WNXZTFyLJY3oicn39I2sQWq830PVAqmwagTz9XbxNCF50Ca49REwsdweL5MLZBl70txXEQFtRKRHHYXYnsrgz7e/6nJ1i8Q9vY8Vw9tH+WxJ2vU0kU23B4QR0P9IcyXQp+5+OT/96RHDX2VYv9TSPb5UIgqpvbllGqk8ntozSmPwfGn6Af95wOnEtArRCrj9+ZbT809tzm8gJYUKf09QKYvqkNuX2c3TMs9rUNkQ10KGp+z4iDA1jsQxsOcZYd4qxDam2q2G7ttmgHjXRrtZo2u96Wc3F6Ls3EVj7fM6KxK83f0fe+lbuhLAFjGx4kZRdQM/hgGs9FIjxMYO2wejlsLpMafgzcAGUfLAqwWkhch+3k9JMROZvqb9NkvrK+rrva2C8BdZpttrdtKJgfJqcNZflkUCO+G5kfEqYxzdUv1d/U5Kax+Wk8G6EeH9prc1pZpnvdyVnOqP0OfcDG8n3Axu6oK1yvA6xtpUu7DBxH2XwzbUCdD2pTj+uJr5qyb2r8BH1oq2vbaIPVX+M6/O7HQ8nsGn3qvacBs6FEMUhe3NGpAad1IMpxNQ1ymqwToVTQp5DTvgsnQVlC1B7T0ddq++02OY3+tLB6/i+3qF9KH/d6Frvm5an6RCUsR5m2tZ+zzb6pPN9ZWz4On1HX5uU+8/yGLK5i30oi3yQeR23b+2a+U03et2mRiw1hsSKl7/2sIXpGIKwvNi/N5LTDMlcvx3ucZZaonRJYu6VYHYfFi8UpIfIpY86+mna3LiBXr+S8sO1svju7Ppc3rzR3YS6nYZTbsCZ3YURkr8D4pFpbh41t8mKcDmzRdm6yORY9DiKIb3pzKC2oS2DrGQc2pZe7sRbvHB5Y+B1ryPkQSusx5PppE1vWlS7X0bIZWC6mGjBOisW9tWE5UzJNONZfIQPbVvULm3VkJQLqTkq36Zvc+cixGmFVgK3P4cUartoBbTvn6zqgEHv/zeUTsfbhXL23tGBtU04TT89So12qjQFdKwDjNtcAsM4aLfaLbeF3XTtzHkpYoxAWT4nf1ctZ2xV278+ty/EU4RngaeCZSl5IPOdubtnThDb7VZ5r2niukCF1cKhZY+u78Jz5jGC9l5w6Ecxv/pLB86/bei+Zc8HWezHMuv7lAnQbtuwVZ73CrpWSvE9Kab1p0ocODvG0h+hnsMsYJ6SZvNJaznWenEM8AbTZnj0DunAjcFMHbiZc7MDWs+1LuL9nPF0qyw3AcgfkiPS1GM/fdl/sOz0G5L77A5U81oGa/Ai5erX7/Wch7FpBW/EZPdNXroazWtJGP4t+L3YsJbrq81tyHtC2DUtN7vrcealpx3I9IdoGc1/Utq3c2CPfKeSKFOdbtmDujisCroF94L6uacGVQFT3xwbUWbMcJFd1IJdjxNJ2H1d3wJ4L5Cdm/ro0nvPkukpYvhS7TKltW8FrZlGDvZYWObBrpcYffwiUls8ScjlfPulsM9tYH7LNN5Nb1yVXzfcMbXLhePSZt6UNTN9rv6/l8obv9sylhfXss6JPf9+rYULfWN9tYxxM322/2iZ7XZXW60quX1VjU87Z5PTYcVnkl2Tbaxt9nfNcfNDdBJvTqi19Hf80p7vSeD4nPSd2eR/Y/bL9D8GfoETYMkutv8Ljb4RnUz4fGPJ3Mj80j5Blzwb828Gui/KfMR4lsHqPVILt5er9mcwr9/aMzdtm+QPA1pfs4w89E437mV2Y1Wtr6+2L3/aEZxddnCbfibW4kr9WcF8h9pgi2p6X3xF+3wH8rjYnoM3nd0dD7T7u6Bnsj0U2rVuasjSWEnMKsva8/II/ctorBduq3RbtPD/vwC/S5LvSSrbpyq9acAuUll/3wO2E32Sw1yTbvoS+r6XZ6Rm/Pr2WJ+n7/xH4k/ks3Jni8UMb7gRy9di1svccYl4HMG4GkRxsuZjPXVI+RjTS/eSoiRWydI2biOw0kb+6q0/Oy0egRPFAOY4MiPbtcQwBY1Kj/XrsGMD2W0LuHEX79GDxI8hWaTKvJMs1yRCt/sppMv+gaupZnkbhjQA7pkjTLPvYCPa3EcEekxyn1alauuiMoxwFkcb0CeeYLgzwdGCPZ9YpUWxztG+PSwPaaEmUyJd2WYB3TDaeyN5/0edR619jsS5Il36K6HnFtqalhdm7S4m0YLW58ZGc318QO8FtqZ19ITpnOHauHVPt2ZGdoLREuUu8Nnc37GnKowOk7aMK9m/pK4/20VAeDefjIx2wx4LPn3cS3t0SiaPeOODtgPdMZNg8QhZpe8OmZM9AZWNTRjl8pQ/9wQJYzFKU3yXat8fCAO2jt9G+o97w2DT+nudjC/bt4T2Dzmxoq8UUotwKOS3L95vj0BKxz0Hh0yn/zudSMAZx9TQZL9jlOViaH7INogt+KAPz7UWoPw21YzcQarWV6MfA88M0ArkcfTn7spDLjydgDrr3Q1nCHmn8XSQ7p/i9zaVt51ivA1Huni65wBYEdMnzlWN+Ifa3PyXgpA7k+jEypo/GNG1pm7Mpsvu0yfFTmktI7Qof7wB7tkS/r0fu+tm6A9sF2JwoJbA8LLZUG0v0G1ui+PcDOyDvGXlnU7JcH1v1SElOjBLeELBiBzYJQFvUm1L39zUzSvMeCCX5CNoS2dXWHIjo9/Vg8eNIZM/LEcVgv5jK4rtfgrIELxbaA238XWOGc3jxv8o04l2fhjLiEoebmhJjR6OYSEsUh5mLN+zC4x04IwDj7s5Kfiwgi3s7l4DrLyjkW1CW4P3GEeqzYrFUwpUdYO8dwRgqG1NkY6yuJnVKwNik69PkO5xz7J94/ss+4nwiO0MUR9KWyMfAGDpOBO0kjKH22yVOINLrD3XMQ05dtBeRjjun0Y50xpG+OdL8tqVUv8u085FWdnELVD/KtLE1uta2dNFtR1pNT1vpgXpAZv8TmE5R/VFMV9iHTrBU1zfb1/oQE+qvctwOpRL5/3J6KazHfFp7Bdi2bJsezCcX7asEPPZa7VjOX5jz+7G2SvyF6KOb1xPvbsrIP+ht//aADXrCHg97BwO+h2GX5GvvIry2u7IwoIvu79iA3La5Y/K0gmem7jlkPBtsFw2jEPn40M5Z6x/08ob24R8syTHXlpxvkPkKa3yHiwLE5/ezNOP/+xnB8xXWxBDfCmUJ8wM+1AHUzHh6SeszzPkOp0GNvrTWP2j1P0j0OwilvkAtDyts16MPP6DHUQFt9L7oB2yrGW6rJd6vA211yH1xciWl19K2lbTVTs8WkY9o82B9zj/INGx9+gS7+A09Ij/RypWgf3CVgDf2RF++xHUrWBvKEnIaQmFNKPuk9vfT372L/y9C9I0vzgIYU4B5wl9JcS5xiTNQf95xpGQwXyBb/rWAJ6CcDV4wZU28Qq1/UDSj30wz+lHrH+zixxuK0wfkvEJK/YSl9BGf8m0oPV9hjc/Q+gMtZwfrPT9ijX+wligPYJfcdp7OWJddPhBt/INCXzZkNmEMUURtjNFQLB+wTAeGPNdDTSzGqi+eB7rEbdXSxT+4eEAiPx7mdWnrC7T5YYQucW3XANdWgn7Bn6dJX6Ha826bIixHiC1zDHkterbHPw5MrX8VycWr79GREl+fkmuHxSYORW3MoWVBBuuPzNlJhyD3WzOiOM0uRHbR2cbGoEaxpUIU/+CBbexN2i2NW62l7W/X9tqK4iJq4ml3bMrtoCyB2Te93zOqE8XLsrhey7taYm2muXrRth5bkfkcNseFRf35UT0F4yJK45k9oriLmjjoEt4aEMVS50CtxIZTIrLFIvZ3jHKNHFpQR2DxDhqPXRIf3ie592FGRLENXYh0KRjDfjyUNUS21xz2N41iGxY2RPVy23qUaGJKaBPj7xHFfZ5TAIuPODeV64AWZtoYEvv7RblzzpwDsPgL5Wwo++AHAV7MQ27dNPFsr204OCCKfchRoxGrsaEOyWoBkZYtp2nrS/M2zQltl31TmqdjyGOotaliTMODPfNQwMMDYXOX1PDjgBs6sCiAaSL7JmdDZbnMaq6tz2fqRxpORqmGsxYvV0wJqBHfDcpp0EWLmtPfRPlmckR24Z2h7Jsux90H0Vi+LWxsj7rC9ZYSoniELnwZ8DRDc43IR3AElLUsCGjTZgklmuyuHEbmZxPPhiL36F3TzHOhNAYpF8cinNaBKNdRl7bbgposZssQX8KXoKwh0t1H20d2lhwnddx+Wuh90y5jddow1D0/ylf1iUow38R+AfsC+0+JKOdZjS9xXyhLiNrzjgnb6JLPrU2+t6GI4kHa5pmrIXpGILk+2ZYOuXXKe8znWqL2c/tti/U12/i7bTsQ+ZS7tL21+TwNavPh2byDOXaAEmHLpsEBDt0tjP/v/3ltCzbOqY/96fSpUXslHASlEukRNu/AFgNR8j2HJPI1MGpjyvoCr9UdoCxh2YDlOoDxcSum7nk0S1mhA5sNwEpNyWL7bL1pUXtemH9p1QBWR5dFMYZR27WoLyt3/87BbMPIW5ZC1nYo0bOsX4G3H4+1AtZowdqmZOs87He369Ygy7uA8ZQYoxrFXnYlehaU8FTA0wHPNNh5wcbH1vK0+cz2adcJz3WgRONWAtPBYcwuWz8ULKfwbBPFNL/Sgpcr6y9LyhxR3iYWFz3X6FMHV6NHPGEp4ck5yBPOZ8ZTwbppcGPDTR25mXBxBWz7Wu7vgRo97EWVRO1hPH9t2wr7To8BD/SEtPUP4LFK/hGg58FbX7s/5Z+FsGsFbcVn9ExNPoazMstr6aKfLdFOK+dXcl7ABUBt2zm+NcfxcuKXbHt9hht75DsBVxB+VAjb1uMaKLtyFSFX7+pmXkrUWbMcJKztUkpyjSht93F1T1hNaJTz5LpKanKi1LatXA9lLTemyWut1veOfDYgyvsSbT8b1PiXa3PVfN/he4QfQtmV2c7xwjTClwd8dwp8J7Pc0qe/79UwMR9ZX23n4mL62serZWqjzy+hy3XVxcb8coD6H5dxmMY5z8UI3UXK5dN4PqvlZ+GYZ2u6K/G8TkMwW8fypw480xP/glLjqJ4F2PuE/g5lnzxSUc/ybMC/B+TRDjySWXcvlPc63/uRVP+uoC7ck+rf34Tcaz5b2rQZMYSNeLb5bQciG+l9HYjy2nVpu4Tou//OlPrZ4/cdYDn8PO6YI5TasxhRLKXNK2i3r31H2S9N+16dXwHRMVp+PiC/mAK/Ivw68fex6bJbyLpafpPhdoJXV69Dtk1bvOu19lqZRj/49en1yU5RHtAu44ocdxbCrpW9B2SvxN81OOT+aurtlaZ/jH0xb0A2cLB1+mq3K7v2BIsJjvK12TZK6+W0ZF3BWM0+262JfavVK9S0XUNpbEUpmFvKxiv1FbckU2Q37UKpZqUUtFstquBGZ1lbHUAX5gd8uAKb88XGOvbBB0zJ1uW2jTiyZzBXRc25tES/0xCcDByTJuOOj2mwOQx0Pct3oMswp/WRUM5VduzIflBajlmKkN81d/2UXm/s+ux6jqdNFB+2eQe2WoqQ+E6J3165ZzDuEOMR3zhLRL83sm4Axp5FdS0b9cSaGfr8HVmcU1+ssxQyZI6vkjzXJfmwnxgI+/td2BMsjiCK5XkcytmAxaucHnCiKWuItOAXFtTxtOMK/iZ2vpZLW8K0wZYuev02qF42Wp8jp0Htqq28rIJI81jDpandewj7sjewKafbq2Ga2tTlO+Lp0JZWXVekv+nC3UsJqO1qG8e3uIAaXUGf1Lxv0GJ9/xaMr4jqWm6bAsw37WlMbB3UnChDXou3pn7yZqsv/4+ErvoAi9rd9nDYM7MuYs+e2AnKofnigLDvtjvgLZ82+p84ekCOmiXY71JSr+T9g2356Byg5rcb4rr7yJTo83d7R4Z3dqTN+wKnyVZQKmhz27hn3t4Tud+sT96a4W0d2XAg+rK3WjB30qE988E5QG2ut5I8/EpUzy5DTcqhafKdg3MF/T+cCyzsmSE1ODW5lGoQe2dNnowa+j6/wrkF1NZXamx1ljM74uU/ya3rQolttU1O9e9DOVt0+R09Ds7waTJfwyFzHGaDXa2C1SsZ0mYy1JSL+S3heTL/PFneF8+TfdTuM1fvwQF5KI2/D7AP+myPxbJe53BDD/xslkAt5c1k/c0EtbNG19PnU/vcBH3ZRWuojTez7DYgVj/aN+8fgBq7786AnW8D6umG+G615Mb2XVlvKeTYgC7vqhI9cU4HdERBnWkT+QEWJP6+QF1/RAbPFpBbd3jQZuk+5hrz0xIbyHwDW8Y4DOoeRihpg+Hd9zFu5ZQ0+V5AtqyUU4CTeoDtgy3PbX9SUMf6FayGPrcu4sTX6eUdg13eQdj2XYVtY7dKciDul/i7BmvZP03vHYUfGxCMefj4UkAbG1gJNuaHccocQZ8hpf2zLSt5z1LIdh3YNo2/a3Bbs3z7jmwLZQ26vX0H4GyyY3NMUu4A5fZpdt4vGHFATzCbyIFp8j2DffEp8xmx9WroqksQJG5rC1PmYrm2aGDL+sDGaFkOaklpW6xeDdsE66bFsg34rsDlEn+HIFufY8WlhBWATQmbAZs0yzZJ9e8hxBi/lQgYj8fWt8WL41vJlMiqAFvutWm39Yi2q22P0ddzQIjsu7V6EGTtnon20cc+1x+QtRpyMZw51oCyBttGX5Qe05vJ/Jop/85AvC/n6tXC7vuIfWbosqeAp3tmyFjbLjyX4T+F/Lcht87yYpqd9w8ibd4VOASvzAGWzSxnoP3rq69yrObtBMLxA8L2h2CcclQ314Ztay7yRAW5+/FTqe49hF4bETcNyMVTRmMPMZa/Nm7xmwPyOPCPNBnX/w+HXL3HCqit77Vh2+qC/U5dqPl+Xhv/TJPvH9RSOWNAanMyMIbUzp5P6EtHzdqO8kX0zbca2LLZ5pIpITq3m6DEdez+fqOz/DsduCLgyo7rc1wDbbTlKsLXK/iGKfXz0Fw9C/ykZ0pyoZRwPWDn+6bEx16Cl99F+OxSRGn8RUk9y/cGJJcjB+t9DsqulLbHjrckvw5D138Xln3XwWujBPtc6D+iYemeauJvtP5sH/PSOOF11EWz3yfe9aZYX6G1jUW+xWUz2y4DvEyY7d+LTas3x6uxV0t7LNZsTneluvcP4vo/mbIN2EYfPNMT/xoQFm+V4xGHv5uS8Wwa7l2DjwbcU1CnDfcA90LZFWwv1+Y9hD8sZcg115dd+GYolcUdYHF4DK2POc6wnftS2bv3lAcI9wHe8hL+2hNd9lu6ze8Mf03j7xwsOU5WT5e1yfFXyh2ZZfdCeS9Zdkcav871HVFyvfxoQH45B/hVJT8PuKGgjscvBqT2eyKlOQPb8huCvRYtt6d+30Oo17idr2HafdjXp9cnme5MS3KA3jlHYe8f3HMW2RuYzeNAMA54LyinAZ6LXL1pnYuPAuw4cuvmGkdl1mmO0VxM+EcI+xh02d5k3T6wbtp8tGf0/8HOSRe842fr+953G941IPM6ULqPd0OpzEvtc45uvBTwdij75F1QCm8DNlgKsLlGGVgfz+mGwTmPck1+wcHW23WKaO5Q+bxLGs8nuksHJJ4Dc1h8gZSvVthvv3BAuuYQ7aONHEx7bbVsx1YQfQ+vbm5br71pgFqLM3vm1ACmqexjvznNZqSjZBoU5BQgV+9UUg5FdMwldRhR3tBDUvtcoTsQvPVD5xItpSRPaA1o1zigWXZAmvR3z1WfN9MSLA38r3BZLQ8t5fytZ64DFk0Zlhu0tF6UX5TlGi2hb03RrcB3mmVWg/d5WK/cOkeY3xMfgvJDMB9tE9W3dYZCc2ruFPA+ws6FsG1tOzXt5fhAmsxZ+lplPSBan+PLAfj++ly9I8j8kQFHQDlXWNATh0OpfDjNvANsfsDhUM5FDiPzNUTfvw1DtSucMiCS/+6knjllgDaRoyr4UiXRtke2aNNyIuHIzLrZwN5/uxDd59l9v3YbQXPW7dB83jGzbD8od0jj+UMZ3razzb4ZPhZwTBrPFZqr92rl5IL1EX0eS1tOSeW5THN9MuzHvQfKkvyhpf3HbQ0fKGg7B7bF1m+dYbuAHQml9aaJ5hSN1nehS3uzfX5qkOfBAQPypoHbFw7sGfT/b0FAf/5WTp0tkp9L9NXOe6HM0aZNtnyavGFAVnaI1rUB84VqW7V5RldKS/KGKqtAOQ0wv2gfbfTBm8h8HwzRZp/Ye/K6HdE8n13bKWFtKIci0g1tBNh1awVsVIFXP9rHmq8S2L2zto0+7/m5XHUvvAZ58XXmBK8YSur0yZtJ+dUBOa6CIY+jhigf6NeA2tyfXxuAE0yJlObxZPWezKx7LXIJcHHPXNgTF0PZJxcRhswvijmAo/yjUZ5Stl1fuT9rcoRG+U/tuqWZ019njHMJLD/oXOeCnrH5Qb9VUe8SQl/HxdoegktHfLtnNO/npUCX9q6cIjZ/aJ+cDfTddil95wltm1e0Nv/okDlKGdenyXyl+wO5HKFDYPNg5uqVttGVNrELpVwGXA5lG2zbudyjbPs+cpq2PfZpc2kPzHb8w1ybPjM6J0szmrMTv9PnzHK7vu3k5d0tqTPXKIkViPKHLk9g9ZYhsG0VVn8aaEzOMj39X16fXjvTM2kmR+izSxG5fKQldTz+3RN3z1HumQVYvk52bKzebHEXlMrNAYsdcuuU+wvqzDUeBv7aM38ZoM25gv1uf4GyDX82Zdc2unBvwzWEawG2bLb55YD8rCduS+P5P28bmF+YzyX7xjq/bpb92lC6/99AOZtEeUtL+T1htvuAc236Y1qS93IIbgWG3I9S+n1YvWmdEw8v72fbdV25PS2JU+2DPQi5dXMJjJPfsyfYfux6r95cOA9LI+8roLQe44tpSczkF5dyFkDZhWg/mr9194LjsezeE7Xfqcu2JW3ONfq6/yNHv84Ycg1oHmaMez86xXH12I6dL9m+C94+7X7bnpchj30ugs8PKTEWch8oS4hizrtuPxuUfvc2eLmyS9fjefPO40fJfC2l56p0Gxb/jtsebeaPSePXaJ85ALz7wDGmtET9ublIFO/elo8sBWwH5bSxMeZDsc8U91XCO3rinQS73pZD8S4o3wXztk4Jpdu1aXtp591zkK164j2ETV/DbELIvRugK2/vCXbcs4F331zF4C1bmnirw/rBuhK87ZW3AaVtltC2vQ3NMfVNFKOfo2YftpwtavIGTJvae+p/XsP8lxC9T6YLH+xAX/vVGHT23V8kZY4u3ydinR6275vjB+TwgdsfgsMCvkDAdbbOYWkmXy/btg3HQzkbDJEPYNrU3ldz8dqvRRYOyP+Zsk+mfZ6+8irkyYCafMvnLCWwWPhSat5BFh2DnV9YQZfvMBc5zzB0+x5a3177mOOE3Rsum0XOdLjMlF+fIt4xvVqY5rlUziac5Syfy/zgVciQsfCv4+cIYPOzeS/uk4NnkU87lNRZGjmkAlt/Gsc3zXj/Q0w5l/lsw/IBqxXUyW2rrE7KNth92PUaS4Gfa6a2xxXRJVbm9WluTM+Nfsccz3fgfx2398B4ejv/bMe2X07j75vtij0ffbc5JFGugGkdR467p8gDA/LgAOT20XWfEjv/UA/k2q/lQSi7fK/SetPib1AibBmjZB9/B/5i5tvw4564gXAdwNbPRaJjXUQobftnBttObl2X/dYcHzvOPtG4+77b65vfEma7Dzib0+fTTP6zP6Z+373OuNWQWz/0sfT1fdj36oNbgKHaZeTq7NIzuy2FrAsMuZ8PtWQ2zsPQvN+QW7+uU6dkH/pZ9bDYbq3O98M9wX7jPSpo+z9i7ExgdezvJewEsHaGhB3P+1u0UdLm68S691c7b4Oylg9UsB6U6xUc13o9EX13i27X5ny0YYMC+joXyAam7It5DVbXZMlpouYiXyXzNXy5guOc+ePmAPr9vfW154WRa3u2v/8QfDHxPEZsGeMIKC0l25fuY1os6Imo7SMy9V7N6P8uqnc4UNLeNOgjfuFwKGebwzpg2yltu89jWBroK+7GY1dCmzZsW2h/Yvtg9YRTZ5HTCKzeGVBaTnOWMUq2PaWC06AswW471zgdyhK8Ntpu2+Z4h4LFn2Beoy9BOZc4CcqhwfxofX+HmrigPr/TiaacbWrOw+vMDucAX06TsVhD7rvGVlDCUPs4lpyX2bbTDEFky0J26IFPONg6ubp9sj+UtUTfbz+g9rj2C9g3Q813nyvk3vU5jX0wPl4JvgsU8+V9LE3m0Mvl0Yx++5o8p/sWtOf9v0r/byV0ydUaoTk/P+6s/3jh8djlXb9zCfbYSv5n+xfWm4vMdlziXOfk5jydvJRSY49Q9LvjZ0ubdqfBtGxP8zIwH2Upkc9zy4I6NfvVnJtbpvb5OnPHt2VH3tORrvufC2yV/Hym+h2jc1BSbwhy+bu7sl3DtnOcrYHtegb3s33AXDoPfWP/d33tt/b/3mab0nbbsk3B+m0K6jHem2GbYD2rr0T/5TYM2e5ssgOUO8A8q7e0M2TcxwGj9pUh99PnhMfcB9j2gc2yAwuw2033LAw/far5TlIiuN5bV7sPu0w5qClLc6RIHu/NoewT9s6GvveB6P8sty5iiwHRPnqfbdrv6S1TDjTblp4XBvs/Mw6CUtFjOGiOcjCUQ1N7XHOBrYCa/ttsc7CzjC3HdaV4+6gh6qNFfbxtoB3b3jRYtieWc8rc+rnIG3piRdL2igNQ8p1q6zOWh1JZMbXPcYXHtAKUpSxP5kuorY9sCmwG5dLCSs15XqknNqmg9lj1PTu4P/tdLG3Ox9Dofzy3zl4Llq7HUHNdtbkGo+vNuwaF1SpZ1YGtX82smy3e1BPse9v1tuwb7zy3YfWe8Y5Z1tXaTbDdtvaWaOo7z0RJzgm2vs/9vsVhF1My1s2se52li3V6pq93xq2dlvzP1gb6bHtabJhm3mXHjmWtAFZnbTO/ZoOttwYQ7QfbRtgybHea5zLHGhW03Uff18pQ1JwLS9T2mzNoG7k6HmtmaNPeq42+7D9DtDkkT1XwDJQlPF3BM6ScDaLjfAGo+X5227bUntNnyPy0eDZD1++m5PbxXM/8pyP6PfEzLuuT0v8Te99n6bYvOtu/lrDnxPvv/DezLqLrMfZ9HXTlfxX1LC9V8D8ou1LazstQKtFxvgjUfD/hFYcXM+uU2n0hLw/EKx23LcXW73LMyzZttOl/1cRF1hLFXmquqD721UfOqteZ5CtQ9skQbXblyYDjAo4Horq5bSPa7uurUPZBdJwnOJTUWVqw52Q2juHJntsrvR5eJ8/jU9jHE4TZ/t5tzossq7EFvRq4MeCmpZybK7kk4GLgJihz+9X5iyuoPe65yOKG+18FPJD4u7fbcBGhy7azRV/ng/E40HfbF0E5bdr89x4DvP+m0vd/vrTetHhsKeEh4B8DgtfJkPv5R4/nI0ebbdi2jH/OMqz/dWohLL/pq4mzGqJ6mIezdh9D5AI9w5QRZ5FyaM4mtNlmtjmxA9HvYvMPtqX2/3O+w+mmZJzb4K3vwnkVnA/lq41vjbig4VtTAP/v3vKufMu0n6v3U0Nf3/N6p/2fNussdtsahvy9IntB3/uz36n2XPQF2ojs/NLCdzrwo4Bo+yuAqK1p8e2AK+Youe90jQOrZ8vZ4qqGIffxYyhLuBS4zMzrMiX6HylXNnwduKqCKztS2i5b/o2BuKrntoam5HwiV2eWz1VKr5EhuW7ETyq4bo5Qc8y1sL6jx3Vkfq6wqMEu+//t3QfX3TTSAGCHurChEzok1IWlBZYWWCD03lvoocMCCyx9aaH33mGB0CEEQgkl1NB7LwmE8le++MT6mExmpBlpJPu+7/U5z7GvLEuyb7elMVwXkvp7TlpPDO7310YBe6K5L1/tIGBPIwcVtHdGB4N5l1HHBa+PLXtMB/Yv1D6qjYdUs+Iy3+5xG+DLF9rWR1tuTrdm4Mq+xUDbxycFfO2F8h5CCJUpQZU72B0aweK1zLk54AaGpg6uDCnuuKSW2xWx56+08Sv7U38arNMB1ZzxAqn1MWUf2Gx7YA+9J93vVAmcv+2296f+lGvCvzFy1sX9RqTaYlkv93vKrfPl6WXUb6iU319WsSu4sZi5ys5l7gzcfgwJoNojzefEvJdit5NO1Nhs7fbScqEpYD4FPP6NSJfwxZTUCL0OSuKOuW9dfxp402szn2+tKWCuEVOXE9vWNuV8flKfw8HkVUC77WRQxmTg1UgvNWAffBiv6euqfIyoGB8a+wGU/QNR3/cd9zGYf9jMKZpjwpUx2MB4RL5YYzlMA34A8xTfo3K/B3OJaRl9SuDWW9X5PVMvte+fFES1iVKyTRD1XnkzkzcyeBPMcR0Wdb6e0WQFTbk5jrMlzX5beIlJo9LxepgPp+Xs158aM6KNsQgl4jC0HQ+ipGdnmkTMYZ5JPcJi3PxUBs6D874DcGWU9raRdwiSbbhtrcQel5Q6qdeddntpuW15HsyfR2kwPcaLiEUZqazeJ5S3jLh2Wu97Lvh3TK+KHd/oyzOxwW2rNRGVG/IMgtdReZx7DduNPUXg1sfWQe3TU579bQt1LJx6/dMdaCN2f8ATyH2N+8HyfUS+NjzlSfM9N9AjgHX7nkyAy8lRBwSPSf346R5k/V6ZMMC8kODZxnMZpPxWhVL2z9KLYK793fVCYNsu/qazuDbdn/pTf+pP/ak/Dfbp1eY7Ffb1getfbh6/DNLrZQrMh/sPuTSYP7Yv0kDxCpi/wqzn1lnUG0L9/trR2IgIWzbgPbO3RP4lIIkfS8XNoN5H1DgAKpatNJ7atoRNBY4hUGVBJyDHM+VAGxNwORhuK1UGtAZhXYFVCasTYLnLEahyoOnVnPdgHCZA3d/nZwIs/0qC5H4dVExXqiwIxyirXSBwO+EmBJdLjREdA3DjtahxCpLvO3yfwLpfm6QPOBW73fVb8vVfos57Sq65UW2XnC/aPtLRhNA2xxOocqCdCbsEbNLUt5NQ/d7+G/J3geGENQHqM2R5Ai5jJaB+fBih/g7bAlkKOYJAlQWNI5wscDFyElMWhN/rtf8K3EbwxZupy8WfGfU48IMEFkYWqWSfG9R4rd+JNIyKty/pQ41jnT1cyfpCUWMwQ9f7alsRtm6M8tiEsDni295ZRuBEwlECYwlHRhjtUR+vswj/EaA+R2NitVPHB6J+y+4usCthtwjU8YHw872ewIaEfwiMRI+pYwPtQ9hXAH5/rNVYJ8L6wEjGXwjzBcw/0yqEvwJDhahjBOHvs9qSAtRv88UjUMcH+pYwXeAXwoxq9vsyw3Xa+zE7i1a29/uMuf8fvFchdbyuIVwlQN1v6vMIXwicRzi3mv1eI7XLkUuQOu0Kj9jY9/X/Ii7ms8+FhJT4sL64p3sBMFZmCPV7LiaGGvUfFZL8pqOm+nckFlOOLyaGQ8VeiG13zCQ5B/gdQTK2aRohdbwKN9bV13ffB/f1ju3TKRl/Iu3fhj2M1H2HrPtjuOv5JV971ATPd2OurdR5CO7cMjwnsAMB58flUuciqHIgV5/vnDcuc6fAdvj8xsqNEUrU+Q0qHyx7BaW6zMMRfK6eg7eTGEeQnPs/iYDz4HJj7y9H/deRXHc4CMylFiFI3nux8Yeo8xv1d0To/MZ4gmS8F/U9Cq+bcH2cRxO2FqCusWzWwOc5UlHXWSTnN7YhUPsLSc5pYGdWsvMZ2LGE0PWlGNQ1pD0EQtetpM4M8D33GzBC18isUP/X1yDS8PkNfA495tyGO7+Bz3NgC1Sz/qcvoLDaTAsS/hohdP5j6QDu/MZKhJjzG6FjITmXQcHXJWZEgtdAF2VQ10Ypp6DHpxO+NMZdh5Wc36CusUjOVWjV52jOjXQZwXd+gxNzfVlyroO77nwRYHX/m70J1PXt0PXu2s0Rcp3fgNfWQ9fYU8XGEozdt5gpNhbOTw1tLDkMx4Cgzm9MjSQZfyoZpyqJs3IvcB+jHkOEx1E9a6QekxEa3xH7GqH+T3B9IH0k52mo/lnbCXB9NLYDc4e6ZqsR6uPhjEXwuRLqf4tEqD8bdT1VgvqfYo3rA0NdY8Uk55IkQsch9PxT11x9/XHg/4wNK///EOrYQFQfHNzXp7amANUHiEvnUP9lqL6C8Jwb158Qn5tbmYCv01LHI2RZAtWPCavP761ogPq/49THgeoLeRiTDq+r4v8psfA1avefBaZR11MlqHOYsL+Wb1v43+ZnMKdQ11PHMek4jwVJHzOqDwvud1bD112p+nCeVPWxoH7Ln58Jvm4r6W9b0/ads0QdH4zq30tdY8V857ip/zApcJ9A1y+QY/n/Qzq5/xtaVJ/E2HKmVP549fU11PcjUNcQPoogiclK9cfG11gp4wmPRAj9j+H6fkv6E0j6fkpI4hW4a3ZUv1GfravZ+5ZKLQ3mNUmfUup/0maRJPVJUb+/pOrfYe6agaTPbCrqOqmE63MqPZ+bgvrvGdsvWLIdFtOXGKL69afAvy/xexBfd6euP58jQF3XlmwXQv0urP+XHhdAXXuk8sX0rS4h1H/biXk/Un2aJffxpq6X7mWA6h8uOQeSs3+6D/U7W4q6FhzqCx/TZwR/dq8tsK6AVTnUuSTuujdEnW+SbIdJxhNgXF97iBpfEBpPEIO6Ri/570Bt567fa/6D7DczP2f/BnUubg2BtSJx7dCg/qNivn4JUtRrh3qeqbHkVF9hTDv2gzOvwGqRqL4Y8xvg2gn/0y8kQPXrkGyHUe85iPr/RI2PyYXqhzIMLVPjbpZjtoWWICzWIbjfDNcXJYR6n0LfEL4ViO2ng7fFY90p3PljDjW+aUZFj4GS4MZCpaL6H4XGV1FCz3GN6kccO04rRug8+2kVf03htEJixpppx6M53zTrqPdfrMci1ONQrg6gxq5Q3hXwXdfx9U2j8n+GUNvh+vE2eHwN5PLg8Xu4DCoP5zNPGTUqHs/X6HnW9OuHqP50ktgHmOSaD3WNDI9VpPj690m2d7hxjamosZBcXm5comQMwfWEO5B7CDgPdq/QXQLwGprrFynZ7iLCXWAecncEqo8ljl/hhPpdcts5vjGp+HUgOb9VOxih+n7iPFao80WSfqa3Vv4xtJIyatZ9Pt11J6pP6w0RqPcqpDl/0dZEnU+QbEddq87d1piJev41JK8Dye9wanxarv7F1HV1qq+zRV0WE9WvWMqqvJTx5nDcOTUO3fXLhmmS/gAYNZYdo/qDU+PdsSlE2qcRJOPNY+C+6DlJ/jtx4/rhPJYkBh/1v+UdAao/vWQ77HmmXb4+7i8KhO4tZRmvn/odTcH9S6jxA5J4CdjTBFeHW34iEr6viZZrT0w8h+cCXiDSYu9b4V43/fsydHOixppIvmuxVxg54z/3ohGRqHgZMduE4FjYPqH4G6HtJbE2QvE3pNv4+j74zs2F+k1QrK7RS9/D1H8X7j8NxJ3T9Kl/O48nxJ47kxhNCI3jqlHxN6xI4m9ISPaD2n/qePjWUzEnQn3iarnjbjjamBOuP5lV/I0Q/HxLXiPafYpF9TuQ9JuRxtewII25AdV9PuDYMyquhhZ1rGpUzA3cd4HK4xuPxpHG3IBir+sPKyi2DzYVf+NnIo26XgtNZ9KcUGwJzF3PpK6Lh2JpUL7ypDvUtUDYz1cTfwPvD7VOEnMDulHgOoJ0TFqMB9GyZfwNqKvxN9w8d/wNidh9i5moc6kSUwqS9L2oTUWoc2tvMuk+kvgb1PkyOMaNi8kRGo/mA88thc6lWsff8Ik5n+ZQY8ZgLA0OF3/Dh+oPL0GNd5Kg2hATfyPk+EiWMTZ8QjEmOL6YGhqh46B5LfjibmhJjgEVT4Lq84/FxNaIUf9Pgb/TcUwNn5UJq4O5FWpMp4RlnA2fwyJRsTRiSPqvx46j5OJuWAvFq+BQ5z1PZtLdulhUP0IJzf5AvjgeVAyO0G/584Vi+mFK+2eGxv7hflopJPE2SsTfsFT/79HG32gjDgfV36ckX3vc47qPMxVbIxR/48OMcP8aqk+nJP4GjqMRy13H8PUNoZ7/XLE2KLgvBEUSa4OijbtRi41z0dX4Gw7+HSaFx1nnRI3lPxHNKVScipjzupLtqP9YY6twTA1pfAyY3yLehtRoI1uBOeUsgiRORkws/ljU/1TJtcczOk4acyM1Loek70Ao/sbuAikxOXAMDSl8nZWLoWHBIvZGbPyNEO4zfG0PSdwMifUEeag4GhJUfIuQDQiSWBoxqOvpsf13NH17pPbNgIvDQZ17WwvMOb7r/r7tqHJw3Iv9AyzjaVjAcTQoVPyN+QpalbBKNau/hZtTQn0rpPE2uD4YWgsxy1ze1LgbDvU7LDZuRi5c/I0QHN+CQ8XGgDR5HRwjg0r/C5rjZanQe1QabwOL7acjIYm/IYmb0fX4G9o4G5y5qnAcjlOqWb+xT+mQk5u5i3/Bxd8ICcXSaCvuhi/+hsO9v6SxcGCemPgbtVD8DamrKn/si1D8DR9fTItYXAwMbUyNmqZ/HPQZmH8myF8/375+/D5cnzpIcn3ncjB3yxdUs8e/kFwjo+JmXGHEItYGhYq/kYp6T1LjA66r/PE4OHcC0nyUu8C8diHhIjC3QsXT0KBib/iE4m9gklgbHOp81t5gzskVa0MafwNec+XScbwNC9J+nZKyYvq0SsH3ae7rrhZT6Fp32+2LneBrIibuhiYeB3W+Q8LF3IBj1nIdjzb6BeSeXiP2B8bSeE1AMwaYir/h830Ey/gb0xRiYm1QXgeksTVeF5hcSP2a0P6PgvE3YnDbwngXkvgbkrgaVPyNkFAZVD2x9Wn7/3Mkr7t7IsXE2pDG38CeiJQScwOaUMXH4fDF5nie8EKEUDyXWhvfTf1p1sTFzbAC42/EjDOp7QjmO6LHsWVyYD+gHRJZt62Gx2OkttECPGbUuAzL+CWYdvxKzNgSql7LsSvOmpFGCK0J5pBmjEpoHIrGytXsY1eGV/xYFql6rElM3JlYK6LHoX12YyyoeDWSmDWx/qnAjTnpinGRpLF6UrhraNR5ddyvLrWu2ONQg+cDpWNRapL4RZJyJNdFbiW4/mqw/luZdmnhuqg0KHbsCdU/K9cYFclYFGpsiutrUuI3KDy/1lUftEQzXmV8NWtMyngDKeNTfGLO6dbjSqjrbqljVTijDYXGp8SixlNvSsBjUSR5JDbvQbhvM9UPHscFc+lw7AcVP4wbJ5JqbIR6/Me2Ff+azDXmxDlCgGubNW0/eDdm5Myq3PiUYz1841OOqf6MiycZz1J6jEtMHD7uPekbu+L6zPvi9FGk+WLsXs0+7kUy9qQXnMksc3lgmoR0fAr+bKfGjFDfARsgkvEpeJvaegg19qRU/EUJN7YFPsZzrGT7uL7uIUMTtq1pxq3Ac2aSsSddRI1F4fJx+VNIxqdQFhAKlSEZn7IKsGAiPEZFkkdrqFDMNlLwPbV0ISnjU1YkrIRI8tSWEJKObUmxAJj73huLV/HvxRrVZz7n2JMYeJzJQDGMSIsZn0KNS8Lpp0SiYi2cAuaW4JiT0xHf+BKcN4ZvDEmvcP3d4ZiRK9EcpqeQjE+hxI5PgTHDvmC4vDDNYhwLV19bJONM2nYJ4bJCrjB0LVi+RrltypiVuo/7dRFu9GwbGn+iRY1NkYCx61LGrWjHnaTQjlmRjmmBsU9841EkJLHJY/iunfrExDyXiB17InFjRP6QEtdeU6cx1Zwx4UvgxhdJ2iwdq5QDdX2TGnsyD8Glu3EpeP2QDHK/fgbTBMee/FDA92COlznU2JMpYF6SZNyJdFwKLjvX2JTa44SpHfNRFTfW5K3I7Sy8BeYabwKavCH3Eu7LJHYMC9VP51km3a3ritB9YjWo8Sw+vTY+5eVqzvuoSkyM3K5NMeNQJgTW12OVtlXy3VMlF81YEd92sfVvAuZto/qySRzdorFC1LbbAFyZ2yhx9UvypNQLbStYr3V8D4BjqHx9wKy5+rl0rGTbJNzrHvYf2dkD97uS5LHia5ePdlybs6vxNlxfNZgHvla0/clC7xH4uZ3zu4TqvyWRYxwgJ7aNMf3SdhbmS7W60N8Q3zoNPBZyoNCM6dTQ9DWDfShXjTQczIcnlENZBUkZx6qB600hff+UILn/yHIEKt/yTF4fyTYrVH+OEV5egeoL5pOybQjVB81K6D1Dxfztgl+AwyJtIRBTzoyKjnsMSeqmDANC6zViY/4embCtFjWuKMd4c8s2W/Q5kwq9Z2L7VJU0LlLsWPlLwTzWyS2i4lz7xmhdXADVpwujYiNIyqWeQ0l9XXcZehx6zd1kiIrXgPtsxdDEmcjBYh+cC1pyW8ti+3R13U1g3rYDDIXiB5cWilciLSdXvzLcnpx92Kg+XgtXs99DGK5zaQsT+ULmIdIk15Vj48f0pz+nH6s5753zU8f8DvyWqO19kZrCpMV6j/A+mnN5SvlAAW73kYCkfl9eSR0cKh7Sx0Qate3HSvcrPNyS8WDug/Nw/cIcXzkQ3Ma3zsKzlU3fNRzDu+3vjUOZNlB9yLUmMizKjq075JnIbUI0sTGdrXrE1gKpdaSM4R8loN0WXmuC15S0fYjc8fH1h5McX4eLpQbbvgnCbSMROq7SfF2ybMctL6CJUWdB0zapFYAcbfYZUdHxcPE55FK4uAQnEqi4CKXExm1ok2Xf26MyGSvEbZurXamo2I4OlT/leeauIx9ZzX5N2demWNR1ZEyTtysk17a3BHMfmBdvXwv9Xj470jlg7iPJExKKDZpafiocK0OSh8sn2U4KXk+m+vDGxib1sYq3qqnPdx39DEX9mryaMgcr6neWZVk5tPVbVXoPCuoeBZQ9ES5day8Bqi17NHxl71HNGauXomlLir3BfG/ldj67Cbh++KFxLPiYUXnw8cPbSI45JXbsDd5XX/ma9oRIjrul28C8V0njQ0tjSMfGmS7hbLRsYQSCz5dQYs67UNYG8HgRlw7LWVthXSFNmZak7bMQO955g4I2jFBvR8Uft2zXeok05Vk/75L2jURwGrfd+shIIg2uG8k8VznhfYsh/T1bQuz14H2q2eNsx19Z1tclUW+3bzVn3HyXnrO90mm/me0IkWy/P5g7B6DHblzcGkp4jKp2ew713KxV2BpMOtU2Tuj527+g2H65lmWFwDG53Gd7aVQ7tWWU/MyfS2nuFvxFYD5Dc4P53Mx6H6r/MwWXO6/QPGhZAo93Xa2g+YWoceCW5WvyppgPLM8byCt9zmMtLLBQgKQMqaFKsB34cSpfO7VjA2C5Mb8xpb9/Y/r0cf36YspZqi+aZpy6NkZEbUll3lQwdkNdZsr9ghYDpOVY7ANlMQJ8bkLba57nGFT7uDbDx4uCuRT1XGm2b4Pkd6w2f6xvAr5jfBvAbReDKn86wLVhulDJfYG0baHGs0n9XNh09PgXwnT0eAaadw11XLl0nCe2/FTUOEGc/quAZPyhb5v68e/Nc/srmLvlGSgN+0MotB+/R/gDzbk8IZK6JJ/ZXN+RENjfOLYMXM5A0FbMGOwrMK/hvrkUSZ/eUH5KfVxOExw7qo7T+v7fV4PYl0ipekO/aUt7lPBYQY8LXF3R96OEqLKofJL6rL3bAZcqXVXx99i8KhNtG50vgJh9TCE59p8BLu29iOeQixWR6rOCPo8En+PYMqRt/IBZdo8pMM/XRrjP7LMJ5/UAPEYktD7Ff425WGu+ddbOCOD2/eIIVDmXZ3QZIWd9Gtca0z7v1vU7DxF863AerWsIVu0OeRTNYXpp1wvdg3B57iDyprqOcEcmVP33ZnInmlvg4jrdVP15n96bGtRxxVz80LsC7gRzLLStc1Fm0nZo3A3muYVid8V4oKLvA/5AJlRdDzLpsC0PEh4A81LGM0Kf+dx2Evgzm+rvtyeBS5egYp06BwfW1faOdHDf/6vHmd0O5m75NpSGUePVfPe9T3FrpFsEcrU5xiEMt456/rhtukQS/07yXFFuRm5g3IKWb/HktXSjUTmh3862I0L6U1cnaoxA223C05iKj+/ddtv6U7vToYHvBE05XSQ911GL6RMo7Yfi8qaKHXczhFA/b9J6870Cw5OkP5UzRYAaUzMELefU5rHs9em1mceP43vOfdu1xWKfe8WriCavj6T/dS4fCv1A+L4A7t4Arl3aewq06UfmOIZMA3OOpAyIO96+Onw+DYgp5xNDVJssy/8EPM9vIm8AvnWlvB5pMkGynUWbJ4P5ZJTehtjrlpp+fL5yHkdzvG6gmNQyaX+vqYhLf6cxFS1belvJtcO3LpavnZpyJnnSS3he4EUw5+C8zwu2oVDP1Vue5xjmkdK2KeQlApdegqR/iIWJjGcE7ous86kA37aSdqWi2pSrLqq/wBMtgvv8ZOORhrasJ1vydCHa53pCS14QeC4S9V2Dy+bSU0k+06Wf9RZynofrT/2pP/UnN9XnYl8Wos7jculd8EqAphwqHX5m7zhAjFCA92nz5Vum+vNebjg/LGNLBhUDi8uLpcQA4FDjplJR/UQ5mve3Ju6CZkzZ+Mrf7zVm3EJtW4VNMzhGQdPW0YI8JwQcB2jaKbGxQqidWtLnRtNGiTUU1iGsy6RT+SgLEFZtuMcuvubqHn8NcPsAl5dTWImwKpO+AJhT+1ObrjAsA2l8kNrPM51e+eNA4RgQDrU/VyqcXM0eK+ULtMzxxY04FwiNC9W0VeJGhQsyqMcsSPuQ3yQE+0z79ofqX8r1OR1T8f0+azF9x6Uxiudh2pQ6aa79S/qCaWliI9TXqN+q5rxunYI6P8t5ljCJeKyhea64c/lOzLnDbapZ9zTf3tAmCkcrhOrdRul4hWMJRzNpEjsr7GIA7kvoOdkp0c5gDuHfR3/z+HsG9e+f4UIrE3y/9UKWV1iRMBwsU7/vfA5T2CIBF9v5CAVNWyXGKVDnFE5OJI3PcZKyrRKS30nnN6zjqdSoMZSYZryj9LdfjRpHBB0IHJTBwh6LIDl+12n6+Fty9UtiKjmSPr9Srt8jHG/+cAMuQ/W5MHcNHJ8jw2lUHqqvG3wuQmNqQr/rYvpvbKWwtcAope2QzTw2D9DWXVsWodLqspfJ4KSG5J7QRwVw5z9824xVOLJFow3A1/FZCv/JQPI/wp0nDp3jycn6vubS6yN1TIzdDeyF7KoAz2/vZsz9poHLkOb1KSH5LFq78t9bFKZp7j26ocI/DIyMBK8raK7lcfZR2DcD/D95LQ/JNRCN9Qlcuk/scym5112Oe945qwKrBISu/QwtbB/isVT93Sq9j9OSGWiuiS3egkUbmtenxLcKmmt3EvX4QHgt7ZeAGcgvlf5eKpJ7gaTcnyME9rk4pWX/VrCMX6/FXWN1NK/h2jXVrPFmbo6XoasJVzXgsgYVR5zzeYu4a8wpzlM4V4A7L3g545Jq1rlQN3fL7jHMe4URq7i3Kaj+VlwsUSo2aKoLPS5C/idMq92N/I94rPGgQCiGJFb/f9yzmvM/Za1EXEXNefDYGHI+hwjzafqIhNSv7xznvDUTPP8f0mY7Q+eOY2jiHLW5712YXqts+75/pyCJSaKNCzFNIRRLAcewkMZeiI3vkKJ+Ht3vRslY/6lG4Hhx35h97bj5nHAfqbea5803XjsUM8Ny/LAUHMtJXfeDnqj841onVLIxqCnjOOF4S8txk21/hvbKFBqXpOGeC02/udAYIN+2XF+sHRRS6qeE+qRp2qaFj8OOYB5L2tdO2k8uVJ+23x3VZ80ZAaxZ6caT+cD+ddK+dcMF5fr2hbJCAcPBHDpcwDcWjhpHpyGpP5dxCjnG/J2kIClPsz+hsYPnA5pza1KSa8Q5xkTWNP3nqOuoqf3rcB86nxy/FeD4zTaE+tSlkPSzGx/pEQXf2FXN+Y7Q2Fauj53P6AiSfnZSsL++Zhytrx+etD9e21LG04b620lIx5eMFrLsUwf70kvrlyrRh87nWAHXv873GoB5Qvl9/eisx3qnjAHfIyOq71wvODOSe33Hfj5tAOaxrMfU9wpNv6QcffFCY8is+9RZ0/bFgzR9k6gYCVq4f92CCqH+dSlcH7kS/fTq1+bShmL619VjBGPGFdaWqMr1s5O+rnyvV5jmiwdRAu4z11XDANdXDi5TFg2g+ryd6kn3ielfd3qiLwPrusr1k4uJE1K7ikmX9rej+tGdzKRb9Wsr1X8uRNJnLifXl+6ySFZ97mJcSaTBPnRXgjlehn2PXD86uKxh0b+O6ivnXAD48lG0/eli+tdp1P3rcB86H2kMIA1Jvzrn5g6w6mOX45y3ZhpT+WMlhRxCPO4V8ygMyaDt577N6Ycq7r5WqVx/PKof3U+NHPGzIKofHV5XL08G6bF96V5Dy7WpLdP0cXsLzfGyNdhXDvevs3Avcp8BTV87fO3u2Q5KuecBpwv96yZWs+J9u7lbho+7YAKY+7g+dJI+k9sK4XgkVqR94ai8sXVq4uvl5Itvl2qsAO7ztw1a7jLp65ZyfMvq4yu5FjtQuNfkzpE08Ul8NHVaxIy0iDVpwfpza0OF1FiYHE0bHN9109DrIbQtTltdAcckkVrTCLw+C9Osy04huXa7bmNVBdgPWbMdZZWGtA+3pn/2KhE0r0ELOD6cjzSW63INSd4ViLQVicdtirlGTIGvu58VDlPm5/wCHEbYwpPeljq+zjBjmjgjOWjGGuDn4nC0fHhCO1KvB3O41x91vZMzDtBsJy0zJHZ8BNfucWDu4iTD5dx8fTqdixNcEsCNO4FlcMcxVHYXXArmkC9eM3a+IXfd1bJMTb1SF2R0W6Rb0ZzL08s0r0utAxQ0MUm0UsdbObjc1Ou8jivfqrzawtWsa6wLB2jGkmnGlbU1Nq0Lk7vm2ZbfErTddnhNFz+WeA95v7APhOq8Hylo84dQ4xo/TnS/0MOZjFfA12x9HlbmjxF7XTfmXlop06HVrHGlcFlrokBo29iynxHS5JXEKdiqIzTjbLltYZpmfMaoDFKvgbtxv9sR+y8ZL6yRY/9LWbYFy1f8+ebQOMRlMuHOX+eqj6KJ+5HDiYTQOJWBIqVfx1EGxipY1BfLclw/dc7asvzaET0idJ1gS8JWTHot9LvlbIVzMpDE+TkrU93WpGOV3Hl42A/kOCOamBOaciXXFaS49uB1lnV2gfsu1ea31ObvCipWFmfPSHuhZWgPhd0JexGP27KbklU/Peq4SGjq8O1HqB6YT3uMLMRei8olJUZM2zS/TTDpf621PWK24ayLlrVi6pS0yRoVl20TJn2DDDR9TnPUvx5CpbUt9h51Phb3QfTBvw9GgvlI8Lg0eO58n+ZxPd+nKnPO3tXls69A7nbuN7MOC/sDuJ/2GtXsfbDXyGytlsDnTXvMrByQsF2qlDhgJYU+M2M+b+ZSmDsDKv4UNF+LXNyBeZvH8xqA8Qzq/tyrFTQ/guPErYaWfdt2Sepz4uvvtJAQty2VPlRIWrfWIp5lSPJbQEMTp3+pavZ76cJlLr+lJdG8DUsyy45m7MJyiZas/ry/8JIRllBYzIivPVyeUJkW40i4sqz2G8YOXLyi77/chrnAPLdvFL4V+I7BrZueAdUunO5r57fV7G3+lin7x0Q/F/BLNefYNGcGANOovG36Fc3dMvX4x4q+nzf3HFB5nd8C62Pzz1DgYqFSfke4dLzeUujzhhqnxPHFWnU0ebvmZDAvwTdWUeI0sEz14TltgPiqz4Tmt0UOjwKPZfY44WoDVLlW3s0oZRzxVQY09X0BWLbB8R2nz5D3wNyB+fE4nBSfA65+uBzjcwV43KXbpLQN+toI/LzhromfB+Y5lYj3/V8DOcYi1+Pbz6jSxthjlytcBuYUmPcKBK/P5dpMLshYts9DwnzXgPk14HFMfVKPZna9wh0B90S4DgiVL3FvJnd5SLbFafU4y5uQ68Ac89UfSxvD38eyXXdnIh3/WsP3H8AeSADLeTBSSv0hms8nZzzg+wxz18H3NARjQBwcsLdCqKxek9oXtdT9Lm4RyHE/Did0D4Uu8o3npo7fzQ2cfkOLbozYxvd7JXefuP7ET77+XyXqH1OFY/CUaEd/4qfY+BQWbgBzK9bX1LnrbZg7nlR/vyENnFbnh9t2aYqJizRPwJBq9nsQDWH2fUjVv2cRnl6rZr+XTpf0yj68mgHX9yQXHI/qh4q+z5SUi0sFl7voEwLedx/qvlux3LHTbPOpIepYfOJZR5Xxhqcc6A20TN1b6o3CXidMJh5LwG1i2iKtx0p9fTrHNXB4fijndepSJmWguR77jtDUBrcMvR1B2o6cLJ+D5wNezAAf07cSvKQA26DZzlLM9SSfZ5TuQ+4Bc+ypSM+gZR8u39PIM2g5hrsO8kQLnmzA5bbgYysxgXlOsAlMWorniMe1F4SeE3Cfdy+AeW6Sz8rUz5uc/6H7U3/qT3NOL1fhe7O68x2vVHnOo0i8ouDLDz9vdqxm3Wt1x4J2IOwI5jnsgur2tUPbdm0ZvWxEC1ZAhhOPcV7L+nLj4m6m8o21DsUIhVx5h4N5KD/eVjNWyspJjFz1SWKKuf7NVJ/qmH7VKfHNYsTEG9E6CAnFGMjxm0B63dMSdQ8Qq779Dr6eMj4TX39feA1c0/c31sSZRits28DL2NaNbSv63gibFrK5B7c+tjzsmEJg3PBtKtl94kcH1nPPa9vOVDihcRzi1v+nmjNeM06rHetR6jnOaWND0vi/JwxQ7rUl/YzQfqZsipYdy+ewi4YK1b951jCyzgC1PrBAQS522oIBf23JUMF6iaUVlmssDeZadZymlTJZHMwlcr12prdgi8awxgy0DA0LCOXD5UnKtNDGPYBOz+TLFrjXCly+soCrkJOFviAef4GWuwTGGTm3Bdw4b8qVyvwOHicuZfE6utEINSaWcmeV917lFGp8KEyH4za5MrTjPyXjF63HxeHxypybmbRS3GsGPw7JcS4zNI2pbO8rDrU9JtEJjc3QoMZnDNYxG5o+6FamDFBwrEYoJtVUQJovJKVfZ05Un/tYuD+lz/2IZlvo2RaF+tFRfYxD+al+x2189tTXdSy9DEyown2CqHypfScxfL1iuwK2L2iTlhxd2Nhmf7cBc7y8DUrf3rO+K+Br8/gW+K5bdcHRaB7Ki+3cAtfXa5cOcc83laZV+rNmp8Lc9SRuvfXrZXWBvzWoNK01hf7eg+A1LHydYngBKxciec3ksKzQ8oZWbFGua2bQz0KHGdqiR7j79sBlqSMVjmCWQ/6NSPoDWz6PtdMzlAnB1+AlHpfONC6Df4F5TlTd0mtmqc4ALi7E6vmR8L1uKLHbQdJrHRLnZ/BfgiavBLw+JckjkRqDEpLGk2yD5esn5ACBAxtUWgw8TiAnfF2rVD0LCy3iSVtEqY1zuaWn36pwPLefGtJ8MD9Ok5Rjhao7RFreb4H877fgA+CjxodgGT7+UIDK/xFDUp7Uxx4PBDwMUGkxHumwRxuPgDnncQReH4v9/Di0mjV+SZIHs75uZcHF/oDLKbZqATUGq5RRheS43reZITduo9TxsCA9J2hpmUGAG3+dk6aPthtPmLMfeA7a687UMuUoD8m5xFBeX/kSmvOhXXcEY7QnncOVFbIlKGNLwFcXzu/7Pj474BzgrMY5ic4KgHmpcbAQLptLl5LWA/PjtPr8an0NG4/3pdJcOrdO44w+cye2QPo9qs1PkcT6cPdPkuSR2CNgdyN7tWjXFvjGg++GUGldZ3lNQEIT46Hmvr/g8llMnjbB73fJf4S1A+s01h0ENhTYoCHJI1H3JfuHMU39PnVZIz3Wa4wEc5iO+cqyRB0T7jiHvkMleUrbxxg8r4ofw3Rn3wL2a9qxX7PsQ20bI7bPpE9KjJC1EN86a/uDetZn7G8stg58LZxrr4WRaLkN9WfAXIS/VHPeH2zuJp1C5fWpt5lvAJgXzLFVkdXQMsSlay2IzO/hYsn48lgaipaHCvI7C3lw64cyfGVpyqHKS61Lwvo7W3PtTts3VmpJI0uh5TbbslxBrs4lEGmsJM5ihqzLK1WfOxaLCrjvQ0leC7A+qm7qex2nfYN8W8D0AeDHgJ8j/SLMg/PVj3Hcrl/AHOPS2/Brh/0xQFC/8x18TeCUQQaPk9Dk5ZxWzTluJ6fTInwVuV1MPb3sS2Ow7G/BMv4ulqC+X7VlPNaCq1v2LlqGrmpcDZZxHolLW/CFwucMybafRcD1xJQRW1cKzTGNEXNcvm7A5wI+N19UsntNuM+A81qQK1Zm7Dg2OFZNOt7N5/Iq37jKyz0uI1zRgMslXIv41nXZNYU9VM15T5ZriLRHiW3h9yyVH65zy9cbukPoTkXeVPcy7kxwl8CFGVxEgHVS63O4uwP+V8iDhT3UAk0fPq29hQ4egEr1V4MxmG8pSBoX+pAGV84hHVa372aFGxEqzw3AjegxB5cbg/vejh1n2Z/8Ux0HwUeSV1vnmGpWbAK7vehP3GcDN4a4aySfL9T1gbk96RTuOgO3bgjjdzB32n4NxE7zVHPGpl+E0HY7B9r0WjUrVrs0X4hFGZZezeC7zL4vyBevQ+oTtPxJIC/nB8Y0MLc2ZaZPe8DrDZz+RoteR8vO5EGg5LVAF/NlqoAkL44lE2sSAMt/ByxPUnov4B0Apr2N1mm8nUlqu95JKOt5hRcB3/68SODS3yrsJYIv3XlDUM4bRFr9GXBPC57qUU+DecgTLXiyRZJjIjWhJc8RNJ9B0AsNuGwBfj5x6VLuc8Dun1h/6k8Db6LuN/WKMd9/deu6HPhbYPuO2hFouy1SknhgO7TAHccdmnbGlFHyOO6C+NolydM1xwL4MUwPbVvzvdZ2qua875CbY1w6Z8eOwK+VHNzrEh/PXKj99OUp1a4Ua7ZgREAoj0Ub/g6MqGzuUTW8sJUL1pMbfG6WJ6yQyYqNXOVTdUnAbYZ7tvc9b4cpHM6g8sKYmPi+TlsWgOvk/NOAG6MuiRvKHcPBJPQ6G9eCfxEkebi844h03/ZW8FhJODbhpAZcPkmQ7kj3H2+jKUeCOta53QqcH3C2II8EF/sX5qHG71jUTfHVpRnHA/vG3hpwVuNWMI8RiqdsIbZtsWLvA+Xul8Sl+2zUwMtUHmpdVy1cxd3vSQOfo9wHrNtHuA2eutg3DfYLzOk3oHR9uF4uPbXtHwwSH4J5Lg8g4zN7JNM2OI/v/k0+3L2fqLGJWMn+0RMbMO16Ji8cNzGxBzxT0THdRjeoNB+qnK2rOe/xJClLY+uWjWpsEmnTRr28mdKmStR22jopm/epLYOWIS6/1omRjonc7tRmWw13nyC4HHIqkHp/IqmxBR3Z2AYZDeYSR/Yod86SSoshPV4hVJk56/M5qwX1/Sr+kxFVZ876nOMbxwYcJ1gvJSnnGGWZnDMA/Bimc+u6CH5XWUr5/rOyEWFjTzqnXr+HEFeGdPvSdhfaNaMTGnB5oOHuvQTznIlwZeF8Idb7oq1fQ/odKvndXt8XCf7mx7//NfdQ0v4v2YBJ99WhsQGzjHH3+nE2VHCfZXhZu30b/oGWId82OViV3+bxtOa+h/cZJPYF81xgf6u1Alz/tlA+Zx203DfrnkOh9VLW7eqCkRV/r6OcFiBI8lD5pOZDy5ArO+UeSfPPtIrAgi1w90BaEMwtysthKINb59tGQ9qOrqK+05auZvWjXJoB7wfE5aHyLsWkScqxYH0PIwmqHzBlCfR4JWK91ErGNHUvPshQ3zGpZeb8Dq3vr/BtA993waVP7xOZUdH3Fcppi8L1lfBro1R9fyjy/aHY5g9i25Lqe5qd0oJTPTR5ukZzT6HTG6clOt2YtG14O8m9fbh7AWnuGZT7XkIDyTWEqxtw2dKVmeVoM3QVo417D1H3QZPcn0hbD9zW8j4/1vcMkuQZTM6t8t73Z7Co7/FzCYO7F9AlFX1foF5zRQbXCsVui7/TrNtPfW+WduNM12VwB1p27qzmvK+BRX13dgB1vx/uvj++ewJpXICklmfJ3YMHLrfpQbQMxWwfytuWh4C9AOm9fEq4nVlOLdMSvBdQ/ZgaY5vbTR43N3luDpDWJblnEFeHZNsYkvpC+98l+LsvRdvjeAfSNKaadd+dgc7tK3UMuPvk5Drm2rpgHq6tbTtUmEeCu08PZZ7G3GDOGeIxT4Bv2zbUY+BzvT77U3+ynF6t/Pfr+WEA+V5Im58zLaMpHfZp9ed9eLg8r3fIZIJv/6j8Xfda43GFqQRNXufdwPpe9RHwdl+nvGXgTaNyQnWkeAO5N+A+gErruqcKeiSDJxtwGXq2AKpejqaMCQJUWfA+OL52U/fN4cRuF0Nynx6pF6rZ77MDl2tt/18YSNPL1Zz3W8GkebmycfrE6s84WpL6Y1Ht0R4DLr/FcS0J3otGki9URi71e33bArZDuPReg+OjbW8oVLdkW0k5XTl2JW1a/RnHrkQ9pcEYMUcPMmONSercoVEvb5PQXhxDLYXFvsOyrMr01dOLSnx/Ht9nZhewfCyTh4t1pq0rFKPNQkx7fPvetf3rRccEbByws4I0/leOMrtAs1+pdmzUy+7eeTgPd4+9HMc+dF+/XcEcL2v56oBCcc0k9yOEnzHWcdUwWI+kXmq99Hd56L9Cm/+JOJrYY6l2KqREXSWPmwT8fqHSctm5UD1WVs/kbx4p27ZpTQGYV1OGr05N/YPN3xtwuWvWyWBdj1U7angH2kBZxWN4QSsbwmXiunz7XNqC6LH7HoDrpXJ9n0Gl61t2puUQKs2lU6i8Plw50PKo/NQ6c1uxou8RnYs03ppP6bYsp8ibaiUBTd7SVvWk+/zcp/ILmGOae5Wn2iJAmicFt+9bMHlCpHHKQvslydOGYYWcCoRidfX5HSFwOLMsye/uW/XvKu897WE9XeLiqsHlgepnT7rPpR01rgNtiGlzl/zLsKy2jy1GxXXTcvtmUVYpXwnE3MuMc7FQzDa5XIKWU5wU8C8BaZvHKeFtUve16y4T6EIbnCvRtu6zC67HLiUeu5goN3XM+Wj5/EB+HEOsDbeCtg4mFxKPu+YCwn+Z9F53W99sXJwuLt1Hk7ev/dhuA9EBhR2oyIdJ8nPb5jamcH0HGWnjWHHHry/ewY1DqnC8sBwW9lgkEVUfl9eNwaXSYqbUtmuktFO7PyXq6k92048zn7MQF7frpwAcFwym/6Qox4I0dtk0QVnTBPnq9b83fssA15e7/DZIY7SlPldTGrn3Z0pL3mvB+8beQ8u+erXt8eWvlz8CPjAi2ecPQJ0fVXO2A6dh1s9BilBbtd5GYDq3zYeedIq2TTDeGH7sfOyBY4758t6fwRONh8Ey9ADwMFruZZJ9GM/Q1gW3fYQp8xGEqzulHZZwe63h+GQl6shlkkfbv/0HwvRyNSuO1KEFuThjh4K5L0+XvQzEHAduvy0807AsM7XeZwL+WchWA8BSDbhcW7pRsi1bMyR5cL62LN2yrcHyKCbPKIJ1O9y4H1xPzNihZau8MY/w62i7AJwHbud7fVrYTJCHen5rmxA2a9EoMB8FHueqiyPJM9gtSzzu01meeBxr88YoMB8FHktI271MRr5j1bYVBOulch5DSb1WbRiBSPoaO9K+yqH+zV1wCiDJI3GioVObNpwKlk9CaSXgY0KlhdqkPY4hpzLLVL7B6Jhq9pi+xxCO9sB5j/LwlRPDV1dJYw2l1NX2cegq/JqXbHNkw6K+UrhxqJaO7KAjiMdHoGUpaX2abbn2DUZuzDZczm1LQok6tNy55rMLOq8hyXsOIaYuCaquc5Rl1M4KOCewToPaNqacLjhXyaIMrpxS+5AiNI6Zi3V+HIAfa/2nkVKGtq6SuOOWY99Cz2coTxvHp0tCx6+vd1wMSPOFlGy/5bk2rGS9vuN5EpM20ITOG2vOUW+UwZ4BKdvmtleDS/eR7NcejdR27iGwOyO2DZJj0AV7C7VVL2c3ApfndrTs1GPwNxbg7kUC80heY9p7nbjX4K7C8rW417yWdr9SnCDIs5tRG62Oj4W9Kvo1D+H3GJfW63LH9hjM4DE+swHXn9nj4Dk3vO++834xx/JWMHdC5xe7qOT55doIAaq/SQxJv5a1hfli2wDvSbJMZXNvE8k+WVnXkGW7YrljaFnmOg24DMH9546F9pjB9VSd63jKtLJpIRtUs+4lVs83aeZuGefzocrdQLhtivXQMrRhZrAd/2Bw+bsIH78c1kXLkOQ51dbVKyTHJ7S/6wuPy0gg9tiuX4hrJ/f+ioHLHIlY1uWrv+s2EuYZTNoYC7zPzHqhNtqQY8L7ZYmra18jbRyvLk37McegTsdytoEjja9ZW6Mg3/1Yc9W5L1qGfNtorJUZbNs6BeuSkJRh9bkDudc6fuyzf2MtIo3L22Wa97m1mLZ2qf0c6nxHjt/2B2Qql6sLotJ87bE6tgcCoTb78sHfpL7f5/h/lC8PVXZb5uqYuXvYX4zVZc7H1DVfRjH7Ph+zbAXGWJ6vsokNze3/vEpWsaqtyluVsdoAQz13dfr8Hi6fL09tlYDViMeroWWpBYH5mTxUGy2PZeh4WMHPlySP5P1p2Ubt+5/6PGjjc6O2MFP+wgILNfAylQeTlN+WoZlQx0GbP4fQ8xV7HBcpxLdvLk/ovCQu05cWOr+pOf/JTaXi+nGx/Xx5YFruti0lWN/XZ2FYJjFxADkw5iCMQbhkw7Ku5UC5bZO0dQmGLz+1n3DbxZkyF2vWLd4sc3VTtPuesm1bFvOg8gwj1mvlev+2xXcM8THj1kstKrCYMF/I4h44j0V9gwU+N8qla0nq6kXfCH0nWC/ltvmW4FsHaeorJdTm2nRhPkk5VmLbQO17289B7QchyfGQHB9Y77eCen9k0qz87OH2UZJHwleOBe1rud7mFyTmPYHLyGlG4fpy8R1P7rX6i2edhtU+WL4Pu+anBlyuufsR/hoQypPjHowpfm+E9qs2oyHJ6/NHU84fwAzkD4/U+rHfCdJ8bfEdHynr9rjluZg8od/ZmpgkqSQxUFzM45zt4OIs97XnZAFpPkk5VmWV8JXQqQL/RiTbSMqJFVs/fv1QaTEkbT6NoM3fy9yxgsuctttagua9qnk/DzZfNKT5YH6cJinH0peMto9p6nMhOc6+86/SfAPZo0qPgfljKH0geJxJk7jGw5V1NeEaok5fe7hyfB73pHNijkFXTAXeRcvO4+hxr3uvcWkGV4E5FFvOpUx5XZHjGLat7WMa8q4nPeQzozxtce9duFzK+43PDLmy8eP3M9UHfYB8XpD7Pfk5mJeEjwWVFnMMJVK2pcrx+dqD2he3DtflKyfWN2i5drYSdW8Z7T1cBoL/ApL85xrVm/OeJznq5Y5Zbhd4pG7fVWcYCj2vmntD+OAyY19nlxO0+WuXNLj1li7z0OQZrK6d6QqwXIJ7r8HlC1A6t65ND3rkPF6+eh9iXOtZp1HqNVHznWO7hsgDt7NsB953i+NYkva8by+43tA9QpKy7iDE1lfKdUrUPnZVaN/vRST5Q2V0wV0F6ri/EVovdaPATYD2dVu7s3EhSLuQyXcX404wt8LV48tPpdf7clFmrn05yy5Nc5y1Zd8N3MUs53aXoM77A2Vo388lPDDT/5SobR7oIO1+xarr8v2n0Gj7mGmMb4TWS1n9XtfWa4H7nb1RRgche2aE6yppryr93n8xDm7A5RRU2Tlpj7O0rDENt24MUmLfQvVK24PLoPIf0rhd4DZmWes2JbxdbL253ZoZrOsWY20fO6mDhXkgKk1STu0QgrZ+KaouR5qv70+HetJDrN9fPjd7uDw3MFLqxdu7fefqcvCxotJCQnX0suuJx7Fy3WOjP/Wn/lR+OqCi7x9A5Umt60Cm/F6fqP81MTR15d6n/tSfBvpE/Q4sWT/1X6DNNsKyQ/Vof18PJL7fx6m/r2vWcQFTYp3E1NUFc2cG93mIANVGyXZDhMdV8z6ntvWV9RtI+01ZF1VOPcdiy/TVFWNKg0qLEXM/Cx/f6yS0vk3ueeHS+1N/ip1em/k6spDyPnc05Vu1u5eUfN6pvJavl75ZXmWWNSYLverhy/8SwY2BxGMjIV9sYkmetnzYgMsfCtK1NDGcv2d851nXNXDfP2bEHkuuvL4wFxdXGi88t2kE6zrca5Kqa1qlf21z5eTwaWMamHN5PkX5Lbl9x+35NHCsPmnA5dKo4wP58rTVZsf3Xn6zoDcy89Ub2x5JvtcLkv5285HWlfv5KsHieKWAv4HxY5ge2lai5DhLq1h7bY8XxUrHpytZX265juGzM01q5tCkwHaTephlbK+pAZLt3xGU0zUfzfS2oXfAHIspi9qOKltrqic9hUXbJoE5ZlE+rmuged7Aiw28bOlFY5bvY46r6y0jkroGgpfAfKCTxg2hliX5axMb92Q2UekZZtmXn5J7v6CnGveBZS4Pt16D22fnKUGersHHB6LytN1eqfuVniDS7hN4okPccxRaL/UIkLvtTxpIqdeqDdyxfLpZ/zSBS+8FJd7LEwaxFwiSPL5tnsvM+v/Gc80+cPVJ9r8N7je0e6z5LYrLSP0N3xWW/Zb6U3/qT/2pP/Wn/tSf2ppc31hJ3pdn5uNwZUvK8fXnjUXt42DzCtB2W3zc7+v/AyCYCcQ=</Data>
  260. </DataArray>
  261. </GIFTI>