123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- <?xml version="1.0" encoding="UTF-8"?>
- <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
- <GIFTI Version="1.0" NumberOfDataArrays="1">
- <MetaData>
- <MD>
- <Name><![CDATA[UserName]]></Name>
- <Value><![CDATA[oesteban]]></Value>
- </MD>
- <MD>
- <Name><![CDATA[Date]]></Name>
- <Value><![CDATA[Tue Mar 12 16:03:46 2024]]></Value>
- </MD>
- <MD>
- <Name><![CDATA[gifticlib-version]]></Name>
- <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
- </MD>
- </MetaData>
- <LabelTable>
- <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
- <Label Key="1" Red="0.0901961" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_frontomargin]]></Label>
- <Label Key="2" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inf]]></Label>
- <Label Key="3" Red="0.247059" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_paracentral]]></Label>
- <Label Key="4" Red="0.247059" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_and_S_subcentral]]></Label>
- <Label Key="5" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transv_frontopol]]></Label>
- <Label Key="6" Red="0.101961" Green="0.235294" Blue="0" Alpha="1"><![CDATA[G_and_S_cingul-Ant]]></Label>
- <Label Key="7" Red="0.101961" Green="0.235294" Blue="0.294118" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Ant]]></Label>
- <Label Key="8" Red="0.101961" Green="0.235294" Blue="0.588235" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Post]]></Label>
- <Label Key="9" Red="0.0980392" Green="0.235294" Blue="0.980392" Alpha="1"><![CDATA[G_cingul-Post-dorsal]]></Label>
- <Label Key="10" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingul-Post-ventral]]></Label>
- <Label Key="11" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
- <Label Key="12" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_front_inf-Opercular]]></Label>
- <Label Key="13" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_front_inf-Orbital]]></Label>
- <Label Key="14" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_front_inf-Triangul]]></Label>
- <Label Key="15" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_front_middle]]></Label>
- <Label Key="16" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_front_sup]]></Label>
- <Label Key="17" Red="0.0901961" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_Ins_lg_and_S_cent_ins]]></Label>
- <Label Key="18" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
- <Label Key="19" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
- <Label Key="20" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_sup]]></Label>
- <Label Key="21" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_lat-fusifor]]></Label>
- <Label Key="22" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_med-Lingual]]></Label>
- <Label Key="23" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_oc-temp_med-Parahip]]></Label>
- <Label Key="24" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
- <Label Key="25" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_pariet_inf-Angular]]></Label>
- <Label Key="26" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_pariet_inf-Supramar]]></Label>
- <Label Key="27" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_sup]]></Label>
- <Label Key="28" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
- <Label Key="29" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
- <Label Key="30" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
- <Label Key="31" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
- <Label Key="32" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
- <Label Key="33" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_T_transv]]></Label>
- <Label Key="34" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral]]></Label>
- <Label Key="35" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Plan_polar]]></Label>
- <Label Key="36" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Plan_tempo]]></Label>
- <Label Key="37" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inf]]></Label>
- <Label Key="38" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
- <Label Key="39" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fis-ant-Horizont]]></Label>
- <Label Key="40" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fis-ant-Vertical]]></Label>
- <Label Key="41" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fis-post]]></Label>
- <Label Key="42" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
- <Label Key="43" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
- <Label Key="44" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
- <Label Key="45" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
- <Label Key="46" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
- <Label Key="47" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingul-Marginalis]]></Label>
- <Label Key="48" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_ant]]></Label>
- <Label Key="49" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inf]]></Label>
- <Label Key="50" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_sup]]></Label>
- <Label Key="51" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_ant]]></Label>
- <Label Key="52" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_post]]></Label>
- <Label Key="53" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_front_inf]]></Label>
- <Label Key="54" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_front_middle]]></Label>
- <Label Key="55" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_front_sup]]></Label>
- <Label Key="56" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_interm_prim-Jensen]]></Label>
- <Label Key="57" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intrapariet_and_P_trans]]></Label>
- <Label Key="58" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_oc_middle_and_Lunatus]]></Label>
- <Label Key="59" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_oc_sup_and_transversal]]></Label>
- <Label Key="60" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_ant]]></Label>
- <Label Key="61" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_oc-temp_lat]]></Label>
- <Label Key="62" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_oc-temp_med_and_Lingual]]></Label>
- <Label Key="63" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
- <Label Key="64" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_med-olfact]]></Label>
- <Label Key="65" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_Shaped]]></Label>
- <Label Key="66" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
- <Label Key="67" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
- <Label Key="68" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
- <Label Key="69" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-inf-part]]></Label>
- <Label Key="70" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-sup-part]]></Label>
- <Label Key="71" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
- <Label Key="72" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
- <Label Key="73" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inf]]></Label>
- <Label Key="74" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_sup]]></Label>
- <Label Key="75" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
- </LabelTable>
- <DataArray Intent="NIFTI_INTENT_LABEL"
- DataType="NIFTI_TYPE_INT32"
- ArrayIndexingOrder="RowMajorOrder"
- Dimensionality="1"
- Dim0="163842"
- Encoding="GZipBase64Binary"
- Endian="LittleEndian"
- ExternalFileName=""
- ExternalFileOffset="">
- <MetaData>
- <MD>
- <Name><![CDATA[Name]]></Name>
- <Value><![CDATA[node label]]></Value>
- </MD>
- </MetaData>
- <Data>eJztvYm31TT3+F2ZFFQElAcRkSuTuBzgcUJG7wM4////z4++35OXfTd7zk7Sntus9Vk9p03TNJ2SPeX6NE3XXvPea355zanXfPaaj1/z3fR/6cFr/nnNj6+5/pqfX/PRaz7f5Z2Xj15z4TX3d8szr3n5mk93fPCar1/z39fc3JV39zVPXvNid6yzu+N9u1v+/ZrLr/nPa77fHfuP3e/C57v18++Hu2MX5vN5Z1fXn3fn9sOuLuU8r+7q8tnuHOb/X7zmk93/+fdfr3l3dz5zO92Y3qSLr7m1W5Zzmpff7DjxmnOvubI7x7muv+/4aFfnV7vjv9qdx7Xdsa/t1pV2PbmjnN+7u3aedsv5/4e79v7frp7zuZ7fnfe/u7afr8Gl3TG/3q2br/fTXd3/2R3/4x3l+ry/a5f7uzYp1wunb3fn+8/u93zf3NlRrufzHSWVa3t9enM9C9fB9o925z4vfwHM/0/t+AD8nq/nr9PR63sNtfF8jd8DHIB6ze00X9vyDBTmdvlmevOcFPD1hZRrPfM5Osfvd+uvge2fg/zlmp/c5S33wrVdufjeL89gAa5/d7cs98m8PD3937Py546fd+1YnvX5Hvpt+r/7a76PvtzxA8FngK8RsA2vov83d9ekcBVQ7sPCJzue7K7DvLwPKM/tFztgeok4C9rh04lO5Z01L+fn/VvE/OyUe/xv8Lsw3xv/2fHTjssAmP6zW87Px5Xd8vp09DmYr3e5R/D7sKyb852cjr4f/9iB75XyTL2z4/T05r1Z7t9yDct1nu+Pcp3L+xRf3/LcwWs6X4/5Gs73LnzPQuD7dma+Roc74Pv3v4BbO+4SfDMdfSefAGXM7+dyfeDz+/vu/MuytMMv09vvbfhcF8o76BpByV/apTzj701Hn/VCuafL817yUM99aTuY5v/lXfAu4MEO+C54Z7csbf3nrg3m631v1xbnd7/n++CrXRnwGfkSXZuZi9Ob98PtHeUdUf6XMj4GzM9W+a7+g36X9puf/6vg97zf4x3l+zUv3yf4ZpfvvenouwNCvUeo9HLXFlS6goDnc3O3LO+OH3ec2J3/s+nNu+TZjnn75enou6VQvq+Xp6PfWa5e142Ub+0vBKcISh/rM/Cbeh7g9xemSzvw93e+XuX+wN/fQuT7Sz3H8Pt7AW07Ofm/v4VPAfP/P6ej39/Cb4j5eflyOvoutn5/4Te3/L4JgO/qkqcAv79PCPD3t/ACXdP5XY6/v7AtqHRrevPtpb6/87NzZ3rzDOFvMLxHLhPAhJ8h6vuLKd9efE99L2z7fOL7vPh7DaHuJeo7Xp7V02jJAe+hD9Bv2KfmnvFyv/wKKPch168r/QHcJ4f5cd8A9xMK7yHm++oGgEr4+1SWt3bb8fdG61fA/gXVx4CU/kYB9zt+nvjxxM/T2++2siy8UsD35ecM8J7k+jOQ8s78nDnuI2Y9vIdPTm/3ga6j/5hyT+D6PETA43DrNYp84yX4DZcX0JLqe1HM+csYvvTJMO8AboC8h9PR+30+3p/g2PD++gBwb3oz1iucB9yb3vT1zu/q99WO+Xfpt8FxIez//TC9ea7KePridPTZuzQdff+U/58R3J6O9h+pb91txL/T0T4m7D/AfsX83biL1nmYy4bvMoqrEz2+hd9S2P+F/dgC1Y/9BCwhZV15TxXZxWNAeWfeJ4DvW9wvxryY3nzz8XefSi/RUso3cw7UZb7ny9hF6jtw6Qr6DSnjEEx57xc55gzuh8zL0u8o6+cyf9wt5/586df/DSj9ekp+8IwAjhMK+PuC+WY62r/5abfE/R2tj1SToFyjAOV8lJyXAuYv8o7SnypywgvgN5YX4rEM7NNwfZ7yvML+DX628ffnEfhd7l3cV5mZ39UHEy1/vASg7ktKvoH7G3h8xMkpcb+C6ktIfV1KnsmNq6Q+AJR3FvA3n/q+a9/zMwRUvnfR/08R87e4yE3nJfz2lu8ulB9BmSr1nf1weiNfhd/S8g3VoL6V3Djw690xiqzF833D40SuX1++X2Vs8IIAf6vKd+oTsD/3TYJyGWm8WRKW+75E67EcuPSpLOkmQRmz4rEqlhtD2XGRH1NjWG48W97n8zNfZMvcu5xKV8ASwo1/8TgYy1qk8QMlq6bywnVlzIuPT42XIaV+mtxbGkcXeWhh/k6cBsz5yrNMjc0o+TmU25ya3n6OoVwdytchlD4FynWuot/4O8X1Q6nndH4Wy/erPKNFzkr1EWFfsfymnj1qvA7l/AUpYRkz5tYk6wU4vhGA43vqmeLG+jPl+uHxPh73/2zYjmUAUD9RdBTzkvoelO8tXoefRepbDXUb36P/FvkAHBtxsglu/ETpTcr9wz3HRX8Cdegc+F6m6m7pa0RkChgsCy+J0u1A/Q6FJnco8rMH01GdECeDgHoi+Bt+Pw+nt2USpW9U+rpQDoHlElDfVPpKnGyiyCeKPuor8LucD9RPFUo/q+is5vfE/N4otipQLshxcToqtyhQcgssw5D6aFBeUaDWYX1I0ZmVZRlnlncb17fD70CpHyjJN8q3geoXwu2avAPr7yBFBlL+FxkIlI98MtFykqLzo4CyECgPgd+ns9PR9wQlBzmLoPqoxb6qZXo5vWmj8hzMCctK5vt+7vMdTvI3F/cRKYqcw3KflT4ypGyT+sBY7jHfN+Wb/BT9Ln1fTa5S8pXfpWz8m/u2W3nuIDtR14vr33P6Xw5ON4Tx6H/h9yhD/yuNSzg5xQyn/3015el/4X6a/hePIyL2V9SYldL/lqVH/4vlwHCsfRYsC5oMt/Tl5yU1jobvFGr8HNH/wmfVov+NIOl/qeNYxrBYzolloRxlLFrkn1D3K+l/oVy0Rv/7xUT3JaL632Kr69H/YrQ+EjcuhPrfcxM9JuTksRCvnNar/9XkMdC+utTTov+VZLwceMyGuT7Z9MA99b/ceIv6DljGYEX/W7DofzlwnTj9b4GTS2M+RPw70TJrqP+F4yPqOcP6X06mjfW6Hv1vYf4PxxtRXW/5huJvqUX/C2XkUFZO4dH/SkD9Lx5nSfpfbayD9b8QLWFZPJdgn6G8T6N6X5yoPjEeX+P3Pxy3UP2RO8S6UvbT6ajc/28EtAPFYxW4xGOgiP6Xo7X+F4P1ubivhfW+kk6Y0xHjfhbUX0jjBk6+SvWzrOMj6v1r7V/N7zrcx5L6V5oMVvqWU30qrLMusjwqQXnYA/Sf02Vzeu3y3oL9K6pP5elfadc6al9n0Y/je7bUU+sn4f6VtZ8lycexnh3aN2v9LE7/XiP/lmTZ3HjaCtbjY6B+b763b6BlAdcJ62agzh/3r+B4HvatftvVoSxncN8K29hZbAMiNgOc3QBnSwCp6VN5ZBQWOwTKLgHqOwuUfQJnq/Bk4vtZWK6NZSOajZ1ETf9KgpLJYH0PpiZR1xXbTkh2E16bCsm+QrKzkOwuqH4WtMG4PL1ti1HTv5qPpcneuf6cVb7LyZwgmkzV8+2T4OQREbsSbE/C9f00GxPpmNJ30NKuEVlfDeUavsMA+66nBS6ApSRj5OwV4HbJrkGTe8P+svTNg31uyt7mFFh60OTtFHP/HcpMse1OWWI/OsqeB3//rN9DeKwZ+J25Nh39/kljBfwdxPrgJ5P9O+el+LwWOfBLtLRydnpb13s4HbVlKMuSDiZ+/KMlzX7p4sTbINxS0GycJLl2jX0UZS/F+UdhWyrtO8jJ0bXvMrS/wu94LG/nxoqSHdbPQpncWJMrz/IutIDlD9R3Cdt/cXZimM/QUhunat9vajtVBlcufA9z32j8vr6O/lvs1jzA9582Rtf0JZpMmYMrT8ozX9NifxbtW3C2dRYbPC/WsVT0OnLPjobWRrX796R8S6UEdWKSTJ8af2qyH6tcyKJjq+W96WjsjBlqfEzp7iTgvlR/nNsuybIOwRJD6QwpORfFfM0OwLK8QyUdI6d3xPaeGE6uVmRmFp0lthXFUOOEeZ+vBIp9KdSFzvcCttfEso1ZbsfJ8yj/WQgcW1DbS92lfqO1z0nZt2IuEcsi6y9oMkZJv3tbWI/1v5z80iLH5MrHlGtI7aPJtGawnS60152B/lhPBYqO0Gqva+HupI8HsuS60I6Y6zNFKWNNPCbGSw6uPA1Jhy/ZN1P6/QK2eab0/zAPZ+/stR3gypHwjAmxzTWFNlbnZOllG7TTLv+hPXbZ9pewjHB2stuBZ8n5a9JLtKS2a32/jDpgip1HaRP4HDxQ8OopiswE2sAf7rYdUjs4k8Vu3psfYrVTkt79HND2lvqmfQuWlD1uAdu5aHoXSrdD2bxcIf7D9y0la5rLh74xVJ55G/YPeIbOhdMvcedExXGgjkGt43wfLNTIzDS+Ubb/BMj2j8C6NMv2TFumJSXru6JGP2jFajcl+Y9I8TdwP99i76TZNR1Mb8vxsf3SDPX+pPr1mj1SkRNb7Loj9kUWmaxmI3SS2AfaBb2a/HKrqD0PJd+Aukcso+BscrA/DWQucx7blfiKkr7RYkujjTsp/RtcB21QNRsYTc8n2bRI4xqPvYrUX9XsT4ofEJaFWRLlR2ixIZm/5Xcmfx+F+m5SNh0WGw/L9y9qq6HZSmTZZ1C2FNr+XruIqOyasmuY362npzfvWWjLINkwSFDviQ+IddgOwWNfUIDvisKvApLNgPbesOpOsM4/qsfXfLoonT0ly7YkTv4JserWLeMpTT/OAVMZF1v68dR7w6LXpvJHbHqw/TS2obb4qXn0yx47MOndWPTIFn83yQ/u1STrdTndLNTRavk1PSynk9X86Di8etWInrOXPhT3Q+YE+6VwG/xP9Wcl/WSNvhHqlzy6RUqHeAMssZ4QQsVrofrXM9R7xKLjk3R6Fv1d0dHBeLSQ0mZQF1ew6Nzm8ss3vXwL4G9LXBjOr9Frh+/Rf0X0XP+iZdFnld+UHgOPgaEOC+uTWjPXVbPBsSD1g7x6H4t+R9LJSLobzdeT0svAOYs8OpeI70JUd8LpP2r1IPgdn1EO1FFAPQWOS2zVRxxO9bqGK+g3B5QpePQC0O4Uyv+leBxljC3J9osMH9YRxrAq/WBqfF5k+EVersnnrbJ4i6w9KkOnZOZQTv6c2G71I2nltxtNcz2x3Bn/53x1KVlHthzD6v+B5RG4XkXujfuY1LoZSRYu2fRiWXr5z8kNvL7GlLxdkzFQsgXO1sIybihlXEN5vwBLiMfGH/ZrDyY5lXgV2G+ZwtNf0ezlIZbxPqdfkMb9UbtySj8RGctnP8PlHqGOhddL8oCILEIbZ8LxM6570bFo4+5rYOkZX7caS2u2uF79zgwXE4faTtnbcuPjWbZb4rTP3JjejtnOxSml/L2xvOwD9JuLqwN1UJq96ofTmzk34fgf+1pLY1mPL3jWWDXDn5zzLc+K2+MdW0p6t8hYEkKNHan10vjROz6k4u2X32Vc+w06vjYOhODxnDY+jOgTuSTpGbkxoEUvKb1vPHMFRJLFtrjcr9rYzEsZi+G4RRxRey+v3z033joxvT2ewmMr71jKk87tll4bPsnGKWKDQ+lQNRsdSFR3kqFPbuX7D4H9Cm0MyP33nBfXZ8Zw+m+uH8fpxz39rgzmc/sUnCcXV0CKLfDOpMcaKGhzIVh8aKm+maTfx3B9JDiGhus0WwC8ztqv8toQcH0tT78IywXKby0vRIpjQPWlIv0rXC9LP6r0hyRbBw3OhipiF4H7TVo+Sx+oIMlKpLzYt+HQQEkeGw0peX3bLFD2HgXOtp3DYl9PAftM8//S14n62GgyppkSs8jb5+HkU+cQ1vgMGE5+ZbFn4WI1UHEbtHKg3CxynNp4DlgOrOEZl3NyLW8ZWp8Lyv2s8jdOJvfZbltZUvcOPA78bf1ezkTtf6zybep7Z5E5arJK7dgeqPIt+R9Nb+4P6vtS+nLceg4sbygyUryesnvKxKoPL1DyWy9F5yPJdrPkv5ZyqHJb2Wt5eBf9hveXJ0GZkcV+4CX6De3HLHJyq0z9XbAswONlxrt4b3q7DWceEGjxVaW4kpbYGFJ8DMr2TTuGFDsDIukKcPwMSZdwgJgT1NNy9nNW+zoNrl/C5aF0Ex8Q67TYGt44G9xYGcbagEhyewzWn5TfVF6oU5nHAFQ8Dmk8gW0GIzE5rHE7oD4a6nWszO1Yo9/R7Bdry7HYNlpic2jrtf01GTzlD0jF+3g6va3TwtsheFzI+R/U4B2rtqhDAfZZo31XCSijqdXpSWV7sMYRkew4IZTO5IWwntIncroXbptHR/n+9LbNqpVsuYgUk8RiW8TpQymfpRKfBMvRzk70eILTsWq2tJTskDpmiVvCrefKpWKbUNd9vk5LTLU2wdHjUP+LTXG5r7+Y3n62qD73DPyOU7bHD5h63QJLLOs8nN7uD2fquovuk9I5X0G/rbbNGrPd7qxTtdp+1H4v5281tpnW+JZYZ5UXW/Tp3wrbPHFF8PeIkiuXvsuJiY+1QuXHOnirXbeGFn8Fw22D5ZX24Mq4DPLA3/N9aI3NAuXmUbvzaIwXK5INgwYXv8XCcU0170Fod2K1KfHEb4H6Zggl0+Rkc9z4Ho6vOPtnzaYF23JI9sFQroi3PZxoG3/N/hXHMYH7UPFKSl445tVsBiT9PvXdgeMX/J2DfTlq3AL7prjvR9nUQTT/KCjn0PyN8LdwXsJ7RLPvot5n8D6hbHMyfE/wNs4OSJN7w2ey2OVAGx3OlwQ+t16fEWzTAWNOYBsPPG6G4wZqzC3pU7RYEaPn/5X03/h9RemUrfZ6lG5G0x9a7Oco/yhNPxX1pYD3MKVrg8+J5idB+UdQeqmoT4RFjwN1T1hPI/k5QHt/za9/afP/zs8R5UcPZdHUc8b5HkjyZItsuMiDsc9Elh+B9g3VZIgeOR8lQ4N45/8t5Vps+4vcR5M54e++lqx+2bCvcG6y9RmsieoTUzJ9CJaTWO3osS196Z9wcn1pHKv5I2t+x9pYrJUfsce+HfevNLtryW4b71vKxts9tlceu6zM/hVG6l9pdkjSdk3eDXXaVMK6RbzU3q+wf0XJmTz+sJwtnwVv/8rjG4HvP4vdV23/iupr4X4g1796BZavmLap9TP19K+8aPYp0N9AmgMF18li9wnH85jz09FxfkHy9fT6eHp9OSM+mjNZ+t/a/pXFH4CSb1BY5v/ldLpa/8pq/1/Tv5KgZDKajVRN0vQfnn4VRvNTrPFH1PpX0M+Qk2dHfQzn8q+ApceHsMZnEPJwetsXLcsfEPfZWvkAwvPR2sPjuwj996w+fRpZtrAUsH/j8dGTfPJwuR403wjN7w72l6VvHuxzUzJzqR/OYZG3U8AYOtK3SuvzR75/3HewfGfmpdUmnfoWemW5NXhjBnNQ38HDibcBrk0Wm04Yh1jzT4N4bPW8dn61vmYU1HdwlvUUmxhJjm7Vh+P3e6ZPmWes+bNQjuedaJFRFLgxLPT/svqFWfB8vz1++xTwXcx9o/E7+zr638rH69Gkj9WtY3qvfat2jbg8WX2M3r5X0ngqeh01H6io7CPLR6sXmqweykKkRI0/NdmPVTaU5fNk4cEk+zxZYnRzY2zOv4naLsmyDgUsMc848PUr71D8zfP6JlH+Q1a/aklnKfknSX5JnG8SFWe83AtQjnF7elu2wcVrk2KRY38jzueo1L3Gx4jSz3rjyMFnI+InZCVLfmk9XrmmFh8jCs0vCPbJOR+gGa0/X4N1zJBBrV+65HMTHRNLZVK+Olk+O5zcmfKp4XxhOD8Zr+1AxBfH4lND/efaI+prI/UFsZ8KZ9NgsXWwgH1oWsn5a5LWr7PaaESOi8uHlPE+bJfyHDxQ8OopoAz9EJCVLHbY3vyQlu9+2DegvmmSLS4E27loOhhY5o9giblCLDWfFHgc+F09gf5TPiJW+xyv74lG1EeHm6eA8imJ+HzAd7qmE8v0Hbk80fq0DF3bGpPH3yOqH+wBtkv32Fh5/VNmPPZX1nGM1f5KQ+sDHUzyHAbY/gqjfQ/KeIUbt3jsryiy7K88+mFN7xyVa1P5rDLVk0K52nH2zf4K58+yv5LmfcZzQEM02cES7K8wkn73H7TdIrdoYX+F0eyvvHE0su2vqDppaR73Re2vtOekJhVfdKwzhuui9leS/Mg7BpDsr6g+LNffs6Clmr5rrd2VRNGf1theUd/B2vI4OynN/ipadk0bjrK/omytuH5vQbK9uiDsV4v2LcO+yBb7K0vf28MPYFm+g/h7B8HzmHF47K9qv4MenfUjZh1HD/srLn5k1A5Li7lYkyK6sKJbg99NmMp/ydbKo3OJ2F9Zba4oYDpHkGl/pdljeWywsnx9vDwESwg3brX6ENWCx8It7a+i425Itv0VxDKOzsRieyWh9R04myhpG/Sjb2mXVdjsr3KZZRzSGJKT1Vi2aTIgi0yopf3VBWIdjkMwU2N/xcVYoMB9EM726sbkiyM9tyGUbf1JrKPQvpWRONGzXdRs/1Rrd2WxwaLy4msr2V5BoJ3Ov9NRGx3Kh9Jqe8X5WmI7Ka7PWPqNWgxoa2yMLBnjmuyv4HUsaPnKb6/9FcVTYl0r26hsbhL/a8aSHqJj4XJdJPurrDjJmvxZsp/SKPtSdlaeuVolGy1qHEjFerG0Bba/uk8sI0gyhAx7K0t8Gk6WL9EyUX25HgnbWmE/K4pyrTidxANiXSQdBveLpFrbqxmoH2thfwX1M5r9lUc/I+laLLGMODi75SJj4vRAGMoOCuuNPPqjJdtfReHsrrD9FdZJ1dheSbZVGbq2NaZIGxYoeZgHTT9olcNl6vqi5dW0Q1Q/aG1TyX7Jo4uj8uF1Htu2j4ilRtSOjtvXo6fzyiIydIMUml7Qqiv8bJJj3rbQD9bKxKk6Ufk0GS7Vl8fba2IyaOC51eAcayXB3550qSEtx/qafhDbx3N28hTe+Qo8eN71Hl1hS/1fVFc4Wj/Ywr4nu/9A6Qej5yvt69Fv4vwtrxFHlk6J0ttx16Nsh+d+EiyjlOtKrWupH8zUJS4Bi34uSqv6Sjo+Sxnvot8QTkYlzflq1RtK8dAwlnljI7EYPNdPilskYembR+zuPTpDTi+IbfYpXSDWCVPxVK06QYvOsEZPNwqPfrCGryefTjCLf4n/HBlzAiyNm2DJyaijvh4jdIKarhBCrYf7/CPs+w/679UZeXSJUR1glDIO5PSqeIxIEdUBWvWEnngJlC5R0i16/X00nWHLZPEf8pBdPuW7VPpYXPxoLbY0ZUu15sS9X2so721ohx712eqJpB/0xlOgmPWaVv3iHWI5Ao+MzBurAcrufiK4PB2NV07l6akbbK0f1HTXsO0itgAUNbrBmRqdWCu9okeXRslC4T5eOWpvX4UlcR0srxvPcVT7ZPqVWICyIe5ebIXlerW8L3BbQJ1DJpF3AoflGBeMZV1AvzdouHeq5vNgQbMd0GSl7xjyaFwglhw47ro33rok98zSGXrktTXHaRnnRLPDkPbLkHFysmsprybPhPX35Gtly4KPQclbo3FlWsonNbmeNkeK9Rj4WJZ5V65Ob+J5zcubk822p0YG2ltuyrWptZ01GSfU1Ur5KDllhu9vRD76CCwh0hxvBSzHXDJc7NtayjXVZIdQX+uVO2bbkWnHoI55lvgvcahA+YtSUAnqjg/QcqkpGqPeGsceLjk/y5pj3EqG8v/IwuNz0gsoi6W2e+aZGsUJYlnDZbBsJRc9B5aF7yZffBfMOfQbE40ZIwH7vVAWg/8Xe1GP3Wim7amG1y6HQ6tvTf3xeFHarp1ryzZoORbPhov3xslPOHnZL2j5kNhXG8++MuSR9s2g5riWc4PLlnJoi4zWKx+3tF+NXXJpK60eXnmE1hZaO7WWl2BaxaAaQRm34nWc/w9F5F6yUnO/akjtArdnyXJqqT3fR2CZcdx5m/RO1cbTktwd5/PsW0uRzZyc3rY7o/wTcB4OeIwafwgK+G7MLrsGa9tkysPg8Ue/Xy3AvltZfjTV+aJk+7b08nFp6ZujtdFoves+Y/XX4d73Wiry2EiCfjBYvovXZSZObm3J4/Ht8QKvR8vjcHjiPr5EyzUD7/eaONkPFCifpwg18xdzdt3ReJzWOkdsVqT6WfbFZXjP2+KTKNnFe7gBltlQPopcPo+/45npaEwHDpyosT20/YCyR288Ek1WGom36uWeM3+tDLWUcz5QdsTP08u9BIoNEP7vAdaJilnrgTsGta3EyMX+r/M26Xth8QOMIvlaSn63ZdtNsI47xpfEEvvlzstbYFnQ5linuDjx869rwOulxQu26LDXAq5/OfdL09v3MbUOb+8B9az08pXWuJ1cFsVnaIm3jSbTRxyeG7XOgvYujO53M1gf7zGymL8jjyd7bGaKpwLavvB79hSUp5VLYfUjjNrerAHLOWXbKd1Vyh7dJplE9Hn7AmU/m1X2VWZdBhnn2ZOad7GXx42Y7Ym/m47ajEPbMbweb5d4ofA+WEp4beasZeDtcE4BC1J+qg7anAPSPAQ11JRHtWex0cT/10DNs9Iy3qpX54uxHIOynYdlaHb20r4evbSUr/ynfChq+QItqW0aZ8HSAy7DA6w39jOJ6Ppx2Zq/iZctHU2tdKFU2S2OsS9J0xtL+SS7e/jMePsqmt7RygR+F1mbR+c1TW/mmsHl1iSvr84hg1Uvt8a4VlRsGyq+E15qSPms9VgC81wvc7yelvICLGvrIeup9fHifObKeeD/mcB7U8pXe47ceopWccSoeGt4+x1mG8Q7v1ENHtnCCSecXLdsh9fEW7bEs91xnoHf1thnlvsneg+1vPeeJeCNE1dTjnQe0v0Kj/Ojcgy4H/7PIeVrOfdGxDdTyxfx6fTOfRb1Ha2lxEZseYznxP8lAu/552CZXa6UD6/b0pZ6p5Fjj+dg+Rz8p/JhsmMhanHgKCy+mRa7EIselZI5U0mzlysUuTvsq1LfRmts1ELxXfH4GJdyNX9LLX5mQfNJ9vrZaD4JHJQsiMoH50ahbFGp+UjgPCKUfVB0Hg3N7qjok7nxPQelY/5n4mN3zVDyb4vu2KIvweVS8kqsKyjySriOk/dpiYrFY4lFbhmzU2ME6tm2jDmoRPX5LO/nPwy0jkVcKMezxMPF+1iJ+qZR3xrqXQv3icTyoGJXWuzyLd89DPV84zlJC/B9xNnJSMDn3GOHFNH3Rf2iKH8SS5LignHMKSpH5eJHacxJ0utw4/Bo7CIqf+SZsPjvRuMdZMUex/0mTNTvOxrDxQv1zrP47uPzjMYA0NrB6r8NsearBfdDrb631n5tjb9oKRf781j9KCl/Reo9ecisL2htEfV/y/ITw+2Dsfgdab46lO+J9p24OOm+LNLYweqj4RlzcOVQbQTXU/b8PW2kOV0nHBNFbaS1/k+WHSw1/rLaRGbM9Wax043a+eF+XNTurZW9ltWeRktl3FrGq7hPNhMdw2YmTVZIyRQs/Vg4zqb06xYoPTVVx4g/zrPJriPVdJEWPbhVT0bprSzjfo9+xCNz6Jks5yH1vyWZByf/9MovtDl6LHXT5Bva/pQ8wjLG0uTqkX2s8vme8g1N1hGVb3jHdaXcyJgwanOPY2IcTLYU9X2O9tMo+YbFhidqkyA9T5J8IyLL4OQbmpwjMqaX9DtZSHoiax1rYtXWyDckilxCkwllyTssMi6P7KOlfMNK63ppej0LpwlKbCEcY4iLLQR1hRze+DiSfAPrGy3yjU+nN7pJCk22QcHJN1pRE+MhI9YDJd+A9JRlaHIMj843Q74hyT2o9dw5aGN3Dkpm8YRZLyH5PEu67Ih8I0pP+UYmUEcfjc/XM1meJwqP7UAtWLbhseHOtgvniNgEz8x9emqecYstZy/5xlx/LHP6D7FOs7mzkGVX57WZoODGMpxuFI9FeoxNqLGKZ64Mi51cVF/MQbV19DpntRusn1UfD8m431ra9vQEPy/W+LKULI0au1iR6meZ6+hnsLTk/wjlx1j3j9pVUvLByBgEj8+o7dQYhDo+tz6KdYwTHV9IMlSu/0/ti9uGWh8dn2SNWyLjlGvMejg+scp4LXPLYjib26xxRzbUGAHb61F5smPRSLFIDgko25eyvqSDiY8pnZ1q4qniWLFWvHEOOFtGDY9dZC2ZcZdOoKXHThNTM06x2nnW+G9iyvfIq1OJ2JhSWOSsUZtWqW/iqYvUF4r0i7xoelpLvz4qj43obyzlUOszx3uW/SI6LSk/19ezjt1q+5RRu+UWcH2/qK4wqm+01qsW7/l4yoHPEewL9RwLS/pRLDu37EPxfWAfjUxZv9X+vRbrO32UHrrmmD104EumjJMmsLQmqKOusW+16H+oukfsCKL2CKPn7orO9wV/PyDw2DtE586KzKllnS9Lym89HzyfFY6fp8XTy56vSrIVmZ+Fg+noswH/U/0wi19MxH+G4p4Bjz0L9MnJ8tex1BFjke/CY3jnWIL/KR8i+MxGdcsWPySKm5Puq4ShZMeW/XCb1siZaucIouRdEbm/x+4VXufoGNnjvwWx5sP71FJjV+WtLwd+VqxlR5/FAuXXRvEULGf+mei5ZjxQthtWOWpL7oIl/l0j+x1JRDbRA6jz8ejIojoxa10yiPpNSv6JEhZbQ0ouTuWT/DE5+brFl9N7LKsPqKWMKJm6FQ3LdY7qCqO2n3Dfs2gbp3v0ypO8czvUQtVZ237WeC4j7WB7poisBe/n3XdUssiIziHwNafeu5RMRGNO0rwA0YT13sXG85BgAssRyWOjytGqXIpav4iavqwVyk4iOq6gYszdNNZDs+322nh7/PIlX/crynYulrvFTkIbH1n3p/z4L6P/VFtb7e699vNajAGuvhjLPvjYlljjUVrHFc/gG7S0gv0WMmJ8W/0EouD7JepbgddvaVzK+vb29E+h/BhalU3B2UtF7Kh+ceTj4mNAIjExKBkOtL3GstxHYBtHCxsFzzj8YLLb2Hrk9Z5+oUcOlRWPAtsqZtkDQpsKj/3UyDgSVns8Kx67JY+vF7YfwuteTX1sbKL2F5wdRgaRWA1l3z/B0kM5H6sOu9jhSjHfrcB4C7Me9uvpjU72a+b/6FgKtXETcAwF6BNE/f4Hrcf+OJJfjmVc7dGtRHUkHBb9QkGKSxDFI7POlst6kje2AAcXc2BEnAHqXuTkQ/P67FgBs6zizlQnO6qJD+AZx1P+/rV4UovxuGcM8kcyc98h6tOe0bdrVTYXa4Dzqe/lM1/o7QNfGG2T7PFrx+Pr0+i314+9lc+UBU+fjfIfj/ig18bJtED5s+P+odR/w305bp4RC1w/dVS/bj63ud+TLQ/R/L0hWTr1CFY79lY+25b5BzzzuXhTjc81Zxtb61vN6S1rdJscUf/oLKhU7Afg75kWuiZPv67Gp5nzJ6aOwR3L+h3r5Ytc+keUXN0iD/PI91pQ41NcGyuq1p9Z8hmGv6n7uLW/ogb0tX5F/G4F9/3ltmcfv7ZfflLZtnRw34Na16IvNtJftkWZa0CT7cGEdRUvwVLjDJNXqpukG/HoVEb7l3Jw82DN9PAptcoPZm6A5Y3d/mUpcWgg4v9p1T/h+3XG0yeM+ndKvp4enVjEb9Pjx/nDRPttzvvB+xH6XGp+mtw9TcngbzNY/C0pNJ9JKDe6CJYYbr3Fx9Lqf0mVeYm4Fh7fSfg/qouM+kVK9NCF1tZx5l+0xL8hN4XfBY/9imYLI/knljzYN3G0P9+oOsxtb+13emSatRR5Zo18tOwL/fcieupWPn4e/Tsmww+OKpPzvauds9Hi16fJ6Uob499WP7uoz53HTiHLjqGHz5wFyabCY28RsbtokahxG+ezNtKXzWpTcm5620cN/oY8ICjjD259ph3KIWIpSfIjy7JZn7+z/4Al/l3Tb7CAdTmSvY/XjgdCrWvh20X5cnFw8S9msP7GYm9UgD5dz8ASA9siw3apxhdLooWv1Wi/Kdh/iPhJFXspi/1VjT1Wpm3Z5uvkS3P7a35FXv+jbD8hi53VUuzgWpHZnpbjWe3brjO/pfx4H48uouil8W8vVj8wKxGde9SXTSrH6r/GUSPDjh4zikUOgudFqbV188pv4LqIzVsrfeqjiZdracfzbKfqT9mtZdulaUg6pIPpqC/jAbEukjhZPoRbz+XD+fH6EXJVj/3Zx8xvr41atm1Zln9oti3aSJvqTDuzpdmSje7fte434nc01w7SNpiHKguvy7SbG3FPaLSwtdHsrizXvOS1+kHXAK+5Jc8I+y7JRmvfbbg8NlBZ9D4vjz2VVi6VX7LLssT3z5oDYPazwjZXp4n1N6ajvlnRmPpcHznb5qrA2dvjOPYfEOvxdiseGysqjkCW/RWk3FvlGB+CpcUeEK77VyFqQyXZVbWIk8DZMmF6HDvDVqoVmTEisuNNaETsnY4LFn0ppc+c6Wm7FJFx1eKNRZ5RTo39UtTOKcsOKQsoo+HsxygbJolMeyMrFrufqO2SxZ7JWjZnd6TZHo1IVhseD7Bsax2y6wP9nT0xszwxb3rEwFly4r5jtfyDfkNuTUftg4otUMQuaKlY5rHx2OBY7Hgk+x8vNfZCLfHY+GTZAGGbHsp+J4LXdqelLc+INOuPrHaN/zHkgYlah7dJ1F6bQqYtSU87H87WhCtP0kOVfWv1WUuIE7B2rjdsxx5tPKLuHJRMG9pZzcuil5GeHY8tWdT+zJqn1X0ntWNUdx3Fam+nkaETuyCUz+lNuG299EH7DjUuLPel10/fExNQ47RAyYP1VVh3lYnWjtYY01ayy8s6Zqt6FJ2UV/6foXPh7EC5vNR+rfRBlG7Rus8IPVEvG12rripDdzVCL+O1Qf6V2J5ZF6p8K711Rvj4S9MrWZGuiUffc82Zv4D1Mpl24tk6o0fCNi0WgabHqdHbcLqc7DI1fVHrY873i0ff8a4zP0e2/f5L9Du7PljXw3HYCCmNiq/bOnni9/bEGqvJwq3GcL7pPZC+gzhPqzpAfZE1nwbU0WTNjb40JN+anwzbrXOE9EyzzuTcRPsGces5qPx4naU8rAP8zxTT/814xmGSrHXebvU/yvRlioBlGtx6L5ZzyjrHj5jfOM9HwvbadutFtuyrJZoft9UX/GFFHo8M55Uzv1ROFln1yTjHHvo2zX+Q0zdGj2Mlo4zadvbKCmHbcO2ktXMvuaaVLDnMUoGyOS6egGVfC5nvKe/z0+o40TavbcseaOduzdOyPjiP9q7zyKg4HaSnjPtCOZloslUI5+frKQOeF1deJt93Ok423jZtKQ+n6ge313xH8LF6fb8s8ZU0mxkuD37Gevizj6D1eT10HstTz9F2PccVq0++Z+5CT3rpzM+l4rtO6ZhgHml7q2Q5Bqcf88R5sOS1lJNVXpRyn+F1eDvWiVLrMKPnEcqmPHPcsyntY+VBAMpOUtoWQZszKbM8z1xNHiL2oLjOXN2j5XLHirZV1vWeOQyQGXfFOudVZlkUB05gouRj2Gay6Cs+AMsIFp2IZf+aeKgtyNLLZB0Lx64pWPJwx8X57u3A66g8EpRtbtmGbXPvCds8cOde+MoILBP/9wDLLDGC4Hbrd9YaoyTTf9sSQ6bEIsK/C5n10eIhzXmgbQ5nE6TZNeM8NfZH1D2hzWGHGW2PNdoW7NJ0NN7UJQLpGSx5LhLlwfXUNu5YlnwY+DyP8EFYCrcZpPx43c0FnAdGeqdI+bn9b6PfEJzPi+e9W7u/VE7rumchxTLxxsOy8FQhMndl5DgeJJvODJvWfcBy7q1sdaOMbrPeROwBsu0ClmpjUHii0LMuVxuS3S4j+RgsR/K4I5RN+AthPSYyTwVVjgSOO/l+xbEpSpn4t5Q/47yi567F3tTycGWOBLflNxM/D/H7wrY1k/E8Z/s1arZgEtY8HiTfx1Im/u0lasuk5afW/9UYXDfNl9hS1hfBdsWUcs+CZU05pY5a3aVzLmVK52j1a45S3oFbyklWu5OsY/W2q9mX5GkvmNd7fcu+5xgkX8vyfHv7mBHbEQ4oL8cy9DlJdgMW2xN4LJzgcbRU9Ezado3iQ344vW3/4LGLoPKWBH+vNXFxWr1xmblyqLKkvJZ6SvVeCtRc6j3lbZxcvbf8NYsi85ZiUJRzxv9rdRMS1LMQOVbLNqOQYoFn8SNokztgifmW+e05Tm+88rkTxH8rnG4I5vmbWd8CWIdn4LcldgYkes9G7uG7zvy1PGuEt40vJ5ZlOU/pmak9D4x0LE/+LJlwFlSclMyyWjDimBIlns/oelA838GtXwrUM9TyWNRvL1va0nFKeMzMjaNHjYOfG/NgrPMwSPGJKF8NymaQsjnhfDI5+3HYt4ffQm0uFxifA59bidmhzZHBzfsg+SRSfqpQznUG7QN9Iebtv4G80G6S8oWQ7DkpmQUE2oFguQPUf1C2GVBnhvUlUNZO6Wu0ueugPTUlA9DGNPAeob6zMFF9CDivyB8ENfPY4PlLvheOM6P5ScNnEm+TYpNJPlYfTHLMImhvRD3zkq0T1MlR9kiSDk/zFdXi22I7fYwme4O2AdTYXdJZ4PcV5W9mnZuKilOgxcmxxh/D70nNtjAaAwnep1w8lvKcSPFPcH2kuA3RuA5nFLh4BBpz/g8Bmq+s5J+J66T5MVr8785Pb88hD32lNP8h7LOi+b9k+S78O/HzhmfI/blvqGbr6ZFpwu+p194MQpWt2dJYbVnwd19LVh18pM9gTVQfGesLMJTu0wqU50LZXpGxwu+LVw6vyYXg98ori7C0I1xyqWb8Ic37ZplXDvevqDzSdxb3mzzxXkf1rzQbf+lbrtn6QR9/KnG+g5JPMKTcq9w7UZPHav0r7VpH+1dS3FFpDHBdKRePT6P9K6qfBesk9a9wuVTbRPpU0f6VFy1ux2mAFNcC18kT1/o3AVwf2G+hfMZrYg3U9Kmk/lW2XUW0fyUhyTco8LxDnvmIsuIu1vSvJKj+lRYXpyZpNhot+ldYnx2xy9D6V3BedKzHgctI/wrrrqyyXU//ipM5Fah3vCXWduQ7CON6UzJZqSwpLjo8H09/UaO0B9VOWrtGZX01wO+RNpfraQGp3Ezg94b6lsH+svTN02TmUj9c03FI8naKX6ejcz1yaH3+Gl9SXCf4vdFkfdq8fR5Zbg01MQM136VDQPa8aZbYMQWrLXZBs1essSn1+Mx5bN3wd/AcQY0tjjYetEL17z1jTes4IQolf/CMYT8TtlnR5iexfq818PuY+z7jfF69RoTy3oO65ZoxvdeXP3rtsvoYkhyhFu94KnoNJflGjeyjdv/eaLJ6KAuREjX+1GQ/VtlQz3jGDybZV6sm5mxG3FvN16ompiu+ftr30hqr9B5BNJ4oFxOUghonfDi90XdKcTaLHrTcC5psQ4sBWaD6g3Bsoelaa+IVYqzyxAcEHh3ubSdZ8kvvcan9tOs+M8d/kHS8sE8uxSnT+vOt/MuyjlHgdFJRoMw1OiaWyqTiEWXFDeLkzlTcGm/sFq/tgLd8S6yX7DgpmkzdKltvHd/DGuOiRs5fk7R+Xas4CZpOooz3qfahvjNcf8yait3CISA7QRsJDM7noeW7H/YNqG8aZ4eL8frGwnIl3zOqPTTfT3gc6TtL+fFZ7XOyfRU12x+Jln5r8B2v6cQsfloeHybOZ6pW17bG5PERybS/ygbLLT02Vl7/lIiOx8JVsKyRH2p9oDkdTHyqtb+C/bFa+6uIrZ3V/sqrH86yv6J4NdGyXE1OapV34/rsm/0Vzp9lfyXZXEn2V5rsYAn2VxhJv/sP2m6RW7Swv8Jo9lc1cYMz7K+oOmlp1h+/BEuP/ZX2nNQki/7Ya3dlGQPgcQC0e/faX1F92Jr4Flqq6bfW2l1J1NhcafZXLdDsrzLKzaKlPg3aXVH9Va4vJNleXRD2q0X7llFzpVntr2r65hB8LO2b86sRj/1V7XfQo7N+xKzj6GF/VTuHK7bD0uahrEkRXRi2ybrIlF3kabU6l4j9lcfmCgNTS/sril72V5lE7UMsPto14LEwXmbZX2WNu1vYXxUs4+glofUdauymYJu3ss0aYX91YfLJPNZmfzXLOF6CJUaT2UTkOd5yWtlawTpRcRJq7K8i85HjPghne3Vj8s3vHb1+WfZXWlyIVvZXVH54fS32VwVok4P9EjkfSqv9FTWewXOvwiWH1Oe0xsbIkjGu0f4KXk8tH/zvsb/y6syzbaOyoWS5NWNJK5Yx78fEf0jU/spjb6TJnyM2Ud7YLB5w+dQ4MNoW2P7KamsVkbFLcwJlo11jjpaJ6sv1SJStlUa5ZppuIktPMSp57a/gO3Wk/VVUP6PZX10BSwucPdWJSZ9nGULZQdX470dtr5Zuf5VpV1Vrf5Wha1tjqmlLTibmJaIfbKXzi5brOd/vHeVLej5LW2r2SxFd3AVhf49tm0de/QtYZuLR03llEFn6QYymE7TqCnvqB7Nk4lSdqHySDJfr03vtGGuANmEHBDXpUkNajvU1/aBmHy8RnRvFgufd743Z0Er/11JX2FLH1Mq+p0X/oegHW7WFR7/5ahqvP8zSKVG6O+56lO2wLVrpD1voB2sYrfuz6gdb0bLe7xK/sc4vUp5HRuXVHXKx0Ap/gqWm8+PQYjB4rp+mw5Oo1Q9C23qrrpAD6vlguVgHKOmGI7pAq76wRk83Cq9vU5SoL0MtlA6YY+47184JsDQ4P45/0DLi69FaL2jVHXJQ2+G+sJ0kPTCefyELq37wiSFPBKxLtehUrXNGtNAV1mCJw/ACLJesH6xlQssaKN8lS4wrbr0Wx2qNiXu/ZpDhs9UTTj8YiaVAYdUtRvSHrfDIyLz6QSi7+4kAx06g8vTQCfbSD2q6a9h2XjsAjlpda61e0KM/5PSIVjQ9WQHu45Wj9vZVWBK4bS3nOKp9Mv1KLEA5UK9npoXuPKOtM/yTKGreDZiWxxgtj10q1PtU83ewotkIaHLTDDxtkRV3vVUcd65sjprjtIxzotlhtJJtfgCWFFI+TZ4J62/N1xPqGkZlsS3lk5p8zzpHivcYLeZeyZCB9pKbam2JlxyabAzqaqV8lHwyy9bJKxfl2l6a463QUo4p2VzVyEMjMWo5+SlEkx1CH0+v3LGFLZn3GGfB0sKhAtT/SvmohGNiHKDlElM0Rr03jr20veYYt5KhfDOy4N7fLY+pAWWx1HbPPFOj8NpPWmkpFz1HkG3LGSnfK9uG/d1se1G8b6QMjRq7HC0GTs25U+DxorRdO2e8bE1Lm94avD4WVhkdta82nn1lyCPtm0HNcb31aymHbiUX99gxR9re0i5eOYTUBp526SU3aRmHqjePmHUeau6plverhtQucHuWLKeWrPPOPi73TtXGxprs/T3027pfFtDf4P70tg/CfbC0wJWdAXxHZpddi9YuX0y5sjB47NHvVwvevltveuoeW9Yfrxt5nhsy1DwmUoIyWW+CfjCaTDkzeeXZkAtTnu8WBl6HVsegeBcsjyvlfq+Jj/1AocbvrTZ+5qeTbvMdxVLniM2KVD/PvtG2rLlGh06ivohef0Utn9fP8cAATnBMT9l+QJmkNx6JJiutibfailoZaikH+mOW/9q+Ft/OGqTYsh5+IJZeYL2kuLUa0jGo7ZTvq/atmJl9SCQfwBo0f0urb610DM4XF/7m9K3aHOsUNTpjeL20uSVa6sZ7cxEsCzV2fZc6QD0rvXylNW4nl+Uluw4aXxP/M4m0AcVNsMRw+S3U1rXFu51j/pY8nux+xBJPCbR9oG0Ltb8Fjw8hZ7tisb1ZC9o5tbRT2re2xHj1efsEZT+bVfZVZl0GGefZk4x3sZXHjcC2xTPQdoxbb4EqG2KN8+89rrUMKp+lzi8M+WvnK6iZF4E6bmZ5xUYT/18DNc9Ky3irVn24hmZXj4H7Wu3tqX05HTWFJQ/nR7EUvG1Vs2+2v8sXxnK1dyHHlo6mVrrQ1mXvW7LqpSndsWR3D58Zb1/FIku2UBKUtUXnk3kw5SXJL+cKse4wiTUmKsbNt8z6WvBxueMviZbyAixr6yXvqfHx4nzmesgjYewxKV/tOUJZoFVumB1HjIq3xm2XyvHOb1SDVa5wIoBHzhspvxwD/39GYI19xt1XGfdNi3uuQJ2zF2+cOEt5XLn4fo/e91L9sp+VlnNvRH0za304a+c+K/Q87gyMj9jqGN44gaOA9/yIcqntW9pS7zRyzME9G5Y8vWMlSnh9oq1w/p4WamxXanyHNFm8ljRZjDYOhDoFqk+u9Rm0a+31l4f+PLU+2FQs1RmPz2o0NilF1Afc4hvlxeND4kWT70Xrp9kg/2YE10ezHWs590rUnq3YKVhkSF40WwfumNiGAq/TdDU19g8e/Z9Hf6TJ6b36M4hHDu5NWhyrmvj+HlmZV7ahfW+88gOIlmrGatp38I8KWsSSbhnPutQ7O452TRtytPSB1fqrUj9IKrdVbCItnm+Nb1JN35xjrqdmx/erAe7bbLE/jMDZOGTYgGbYY1BY/V4jaH6HNckTQ9JLS32bZjsW1WWcQO2DbQmwPYGX7Bh9EK2cVjHcLDEqOLyxfTx4vp2Zsc+icp+WMVhq46r1Rus71MTr4dq/dZyg6LWzPksXJp/Mw1LekuBkMS+FbVY8x36X+N8aqk6Uv3OhNtaEFvehVQyF6PVrGY9glG+/dH0lsI85hvMTL/+t/tuaX3K033gJLAstZYw1vsBZ8kvvcbVrzKH5pY72Bay1B8S2gZost6VfoWfMuwS/NE3WW+vX1BpqHFjjo9fC50fzpZlp6Qvjke1DWqaeMelg4vQO1Jgf01I3MSrV2F5o79kaORCln4Fl1+hqOHthS74rYInJjq8wU2w6oQ6p/M62W8Xra22io7aVGTaQPWz+snVta0w1bcnZoniJ6AczdG+Z5XrO16OrlPR80fZuJVOm9G9RXWFNuZn2dUvTD854xiiajhDrClvpB7Nk4lSdWsnfW8YjoGKGHkx8XFBPahlfrqVMQNMP1vhYtfQxaakfbPmuXpt+0Gof2xLuW87RUt8Wtb0dRZZOidLTeXTFrXSFryZeb4jboub5WpP+L6ofzGD0uUXIioNPcVqBi2VuiXeuxUKPUBv7G8cA9+gHJVv7Gv1g9NpZ9IIRLPrBJVLj29TKf6GWqH5wtC6vp34ww9ejl36wFZ52jOqOLGi6PejLkqkztMQNjfrUtNIPtmSN+sEeQP0g/k+RMZfPPukWa97BGll+Wz2RdIO1cWis+sRWcXAiZMRh4Shyu58YesTuWJJ+ELYlpbv+D7PeG4sBL2vI0A1m6RNboMlP8f8M3/+1gq9Rpu9Gdju2rBuFdp+1fFZG3Q9cW7SSi/Z6J2QxWg65NKR3bWT+TIhmI6DJTaNcAMustojyc2I5Gpn1bhnnRLPDaCXblGxKcD78X5NttrJJySJTHttSPsnZ1+B1XrneVVQ+hruuV9Ey4vtfIwPltveSmXqvnyYbw/pbS74in8yyP/LKRa3XT5KLjpJhLonZd/Pl9MaPE8sVtfgQL4n/L4n1PTkLll4OFax+olQ6mHJs3nqm1nPOUnjLuSWsz+ZuQ7T3eMtjRxk5/xZn/5gVZ0WjVi56TtmG6RlLPMv3pfR1LfIZr70o3rfW/tRKjX3OUuxnM8/vI7T07rtEoj4WNXK7lnY+LWxcP0NLuD7juCPl5r3l4tB+Gf6OtMUpsLRQK9+Oyj+uB/dr5QOzFB6BpQV8r2Qi3ae1XANLqg2WRnbbZh8Xv/PhmHi0TiNCxC/hPlhiWvlCLAXqnCPUypRGvz+9tNLDrtHPZV/OYyMPLNctzNsy0hkG6piZKWJnC89dgjsnCy3KtNAjTuQ+U/paDxRqbKtrYmZm8SmxlPDYp3wKlhYs5bXgsBE1sUk5/8Van0aN6DtUG+dTsklPTBIqv7cML/cqyPIBPU/gzZ9FTXtI1Ngcwfp91REtLi73vWjpm8L512b422q+uFE0W6iasuF9chEsa3XUo7DWmzrHFvZ+l9ASb8M8ENZTtNShaNxeID3Ou7fv+Ki2lN6jtfVr+Y6neDzlxGx+SqDZsVD7ZAB9B7Ntb9YEdU497ZT2DY/ebp+gbGefGPa7yvBo6mMnnXmuvegRX98bX94LZzcuYbVB08rxxvu3HrdmToHsOkfnK6g5Ti9G2pFaeMysi9LS/j1LD5yhQ7ba3Xt0z38p2zDa9iVyFv2G4HweRvmZRL4NM1s6mlrqRCVZ/ZaOphrdMWXbX+CeH6o/hJea3rGGJcR8KrFbbhFQMV4OFfY51cbH8bCkulhpKS8oMraesp5aJN+6W1Oe3PFb4j+khY+aNd5YjxhkNTHZauY3uoKWHjRZwokKPDLdzGM8q0C7t2rujxb33J3K8+XAvo/cumi51HnUPAM96OmTmeWj2RJKlpJVNhcvsdDj/J6vBC6OY6tyR8eQ3NKWuDRqzFHznI2ILbpRj8fPvJePOuYjdPyscjGava+VJc0/mG1LxZXt0X+P9qeL0FIfdjAdjbtUlhmJsk2k7BexPFWyYSy0lBu1tC1oOe7JfDfXxE9pxUNiKfFK4XO0tOSzxsgYCXU9tbaoITO+R/S4nv1a+YKeTGwLDezfzrUFzEO1RY3PssRov1wvLX1HR59bhJbzD3LHLD5z1LoMzoDlGWY7RZbvGYU0v2AvPmXWUXB+B18K26z5WsXRbsk++Y7U8O+kx2TG/z1oZd/c/Yf6U0n/fBP8x+uzaGl/3tJGvAVRGzcLnjkBl0IP+9Il2y5CWibN3uysIU+Es2AJodZhMuYZPE7zD0JbN+87uuw3ek5BD5m2P7U2QL1sgySy7QagDrtGhzuKlinTNqCXjUBLHdYfK6LIZrAcEy/3GXz9RtcnAywbtOShoO6ZrOdkdBt5Kc/K6Gd2NKPlkEvDMocgnEvQM9dgjW7sdAXRthitD1wSLeWYeH6/XtTEemtlc9Kaz8ASg/NZ5bZR2aYFPO9gLz4DSy/HWS6Krz2UpfW2K3pUse8noIxMesoul0527N01QclFa+K/RuYkXHrqGRvRC/SRhL6SGrAM6z4FTd5Z4xva2se0BS1jvtT4NY5CS1LsgRkpPkEv3zar/Nri99ZSLirNodcLry1Oy/NrMebE9cfrRo+Jo1D2hBll1NDSfnaNaLJkq8yZ21eTd9eUvyZ6y71n2UbNe3+0r8zSoK4p9xyNfqZbQY3zqe3WfbXy1kAvfcVJZt1JZpu1zI1+YLmQtE1j9PvQSyv/lJa0epbXWOeN9rys5MzEx7E8wwD35bZ5j4/XRcuNtiN3rhBv/ixGzNm3j3xYgWZbPXruwQie+Qe9cLqW0l7Uushcg3iZQbZ+yeKbWKjxb4yC36Et5bIt5xhsNTdhSx/Q8wtAO38P58GyQNkXUfWA79uvCLTtHmq+BQXNv2T2i7wdpOUcg3Cuwdo5ByGcLRk1b95FtE3Dk9ejo/bowpegY78ktHMrLinHvYSWvX2lrUSfxRbsm+/46Pbk+JeB2t6zXtw3o2X8qdrYWE/B0oql3L8n3p6mZayvjfVwk1i2lD23tFMexWj7Z40nBPD9RW2P8jEqXzt2Cx53IiNOg4X3wXLJaOdQM0egZ/7BnkTbquwfsRP9GCwh1Dq8PWs+QS8t7drvL5xWvgx4Dr8NeS5GCu3dS+Wx7BdlS0eTR+c5geWWfKlW3104RywjWN5/s27qwfS2/opah7drrDHm0yGA+r8le7oi4M2/BDi5GJQD4HVLItuPC+oMbglouiiKUfHKovHMWsYRa3HueA607GeljJewzJVaVzhhpEVcOIlnO6h1VuC9YolRNypmHYX3XEcC6z16XkErrX0v10aLeQcL2vyDzxVq4gpaytCOn8noeJBLiyG5pS1xqcXzB/tLLcqH/pMtfeqz+QMsM2npnwrr39s3diPv2q2FVm2R/cwVpGcdb+95XC6f5pNT4jlE/HkisScy/LFqyqPigi6Nj4j/I+DqFt03o12ix9XqdGogo30z9im+aAuybK+oOJ9aXmnfXnFIW8cXhecdta8bZYO3L3EAsmw0s86/tk2/EMrxYq0fZq2xQVuB/TXxUuKAACa8Xsq7lDT78hR/o/L7IlrnoXZ/T/n4GNZjUvnKutF65aXRMr6oZAtq2V6A+kz8PxtoEzQ6FugSGCm3+d2RrxejxskbubSIv/Rq4wijZdUbbbkOlljeLr2v4RjnFVguFctY0FIGt210fFoLr4jlRltGx6Sr5SRYZpD13qLKrn0+ss6xN9S7zLs/XvamZUzNtVCeOUs+mH/jeFATV24fGX09lnL9LfE2YTneWJ0tzqV1na2xQiOxRGvLjMYprYlteprhHWGblO/G9Ca2qLZvy/niWsDpliz6J29sUClfi/iiGCgX/Zn4b4WyDcmKy9nTnqVlbNHfHJwnlmuFitfpaYuM+KDW7wHOU/b7N4EecUR7xSbtHfdyNFAPjf/D9RvjY4vuKyNiie4T/6KlZ78WtI4RurERAcf1yIjvEYmJAcm2JV47PW2Xl0brWKCQUXWFz45nv1Yx5pbKWmOArhHJvvNJJV5b1AzubxwBx8D0xMQciTWWZ0080J5tAN9vGWXUsqWjKSvu5Wi4c5qI7dHkPfYSOEv8hksJj84vW1+YpZeMsqUteVKtTGBNWGQktyY5higV19KSZ2P9eOZ5khgdW7PE+qwt4+5kjy86iqxz3fAx2t/SQnacTwnKB1eLC2rlsmG7lscLjvs3gstguWa2dDSdm9rF04fP5BWwbMVUkQ+m7HqNfnajjI6BeJzIjIlogTrmdbCMUnzVS5kRP3euzqP97yVG+7q24Huw3NiIgN8Pre/XwuhnJ1LnNTG63fYdzZ8Mf7ctnJze/u6P7vdocO+RFseg3l2ed1vWcfedzOdE6pM9BMvjQO8xRDbSObVoq4eGsrV3bw1eH+KafTc2NnTm78Wn09vfkk+Z9Xj7zDt7RI/5HE4nAcuWzonb3xobYG20eE6y/MRHyeuy/d1Hyx+X2i7HpU1/Y9a19O/8ASzXwqlKqDJ+AMtWdRrdbplQcUAstK5DS1/yU2jZC+txqe21z8q+obWfJR/1HsXblx57YLS/9NJo6XtrnQ/KW+7oNou0ac35toazQ3+053jbaUl12agj83lv6bNOxT9ueTwKr+839C0dER+6lk/Acs3A98snYOmh1lcfc1/hC7D8AvzHedbOGnzle5y/1ad+38Hv3JY+y1QMZGr7aN9qyOh5JlvzEiwz22oJ7Yz95bM5HMiNBuWVdDjFkhaz+gDgiXW9pfWn/24c4SJaZpd9sVHZPYGxBvD/fQL70d/dOEKWvEQre/R59uBv9BuSfQxrDAJqfy4fXgf91VvOMb2xbk4kUfz7s8rD5VJxCTY/+vp0LgAXF0PKJ+1Xi7fOkXP2tIM1hkg0zsioWCQzVvsG6BsU2aeG33flwWUrMut8PXD8tfIzWFrA+66BzHvDc9+NvrYc2KZU2l5bNnWsSLlLfBaOGx+B5cY64XxmvGVwZUV4iJbU9ofC9prjRsttad/7CtDTrjirzmuGOqfRbau185LuHao+o+NejIS6Xi1jHuDtS4uv0vNZ9tard/2k55iCqjeXz7IvxynA52jZk5ZxQFrGG+ndTseN0XawG8vmEfH/EbMeb5fIqkNPRn17l8pS+yojaPkMasewPl+PiOVGe0bfmx685zS6bbPa2XqMzPF9S1vvrDgy0eOOrPOauW/EkxdzMoHosaNIbZZxPmsDjp9H12Wjjt7PkoXRvmpZaG1/DSwhuJxrxHKJUHWmzuW4442BaNXvtowfXFO+9P0cHRd5JKP7e0un1729RCLPSs3zlHXNLPW7kHzMjY2NNlCxFAo9jpEp52mZXgLWks4QvAxQ9uXK1vaHaU3tZ00vwZI6b61NPMfA66JQ9wbkgiGPtO8FUEZNWb3wvM9G13UtUO/7yD7vKtskyv2uxQyKEqnTxn5T+iPSNo2M4/fmQUM+BMtPk3iQWFaE/4Hl/wz58LoMuPKlumj19Z73Guh9b7wDlksicp9Y6Fl/6zlx+36q7Gd5bvbxnpU4dOQbARUHzxNbbh/408ENsFwCnrp7OSD+98CTTjn4gFhKeHyzo/PLZNPS/7xVfUe3WQvuAbLLje472j+/hhbXqGV9z1fyM/qdWXaBaxdqW6T8cv9b82EsebLhnuGZH4T9rHOAaccfPU8ahfV6fwXgtuNlS34ASwzOtwS08/lQAJbzgPjfAi1e6E2ENd9a+bchXwaxlC2dEyxrRJvi41rO+b/GfLeI/xy1sZhbzYtnKXt0HGoKz3vxIlj25L/T+mOAb6yHi2BZuKQAnxMtr7RvDdbjXQTH9dbV0hY11LRjFt7+1+hYTxtvuL2ycmvrVEPGcUe3wQZPdh9XO4b1mBl1uw2WFizljcQ7Hsvat3U9s1jStVpTu60dTbb1+DUfr5inybSsq3YtauqR3Q6Z/M0s4fYs7jYkc87ujf3lLli2uu9a3udLRjv3jDb6hyhrY6MFLeJXlHhk3n2ksjY2ojxBUOssjD6PpXF1D3kElvhcR7Rx7T27kc9omcM+8HhDnY/yBeA7sLTwwoG37FZ46pzN+wlQ5yRtG0XWuWUcd233xlLuuU+SqC2byp/xLC2FpZ9PxjP4jRGpHtYyNvaT0X2pCKPiXCyVFrGaW5WLjzGirebl2QCeczsLliNZcjzvjON69/3rGKK1PXd9rGVZ982qe4G63+G+o589qk5U/dZUZ+q6ZF7TCNwx8Dlp946F7Lq/AMslgschW9rSlmzJEhM3Ghd3jXGJPfE1cf4tbWlfU22M6JpjSTGrex2Xi6NdOGfkO7C0APf9glhCvgPLkbSMtdoTzu/T6w+bGasQ17FVuZBIuhTcz5qo+A/e/a3lZvMt4JBBijfpiWuZiRQ7E+bjkrRtS/uXrlTwrZPIPoXaulrqfAUsM8hIlrKz6ruRy48Mz6fxdv9L46YAzDO6nr0Y7ec0ir8JuDg/OKaY1qej7i1v/pHA56RV/Tzf5JtgWctdsLyr5NtnqPs/wp0N9r6ltt9B2zxlR7ZH+REsf1TybfCM9H04wWDJ04raGAtS2dw7Csdf6H3OI9Da8RmAy3O5My2/X3C/O5P/GzbiWwfPd/Q3bkk820N6P2scGecROZ+aNmh5P2X1A7xtBvfNvL4/oqV33wws9cs65mj953HiPwGyj9uz7vtGyzYq/jujzzGTnyr3xYw+n33mOQD/56DyWffdyMHTP3kOlvsId87U9tF1nZn7X1va0pa2tKUtbak+XQFLzkZrQusl2y6qPG7dhgzs+7Qq18v1ZH4JcMqAZZ4SLqYrhIqhQCXr/JglhgfUmVKyEaqtPjLwOcG87/fCNXhFQJUDuUAg5Z/LfIigyoCcIdD2maFsybXyfyb4jaGU+TWBZb406l6kyoJ4bQ8LVGxOzYbvBYElviQVb4IqC0L5O1n80KlrbEmUPZ7FZiyiM551QdSzbZE9UEmTQ3Hv5z8MfN+JP4j6WfbxYHlHUFDfGvhupfah3sF4P7ie+35Z5qu3fPcwVKzgXwHctzESN/kLAkusYGo/jXcJqG815gaBJXHzdWpE7aWpWGUWO51zBBZ9FfXe+N0AtY+ln4LBfQMKqp9iwfJe0vo7pR8lYelPUnD9pWyo99dJA9S5WvbDaO3AXXfpne3NH4Xqi1rQyqLeY15KuR8S/M/AOwTUe1JDawvq/WH57lF98/MBqPaB/EsA55Tn0OZE1r4R1BzEnrEDpsz9p+XTxhzUfIJUG0Eou+Gl+GNJYyILVJ8ny7YaygSocdL7BmpjKpd+hlQ/HIO0JnZhTVw8bVwZTVrMImuixqzn0O/oGDYrWWSF1PNj6dNqsQkyKHWkbM2hjbVmw11rFx21G7TYmcD+Pzfmj+r6LTKHnqmF/FmSb3hkENQ+1H5afSzyDa2MyPgKyh84+YZ1n4h8vqd8g+rrYFlHRL7hHdeVciNjQossg+JPxMFkS1SMIS5mkabjsEDJNyw+Z1F73Kh8I/qs9ZJvzLKCLNms9t6Jyh1GyjckilxCkgd55BuvwJLCcg/0kGW0lm+0Ihp/7DQBfk9a0NqCklNozN+9j3a/y5LTO2LOT7RekkOSb3Bw8o1WWOQbEVmGFU2+MTq+Sm/5RoSIftkCJbOA+meLjMM6V2LG3Aw19JRvRLDo6ClZs+V93TNZnieKlnINDCff0OgZXyUq36D8liJ+By3lG9T5tLK3y7Kr89pMYGAfFI9fqP58L/sRy/jFosvNOIfocaj2jl7nrLaD9YuMU2rvt9a2PT2hxv+UjhVDydKosYtGpH6ZwLHMz+C/lahdJSUfjIxBKNkkXk+NQSLySw+19qIWfiWIjAEsY7ZR4xPrOKX0w2F/PGrjQ6GNVVrZzvUkaqeXhWWcckgg2bmMSJL9iQRlb0LFHbXEIdXgbBk1PHaRtWTOHRuJoyYhjVNme4GXkz7/R6+4K1Kf1GovatG/cFhkq5k6H1y2pR5SGa37YBbdraVfT323XzHrcZ5eZI73omXVwPX3rGM3rd8I739qe2afJgOqnxPVGWboHrk6ZRC95737jhwPR2zFR5It7+/13ETkNj310SOOuU9EbVMpXXXEttWiF6LqHbUjiNgjZPhTjOYBgUVvZvH18MIdyyLPtO4Xsek4DGDxYYnYhVBozwnsf0ljEYvdZIR7BiL2LOeJ/1EsdcRY5LvwGF9VQPkQwWeW0hvfZtZDNJscKxb5ECU7tuyH2/Sicb8MLH63mTZJlC0sJGqzJPluZTParirrPPAzZDlG1MYDgmO2WJjtNCjZJmXPoRGVo/YmQ/Y7Eqs8oheUbVpr3VikTlGyfCc9WGwNKbk4lc/il/mdMR8keixNp+ith4dM3QqF9zpHdYZR20+LbOgsWJ5l8lj8XzN8aDPgdKpLt4PtmaJym+h+vZPXdhjrLanr/t109PpL/W+JVvbFlJ3nIcFSksdeFZNdnsTo/p+lz0qNSS1jCG98OQ4t7lzU3luzQ7fOkYOvKbXN4utJIdm5w/HSiUkeTz0zQLV9K/t5S32ywMeunROp5XxJPebyoPqaUd+FyPE9/gFRpDkuovsuKXbEcU5Z317LvZDln7JmJFurGnusLDR7IExW/I0M+bckl+ppgxSVHRwgrMkSf4Mi2s8t8myvXDsz/kb0WYvwECw5PPZjLXzfroMlRdRWzGuPaCkny8bsZKB+3noXlmx7FLF14exmWhGNv6GVOzL+hifehsankxyHI6o7PU7xNzQiflz/MPtl6IUporq+TB2ehEX/RZGp99PI1Llk6xxq9A7ReBsYi19b9H3dM81+YzenNz5k8Ddch5nXt467EZHNtpbReuJvWORqFtlOFtHUU54WHaf80ZHscUd2/I3R9eD8uspvqk0t17hXXXveS156jjeizON8S2wNjFWWUBN744LjOKOIjh0+QMuaclrECm4FHDeVc9DGHhxU/I0ILeJv9B6nZPrRPXLmtZJl59QKr+/RiJgckblmesfhaOmrAOFia+CEt3HxNyz2LRl23FaWEmtDgkrYZo0iK/6GxfYhOk6pibnhjcMRPf7o/k+GLonbz0tU59MTLrbGWuJveOpXMy7m6KnXjlKre1sKjwYdNzqWPQmWHBcMeSxcTyhjJFwfuNczEo1v0UsfPeKY+0RUV6PprQs4r2VfnMdyHlQ50jYPo2NnaFww5NHmCZ3pFX/DM2erBWk87Ym7cQP81vCM6TW7jxr7EEh0vNMqHgcVkyNqz3I+GU/8DUt50nNVE3sDU3TFtwFwLpfbBJY5cbJib1jn1uHiW3hlSyVGhxQTtlamVWxX12CztMXfqIeaIylajrQ9En9jJmIbDf3EPD6Do30Xl85NZdtMVHcT1WVl0UMfRt3fVnu6jDgbkVgb0fgbGi3jWFDxN6yxNGrnYK+J3WHRo/S4vlL8jfto2TL+Rpad6OgYGxE8tqw1rCFp8pm1JupczoHlOea/BfwMWG2HH4DlAyZPq3Q4LSvmRkai4m+0ir0xI/k1tO4fWm0I4FhUshHH9LQNvwOWWfE3MDXX2RJzkLKN8Ni1SzwzcJfY786UZzM/KgbHGuJv9Ii7QcXf8OyHY29otv0ef4GMuBxr8K3omUrfYt9S7X3iwWNXkonHRyDLTmaUr4hUv17H6UG0fp57oZB1f2nlUHZ3mT4ZnnK4PJmxXj4S1mfSMl7NR9PROmv5TyXSSpebWccWRH1SWvqsYL+VJcvis/1Toj4tGtayvOdilZ1q+/bwN6llti2R5oY5IJgmfwyomkTFj1oao/WPFqL+KZJOJds/pYyjsv1NMsnsp2b7rKzFzyQTzielbIvyagWMHjcuHe35g9/uHtcrcpxePkGj7+VWjLSrt/p3eO5puB91HU+C5SjKM2XJsxb/lCX5uxw3an03ejC6jbh2K8uIz0hWPXBZ3PG88dy0uVy1/ag5YTX/FClGjpdofAgv1jikNX4nEf8Uq9/HB468cJ8oreKtnh8A9BuRYrta/E4kHzEIZTuPyZoLNuq/0tOPY1/J9E/pyddguU/A50vbbiXL92TDz02wjNouWuwHZ0b7mSxJ/2XF4ldiyUeVja+j1yeM2t7aZj7D36Wln0lPvgHLGas/k8WXRaOFX0k22J9jJB6/kwj4nrfm23f/lN4src7RWPdYZmGVcURi5nNxMlr6uxzHZO2n9QT3H29Nb89f0HJ+gn3D6p9SaOELYqH4+mT4w9xBS7xtX8mOlwp9V7J8WbD9DTXvKwX20bDu5/FpWbpfytr8UyK+dPh+aemf6aWnb8pMT5+Upfq/ZPtGcH4NGKrsVvZk+xKbd4O3B6u9Nvt4H4y+77Oh7BA876Ul47nfv6/YfySWa5xp79uClt9WjYdgWVvnsh4/R16kfUfbSm2Mw9o3i8YGziDqAxq1DXsHLN+pKCfCBWVbBMpe6iOwbIXHfqtlPbLrusTzidqt9LRZOhXEU/5ou6wZq61jpMyo3RVu06xyTgnr14I1TnKLGMoUo22fLETtdij/fMt+vc4lUjeKz8CycBP9X4NNV8uyl4bnvrbeW1HbLOxnFS3HYi81KtbENWP9sqDuUyqf1V4Mcp9gtG3VkvHGHB5JeZaitkaUv1Uru6bRcU0wkTpnnY/FxoviMMgNtIxiSZSv2QGA2raloyk6/3JPMubT6V1nbKs2mrsrwDtmGV3fVnC2bJZ9Z7usaKyl48IJsDyB1o/gMliuxe7rnLAe0ys21jmwxMel6pVZz4x43RSUrI7SyZ9iflv4vRKv/UDt8bLh9Bfa9kyibdizXTX9i2e/Udd0aYzW+S0NT8xljx7cYnvi3Z/LG9UrlZhhPWIQjI6L1vu8IuV8RuwLyxxtY6gx1zFq99bDLrPm/mlVruXeiZ5vK91t1J6x1gay1fn0ZoTO5zhC6Z64fFz+Glq+I7Lo8T6rIXrtqX2zr+9a6H3NHoHlEs4L18fbN4vqwiJ2o1w5LY7VG6yrP4mWFCcNcPt6oepsOX5PcJ9pdH2WQtY9gBlh+0Cd3+i+1JqgZClQpgJlOr19pC4MOKZUl7Uy4tp52zR6/aNtsvZrujEOHB+9thxrHzmaXiJapjME+PhUfV4SeaepfX2tSTsHrZ6W/QtUG15g1uM8lnwZUPdzj+O25F1hfQYvJ962NusYG0eh3qORfaI8CGKNp98Kba6LKNyxRterRUzMlj7nkTaqOZZ2zFbXrvZ+icQvhXDrPUC7+6VCzfEC8ZTTeu6Zg0qkpOkjOV9pys4pc25t7VgWWtWnJfcaldvblgwf/zxaZtbx/Aq5NwgqloElTxZUW3w1AE+dLflh2dJ8UXPeaB95pmZek15E5tbxzIOF98PH/zJQ5y+FfaW6/JdZf4vB6rOVEbeitV+Z9DxcdPLf6ahv3ChfuY2j7T9fy0vKtb5E4P0uUGWsAcs7u4cN9ZK4vYA6wLp4sJYz+rx60zK+khfqulnyZED1Hbj1OE+0fC892qFV3UeA+9OPp/p5xyI8dRA9BjV+kMr11CkK9Cun1mlEfdtHx2zbR2raPnodW0DVrfb8NtrR2jdkoz1PDIyuo4Wrgxl5ffaBEX2/bB4vnBKr5IUAFdvEm78G6Vge8LzOFlrGpsk6Prcf3D+rDWE7Zre9N26ptF/kWreiV30s98U3BJY8GzI939mZdoKtaOXrpVFTZ0sMVOqYZ8Eyk9b+cN5yqPV/LZAvwNIaXznrXGA52fcDhDp2z2NZ2rWF36VUz2j86tZs6Xgkr2/OiBT1I9rS/qcaPzNPOTPnBKRYrjPUuzx7bF5jG9gCyuYl0wdhItZxdRmZOHu+KIdGLD4b1nLg/y3F0xUD3zJcQUu8LUq0jMxzPo48n8brPi1Y7F5GM1rnz1HsTCg7WekdX9qZWrc0uPfVt85yel8XuLReRyt3Fop0rQqW/fA66/F/3AMyda0nGmG1n8P7UfdyqzpGeLar9zOGeZtn/hGJNbwHlvyuwXDXrCVZ9wKmZz2i7et9r3H1/jFQZ1y2JY+F6L4tbSJGY5l/J1qOtfylEG2f0fxkzAMZXecMnm8cQXqnjq6bVL9IOVqeLW1pS1vqkUbLglvLmal1z5ltUjka3vn/lsovA9HiakVo4dfdIsa6x/bRk4o+OhonhwPauGqyPs+YznOvSvMQengIKPP1WOYD887NVuDOxzr/irV+HjwxqWuPhc/loZFoDG2OMw6yjz3jsfnwlPun4fw8seJ+q4A6l68dtIinNjKGB/Y7lN6xJU+mztLju0jVB9fNwwsHLXwUa+3yXzDrLFA2eZydnmbjTdnoaft47cuyE6X352wBLLpaLxHbhUwdl6cP1EJv40ktZJieft0fDYj21Wq5PvDY36M20Nq95bF70qKv5mEeU8yx0C1jXs84xXrsUVj7X1KM7A+YfSzxmlvIDyzM9fP0g34NIvVTR8bawH2ia+h36zgxVF+tF7XzjNTiid/fIkXio2ZQUq3tbK0NrcfvvIVdGEySn47kq1Nje+Hp1/2ezM/OY438NlplXB488sIW1PQNPwfL1kgyWI98ttBC/u+hRta6Zjx9cDzfbwbSPdHieFGy77fMd5Z3LNWy7CUjye6x7M+jx2ih7/CWPXq+Pwh1Ph8aqJmvTMMz75qn/3/ozK+Rfc95+n6j53ui5uSp5Z4xn+X+9PCvA+t8M2WeFws1c15kjik5ovNzZOsiOW5X0EMXehsso1juTc9+FruVwmgf36Vx07BdoodMsKX882Pi/yg8sQg9+ncqHmUt3pihPaDkdNntLsWBjMYNrLVl4BgdD9Bzj1oYnSzxlbwxm1okzZZEky1TjLY5WVPKtn232oPV6E4k/YkU7wPXoYW9jzXGg3U/T9tH5/GpAfout/LNxz7Stb7tpdyIP3SGv3MLv85vHHl7+i9SfogjbcyOc2pxPS16qxoy7eta2px5jn0drMsqr5YW9nXZdfTYqbXQpdf6mY08di//uBbycc/xs/HY1mXa3S3Bvq63fQE+n5G2Di1s5jz8qXAAaJFGz9U9Wtbssa+zyO289nWjYxxFv9FZNnYjbeZG29mNtHWq8S9eAlpfVrp3R7Z7aftM/+a10MOu6SRYYjz3F9Xuo+3uojZ4LWyDe9jmrZkWNnOt7Ov2jcy5MLzM9nWnHcC+frF7g785tHGDh6x7zmPf5qGFfZ0ltsT5RlhiWHjItqvz2uC1sFtbCy3iP0XJjiXSAo8tqMRoucFayIrrAultT9da/um1zcP2eVZqr2W27ZIXj93bE0Bvm7snRij5Hbe+hx1dlo3dSI6zfd3S4GI5SXZ4EI9PUfY46tBwbfY5tfhue4D2dD3t55aA1bauxVwuM7W2eq3q1YOsuBFRoG4OzwuBGTWfQAvbuiXY183Xz2oDC69Ztm2zRKtr2tK2rqedXiuK/pVaD7dH8Mb6kHSn1vggx5lyL/WIzeKN25LB6PPSGGXX2dpedQlI7d7ChsTKqPf2aEbrIo8z1u+vJx6JB4/ts0dn24Oadod6zhY2cLBsSrfa2gavVp/cql4ePVgLXaTH3n2kztSqz/eU5dGTSu3izb8GWuqGR+s3PT4a2PeihQ6P20+6H6XjZcVkbqFrXYvOdqQeFtphwnXWfSn9ZmufmCw9rOf+eAKWEmvVi66Z+V706B21uOTSvtz20X5aNWh6Vo1DB5YYjRgtHSj8aShjrckTf74FUtzA3nXBcVZac3cwnj7B6Lpm4/GLHM0J4zoqzwiWooc9twP+nhntkzoyvg4eO9foLry+sL83LDeTVn4eI/yPITWyv6W15dJkoyPJio+SrZObyxztM9LbB9hSn2g9vfuN1sOPtil4BZav0HpvO0XuhYxziMjDW+n9R8v5NUbG2dknInL02mellhbPr4eWbbtkel/nnvWUvuOUHPQC8f84URPvA+s9JLKOGQV+F0ccPxNPu1toqaeB9R79jexJyzHaEhn9HissoR2W1B4b+wfsr8D0EixfTn3SGcRL9NtK6+SpixXr9cJtlMWo43oZPd/lhkx5l0jbCg8c9Ihrtg9Ezj3DF6HlMVteY0ucBonIPlYy55rVYu3VxuBrEbPvYJK/mQcMVF6rDHm2tdd0mpHY/1w5WeVncc+BNX8Pve55sMR4yxmFp+2zaeEHg8/vK7DswQ/GfNZ5nq19ld6xbDBcfMxecTNvGvO1sOH0+Pa0OL72TGhzZY+2x+0BdZ7Wc+fabYSf3yUBbbsX6X0z2sbGw22wrEU6BrU945jWOoykvN/g79G0aPtsPN/YVuc2uu+g8XhqPyf7U7DE/LPbZvFZeAqWvfDGsmvlr7Hv3EW/uXbq7Vcyul32jd52bMeNJwK1ZV+dbH70VwfRow2XTOvveJTHg3iRSMTfy1P++wlE/dIyjo3pfe6YmjgQLeqzRL45xrR434yO25Bt+2nFUgcYH4KzM6XyWtHKzLJp/UtY99cxg7sW3DZvORZGx5rxxKTJZEvj0khbRe34PeuxJT61sCk9Z8TyPvKOETy2fZmU5LELm8ByaemWkSuAQwcTWOLE5T/O6cqC2YdziDJaTo31ZCPrIulGWqDZbMD31Gj9pTY3FrVPq3bz6gol7kxv5ta60wnrfGPevIUfF4xHnn2iATU66RNgmV0fXLdnDi4b83mepxb3fc9nDONpzyy0eH4ULY5taZ9Wz3upw6j3zehYhKPjFo4E6gHgul7H1+ZpLIxuJ43ne4zlnTjy2Jed+be0pS31TaNlKFZavMN6zbc4mu8XUId9IBIfdylxdjV6H69g9ZH2+FJrZB9Tw2MfyvnXePLOQFtRrSzpGFZ6xyd7NOCYI+ylDhRapBp/wYgv4cwInYXXPrjGvrgwQjbS6nv4O1hiar97o3lo4FVHIvHNlwx3T/VsU9y2LWLBZ9Sttoze8f1Oguvcqm0xVJxZaT28Rly+AtWmlvdDJr2vYW9GxPUbfc49aB3DjuI0QalP+V9ibuH6Zsbzqo0FxjFqDqHfVo50z/w7vR0f6OuJjuEjxXzg8lPrR8Rv6c3IWCBrptyL8HeBGksWOQi3ntrmQZK9SHlvJh2fsjfMJss32kMPn+8RlGv2YgAW/9XRfui19PRdzPAJbEXmfTMitfCBacFZw3YOKQZxNH6zxb9l35Pn2wZt0Wts0qFdu9W+eW3MdrVPpzc2tnfQ7ztoXQTKvrYFo2x2KUbYYkJbwYhN7xoYkY6D/eQIG48/9hQoS/bI1UfriZZOuW9G16MXn4Ml/q3dN16djnQ/U89txvM/un1bg/VK+N0w+j21Nkbrd/aVWd+RMUeQFcoWEgP1WZLtCKX/qkVqK2u+0TY1+wjWG/TQ6XzQ6Ti19aqZE2i2m/1s6m+r2xOPTg3uI+0r6bRa6Zsk/devK6G0H/xtZdNb1empqPsG6hiK/TX8fc2wfslYdGQt7pvR+qJ9JHs+U20O031C0lsdTn3npJw5DmnU/FtZWOM+WbkY3A9z1wGOm+XZlypHistFHXNNjI7DXciMXbQEouncDksezOg4MT1izPTWWVH+V0ug2C5r2614/dKo/95z6CVHitqE7zucP4y3nF+U8rIZ4cd2HOjlT+bVgVN5R9R1LYzQfZ4S1kPKeu77ckrYVhgtX9pX4D0E3wnWd8Xo99coivwP/pbg8mnlWxndHq0ZrT/XoPycs8vbWAf3p7d9TE5OtKwb7xuVmY/+jrSmd3yAEfR+Zx2Hc9xYPy+TgQn/L+mMAizPksdaL0u+rONZ2r6UbcljoWbflrTWOW/U8eH0f3HtPlT41LDdCuXnuS+Uc+xpE1y4AZYU8Bpw61tw2IkWdhZ/OijvPM8+XiLvYOlbNULfVmNvO5p7RkbEXjq/UO4ZtmfyA/p/Hm3zgL9zX4El5kNhWxbad9qLx6f/toA13wwV42o02XZklF17uafm39BOjLv3vLZmkf0ybdo8dnVrsOO7JFybEVxCWPNp5zEi9loU7d2yJLaYdv9HaQ/8fy3guHq30W8ub/R40rc3+k2WyIgX7yU7Rv7TBEosHOk4OG6OZA+cfY4bW9u2YH4H9NI39vY/XBOU36E132hgvZ6AJaa8/6ltSwDWr9e38DHxvzcvFsr7K8dzjpRvbeSYFp/dJZPV9t+A8lr4WZXnlVtPQZXzGP0exQi/2vt7Rk9/7r82uuK5NtL7nssfLS+LLbVJXrspLY/nmFvKS9n2chrnDJT3gyWPhQcEnwrrOaj8HMchXvuhkS3lpis7rPk0MspYOrM8kJIRSutvCnmWTq/4INb4LzeJ/zfRbysj5kTASOu/VfJwjJy3oGd7/shwRVifASW7eEqsOzHJOrUTDlrNbUHB6f4gzwDcei/cfbz2OTs4atpqyeDz/BEs94Ulxy5aM5w8ueUxf3LwnAHmaTF3y3/AculzvsyMns9nX+cM2tKW1pKovnN5P3DrOaj8lr566/ccjEHUM15gL/7oyIh4UuU8vwfLjY2Z0c9eS3q2Y893yB/gHPFvKk+P9533OHj7/N8Tu6LEy6yNgSHF4tTytIjJkVXuL3tOj5iu2v1BxW7NqOfS2g3uq5XDHffUQrHM7zTa55yq00Y9rWzhpfmbLPtZylkC0O9whH9Epk/FUvwqLDY6o2MGtvYPyvIXktou2o6tr43HVstzr+DfHmC8qBE24vtEVuyhAwGcpLzcPlQZS0veWA4cXH5vORlI9W95XqNtsPaJFr5GHl8kzs/IkseKx66nhnMKo+daWhO95a94fqNWxxjBfOweMqiN/aBHDPBXG2mM1stt7CeSXlL6zlnlB557HO9TU1YUj2zEWw63fvScYq0Z/e7c8NFCj7wG4Pw8+H+UVu9t7ZgZz23G+S8d6f3e6zg96dHv31fgu6KmDK3sjQ0vZzbSGH0tR6O1gaUNvfP+XAjsw5XTkmh9as8LzpGQOReOZe6g1sfpzenp7bmKqHVlPQeXn5oHSSqnIOnerfmWyp/M75r5jazzE2WV0wqPnkebcwfm+wAsMdlz/Yy2QW11Xpb5jX5jgHm5PDjfkudNakX5rklt9JuSJ2v+Ict3VsqP1/3bCGnuIG37moAxikbPdzMabd6cGjuv0ee2VkbPP7SxzjmINmK0+p5SeOZMGG3jubExkp5xN70xJzl6+IgdF0b4pq2dXvP5aCztfP5JKKPH/ARL5n1jHguj59/ZeBurX8wTgVKWlOeJ83jQr6cl9zfSaDXnDEdWOdZjec7rL+d+vdsuwgvmd2b5mWwpL0XnelkbE1ha26BV8h4Ln8OaOWsgYjfSw/4E5s0+foQtbWkNCcf/zZLPWcmUCVqORckiPTJKj6zz1kTPxUOVC/N8q9Sh55wxG/uFNL9ODdK8Ldr2TPCcNn8TWMvQ8t0loI6XAXV+rY+1sXxGzrNT5k7pdZzeQLloWXcC5fHMhZNFmU+l5TGer5TRc9xsc+isJ52b7HO0WvPh/DhR7xmt7AhUfajkKUMqx1pmFqPfM60YPc/FRow/OiAd11qfjHPF8ci49V6kc8d5WsZXy2Z0DJ/R4Jgmo+NmbWxYod5/S3iG9oXR17cFo9t0w4cnhsQf4Hd5H1D55vUnQZ6TCNwny+6j4WO27v9K78secMf2vNez2sByrNHvqNHvR+49mfH+tPTJHxr+H3d6jGlHYTn30e1PoX2bssiItwTLipZ5hmB0jK2NjY04lL3kR8J6CpyPiud1HBg1Z+7pCnA5VPmWcy/l4d9S3uNGj+e5Z9yuEfL7fT+/keBz79nW+3Z9fjPmgeB187d0dJyYH4j/a+VUAlSZ0TrU1nV0ey6BDxS4fCPrOTqOF8epBdQhUueNGJF2ro0Rt4+x5UbHjNonesUMmo/1q0DJR62LHGvfgO1D/V46mn/io2POVcN2K73rvbEfZL6vsmOrWJhjulzb/b4GfkOodS34xLDdCoxZM3oeth6MjlHWA+pdWlumFg+tlvtBvjBsPy6Mjqm1NtYUr2ypcN+gEXGWuHnCqDyjY0J5z+u9YwQ8d2u+JdGzfSBnG3O4UG50OEZJ1LpI6jnPXI900PFYW8pL/92o5tYOS96LSce8SDC6HbLaEbcnt57adhwoMcfgb8jdjTSydS13wdJ7rNFtMRJrjLWl1IOrW3RfKn5XiaEFf29s9OREI2DMtFbHoI6FY8FRnFC2bzHH+qU5ZtU5I9Q7VMtvLScb6zmdC+4TYWRsS22/UbEsMVH7vevB/X6f8v3tpWP1pEd8g97ntDR+Nmy3klXO0uh57+3r/Vr8ZH4HSy7PR0Iez7GsUHVcG6OfkX2F850b7ZO2MZ5fGpbbmxIH5RewbH2sh5XHGuGj9GrHaF+pVue1r0jXbo3XlDtHLs/o+loZHbNwDZRrCn9DesbczCpjZDuOxlLPNZxH7bvm88p9szk10X6ypzpieZ6yYub2emf0bL+Nekb77GxsFLBfE7XukWN/jVb1Hs0S+w1r4toU628uve/Ws/16YznuI+b32p/3DZnW9/uoY1nPfXT7Z14vTx4rPWRfI3ztMuOVwjJr6lNzPvd3jI7FvBbeQ7/vO7kQ2Icr52QSGfXJQmv/k+j3xttg+RKXZ3Q9N8ZxHyzXBhVXgVu/drTriPNcI7Zb6TWu5I7rqU+kLUeMofeBLDsWiy1Pj7mLMo9r7TeOnq9pLYzu3+87vZ6xfWAJz3LWdV9SXTY2evIu+v0uWrexDLh4dC2v2buOY7eQvxZGpJeIfUlnGOC54v9WIseqKf+4Ja4NerZV9NphuHujBdI7rmc9ep6XBe+xRp/v2sBxYz374N9S2VKM2pfMupeO/TPw1HVjIwvcl7Tm02hVv5E8WCDUfNMccJ+M8mr4cIc1//8qjvW/xkTq07JtW59vL3q0lZd3lG0U2vZsau9B73XqdV6159+iHdfyPI5+blpzuECkOPFSfk85a+ZPBS3P6PpnnmuEA0e+HkyG7ZZ0KgltjusZKc4TlcdS5hLoGQ+rRZ2lcxjdtqO4t4A6eBkdU6wl+9iG5xOgymx5vPOgreBvL9byMfcQlvreY35L+VsD3zPSu+aH3fYfCLiyqbwSlvpa9vcetzXe+/qrwD7nd8f6qhPWc/fmXwKW8/9QwHq+veXGnnlUbjK/vWXsK/925EsBTx4N67l/uYD29yK1TxbweLcUsub0+roT1mNZ6zp6LjRI7feCmiuOmz/OmreG0e25sTGCi6+5ZKA8t5fAMkJ2v1Oqz0UA/g/XS1D5qXKs7ZiB1BZLRetnj47xu7HRm9sJtKjPZ8GySz9+dLtu+Mge93yGfkvH9dbHUw5XFnx+uON4n0NLu2Q879mUdoK/vXKC24F9uHJqGS0zoVjqtd/X9l4TlOzXIxP2yJY/PiY87UDP87FcV+o6R695j/ZbCjVzp2NKmXc7EtExbWz0pNc9j/P0fA73kVbXb3t/bewzPeIFlhjgrcrdF7g2G12vjVyeILj1Xkaf1z5wdeP/g2uL0dcHgu95+BzUPksbY/iY+P8x+r3Rl8cbVXzn4AWBZ3+pHA+RY/ag9ryyeV9Ayi+19/vMuXPrl4zUPlqeVvXJaM/R9x11X404Fnc/S9e98Eky74Nly2NZzm1jWUSf9292cOV+48RSV2+ZGxtepP6qJc9joUy4rucYYnQswX2g5TxdPY/FHXMJnCX+R5HO3ZNnaYyeP847l1x2fajfXv7aYIlcS+5+8JbPMeJcpWew7D/6XeCBawMuz+j61p4XdZ3/murup+w5Ky31OTvx96P3vtU4B5aF7HOGFJkIt54jqxwPUL5FjYe3tKUt7U+yzDuUNb/Ovs5rlDVfiOdYW9rSlurSOYKeyfIO6D3PGfWby0tBtSnmO8N2K5bjSX3z0fpxitHzz/REi73iidsC49tkz0UgzbHT4lhePAm3G1x3kch/kfntTbfAEpOdtPh8rfgWcTgdnc/CM8/F6PkyPp1idaHKKolbv6UtRdOVJKjndxRZ54QZXZfM5DkWXNeqbTfa8eMOaz4Lo30v94GbAlSe0fVdIr395Ef76mfwN4KLGUvF5Lb042+CJUYrR3omlga8D3vWX+tzaHla1u1uRRvuy/OV8UzWcmcjxNy34Z4bmM+SxwK1P3csattoSn8Q/t7IoZePqpUTO/BvS35qfQ+y4sdZjkW9h6U4dFxde7bP0rBci2c7tHyXF0SvfsIdY17pnS7lH9m3gO0w+ru3dsp1fLbx/zP6HUFhqW/P88oqT7s/nxnzWJjzZvbLnoFl5N4q5Yy+tzxk920vT3VtkFWP0fYqGz7+o6DlaVEf6nfGOVrOd8N3bbOOVXy0R5/zmvlJYHTdNmI8F+Dye8vZWB5SX82T5zgD24JrlzW1Weljb2lLW9rSlra0pS3tQ6LspLW8mp01zO8tJ4vex1sipf96BSxbH6uG/wfygrrR</Data>
- </DataArray>
- </GIFTI>
|