tpl-fsaverage_hemi-L_den-164k_atlas-Destrieux2005_dseg.label.gii 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Tue Mar 12 16:03:36 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
  20. <Label Key="1" Red="0.196078" Green="0.196078" Blue="0.196078" Alpha="1"><![CDATA[Corpus_callosum]]></Label>
  21. <Label Key="2" Red="0.705882" Green="0.0784314" Blue="0.117647" Alpha="1"><![CDATA[G_and_S_Insula_ONLY_AVERAGE]]></Label>
  22. <Label Key="3" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingulate-Isthmus]]></Label>
  23. <Label Key="4" Red="0.0980392" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_cingulate-Main_part]]></Label>
  24. <Label Key="5" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
  25. <Label Key="6" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_frontal_inf-Opercular_part]]></Label>
  26. <Label Key="7" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_frontal_inf-Orbital_part]]></Label>
  27. <Label Key="8" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_inf-Triangular_part]]></Label>
  28. <Label Key="9" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_frontal_middle]]></Label>
  29. <Label Key="10" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_superior]]></Label>
  30. <Label Key="11" Red="0.54902" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontomarginal]]></Label>
  31. <Label Key="12" Red="0.0823529" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_insular_long]]></Label>
  32. <Label Key="13" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
  33. <Label Key="14" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inferior]]></Label>
  34. <Label Key="15" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
  35. <Label Key="16" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_superior]]></Label>
  36. <Label Key="17" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_lat-Or_fusiform]]></Label>
  37. <Label Key="18" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_med-Lingual_part]]></Label>
  38. <Label Key="19" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_occipit-temp_med-Parahippocampal_part]]></Label>
  39. <Label Key="20" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
  40. <Label Key="21" Red="0.235294" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_paracentral]]></Label>
  41. <Label Key="22" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_inferior-Angular_part]]></Label>
  42. <Label Key="23" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_parietal_inferior-Supramarginal_part]]></Label>
  43. <Label Key="24" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_superior]]></Label>
  44. <Label Key="25" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
  45. <Label Key="26" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
  46. <Label Key="27" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
  47. <Label Key="28" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
  48. <Label Key="29" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
  49. <Label Key="30" Red="0.235294" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_subcentral]]></Label>
  50. <Label Key="31" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inferior]]></Label>
  51. <Label Key="32" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
  52. <Label Key="33" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_temp_transv_and_interm_S]]></Label>
  53. <Label Key="34" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral_aspect]]></Label>
  54. <Label Key="35" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Planum_polare]]></Label>
  55. <Label Key="36" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Planum_tempolare]]></Label>
  56. <Label Key="37" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transverse_frontopolar]]></Label>
  57. <Label Key="38" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_horizontal]]></Label>
  58. <Label Key="39" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_vertical]]></Label>
  59. <Label Key="40" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fissure-post_sgt]]></Label>
  60. <Label Key="41" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
  61. <Label Key="42" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
  62. <Label Key="43" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
  63. <Label Key="44" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
  64. <Label Key="45" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
  65. <Label Key="46" Red="0.0823529" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_central_insula]]></Label>
  66. <Label Key="47" Red="0.717647" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_cingulate-Main_part_and_Intracingulate]]></Label>
  67. <Label Key="48" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingulate-Marginalis_part]]></Label>
  68. <Label Key="49" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_anterior]]></Label>
  69. <Label Key="50" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inferior]]></Label>
  70. <Label Key="51" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_superior]]></Label>
  71. <Label Key="52" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_ant]]></Label>
  72. <Label Key="53" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_post]]></Label>
  73. <Label Key="54" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_frontal_inferior]]></Label>
  74. <Label Key="55" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_middle]]></Label>
  75. <Label Key="56" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_superior]]></Label>
  76. <Label Key="57" Red="0.0823529" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_frontomarginal]]></Label>
  77. <Label Key="58" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_intermedius_primus-Jensen]]></Label>
  78. <Label Key="59" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intraparietal-and_Parietal_transverse]]></Label>
  79. <Label Key="60" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_anterior]]></Label>
  80. <Label Key="61" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_occipital_middle_and_Lunatus]]></Label>
  81. <Label Key="62" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_occipital_superior_and_transversalis]]></Label>
  82. <Label Key="63" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_occipito-temporal_lateral]]></Label>
  83. <Label Key="64" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_occipito-temporal_medial_and_S_Lingual]]></Label>
  84. <Label Key="65" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_shapped]]></Label>
  85. <Label Key="66" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
  86. <Label Key="67" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_medial-Or_olfactory]]></Label>
  87. <Label Key="68" Red="0.0823529" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[S_paracentral]]></Label>
  88. <Label Key="69" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
  89. <Label Key="70" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
  90. <Label Key="71" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
  91. <Label Key="72" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-Inferior-part]]></Label>
  92. <Label Key="73" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-Superior-part]]></Label>
  93. <Label Key="74" Red="0.239216" Green="0.705882" Blue="0.235294" Alpha="1"><![CDATA[S_subcentral_ant]]></Label>
  94. <Label Key="75" Red="0.239216" Green="0.705882" Blue="0.980392" Alpha="1"><![CDATA[S_subcentral_post]]></Label>
  95. <Label Key="76" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
  96. <Label Key="77" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
  97. <Label Key="78" Red="0.0823529" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_supracingulate]]></Label>
  98. <Label Key="79" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inferior]]></Label>
  99. <Label Key="80" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_superior]]></Label>
  100. <Label Key="81" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
  101. </LabelTable>
  102. <DataArray Intent="NIFTI_INTENT_LABEL"
  103. DataType="NIFTI_TYPE_INT32"
  104. ArrayIndexingOrder="RowMajorOrder"
  105. Dimensionality="1"
  106. Dim0="163842"
  107. Encoding="GZipBase64Binary"
  108. Endian="LittleEndian"
  109. ExternalFileName=""
  110. ExternalFileOffset="">
  111. <MetaData>
  112. <MD>
  113. <Name><![CDATA[Name]]></Name>
  114. <Value><![CDATA[node label]]></Value>
  115. </MD>
  116. </MetaData>
  117. <Data>eJztnXmzFTXTwKdKFC4KXBcUweWIInJdQHEBcbn6uIFQ4Pf/Mi9T7+miabrTSzrJnHPnj1/lnJlMkslsSW+5PE3TpafcfMoPT/ngKe885eenfPGUG0/5+ilPnnL8lMtP+f4pB095d5t3Tu895exTbm3Tuby/nvLWllee8tlTvnnK1W15m6f88pQ/t3Wd2tb3+TZ9/JTXn/LGU77c1n1/+xt4d7t9/n1nWzcwn8+1bVvnNt/e8go6z7e3bXlnew7z/ytPOdz+n38/Quczp+9t2zfz1VM+fspr6Jzm9Gjb7vNPeWnLF9u2/rPlYNvmv7f1/4368t72uvyN+vPilrNoG/TZqe3/09v+/m3bzvlcz2zP+79t38/X4Ny2zs+22y485adt259s67+wBa7Py9t+ubXtE6ib8uaWJ9tr+e32Wn6IrufxFjjmMgFfY9h2n7m+wMH2mr6Cru8H2+v5I7m+lwhXtn0HvI/adW57beEZAC5sr/GFbd8A9Ppi4FrDdf6S8De65u+ivHAPAHNeuBcubcul9z6+P24y2+cU7pM5nZ+TV5/ycMv3236EZ31Of5/+//6a76OPttxmeAfxGQH34dvk/9Xp2b0P1wqA+xA43PLLdt+c3kLAc3tlC74//yKcQv3w1sTf0/DOmtPPGX7aMt/jcK9j5nvjjS3fbXkdget6Y5seT///HM0pfjbub6/3u9Pz9xH+/+42H36e7my30ecImK/z3S3w3sTANcTvUbjO/25TfD3xc4ev6ZXtNYTnD96zmFPo2gD/24Kfz/ld9vE2hd8bhiPE+S1QBryb35ief35nvkcp9MMP04vvbfxcYz6YXnzf3EP58W/8bF5kuDI9e97hmknP/V/T8/cUvAco8/M8v9vwu+DVbTr39fwNebjtg/l6X9/2xZnt7/k++HRbxtUtn0z//274hvDV9Oz98MkWeEfAfyhjHn/A9+en6dl39Qn5Te+tOYV3ws9b4Ps1py8zwH0BfTL31SMC9x7hOLXti9J38Xh69n2E87m6TeHd8e2W89vz/3V69i75dcu8//Xp+XcLcLzl9en576zULvr9lYBvLXx376DfHzDM1wR/D7jvL4w/Ady2c1vo9xffH/T7C0S+v/Q55r6/+Pm+OJW/vwD3vn0LQY/5HvE7YX5ePpqefxdbv7/4mwu/ryLw8wR5APz9/YWBfn+BP6cXnxH6/cV9wd2jMG+Y3+/c93cz/f+zMaePpxe/wfgeeZ2Bfn/xMzRDv78U+ObSe+rLwj7uG425I9TF3Ut0XHx3m87/r22Bb7wEvodeIb9hTP3v9OIzjudRMN7GcGMADHzX6DcSoGMDOk4AbpL/M+8hpPsKeA2lH2/30+/NZtLHFRg6xgDgHsP3FR13fD/J84nvpxffbZDi8UkJel/SsQsdX85w4xkKvDfpHAbmNvcmvj34Hv4DAeOfyxM/LsLjI3ov3ZuevZ+597S0XQO/w7j3GX3/e4A5PIzJKPOz/eo2fW96NlaD8Rowl/VwevZc4PvrFQb8zTlTYG7fp1vm3zBuw/NCPP67jVKYT+NnbQbGhrdRPvotAz6Znh8/ct+6Twj/Tc+PMfH4AZ5tmMM9qWAuG9979F2Gx6l0fou/pRcQeBwLcOPYQ/L7EG2bU3hPgeziZwS+/24x4HcuHRtj/pyeffPpd5/jL5KW8uH54FzHfN/D3KU0diiNe+nYHID5PmWz5ePp2ZgJj0MeT8/GIrDtw22ZkP40PZvXPEbAuJ4bv/zKgOcJAPeNwRxNz49vvtumdLyjjZFqOJ6ezYMALOfj5LwcVF6Ix0jzt5AbF2F5IU0fTM/GNFSOiOczeIyDxzawjxvLYFkjlTcC87t6fm9z8sdzCO6+5MYhXzBw443SmBC+jdL4oQScsyQf0cYAIAeB8rhvPpZ/lr7zklxUmp9x2/F7Br7F87ga5GXw3YVvLshR8XhO+86CfBV/S+HbqcF9K6V54GfbOkCW7f3G0W8aN67H37D5uD8ZDgvAd1D7HlGk7w6V+/5FtmM5MKT/E8qiXGWAbwQ3X+XkxgD+JlA5Mjefhff5/Mx/hzieXnyXc21/aeK/gccTP/+l82AqaynNH+j8V8qLt8F74P704jufzpcx0D5N7i0xnwvoRrBcHDPng2eZzs3odvzswTP7wfTic4zl6pgPphefae75hOcP/6ZzcGkcyj2n87MI73L8bGKZT+l5nOGePTpXp3J+oPTcURkz5mPCxsH8XB0J4Pk990zRuT5+RudrCPfvPN74Z+Ln/XTuz+2nMgAYy2Dme5+7l+B7S7fTZ5H7TmPdxpfoN6DJB/CcSJJNcPMmqjeB//RbjX/DOAHu05L8APLh+5Ybx1nGGtaxSAkqC6dzJvpdK8kUqJxM4ustmgwC64l+I7/hOCqTeIjSmXmci+UPnFwC9E0wVqJjpusIeH+CbALrpkA/ReXdMM66Oj0vs/hselEuKIFlF+dQWhqPafILTid2VdhG9SEwt4QUzzM3kzyu2xBKY0Dp+QR+Qb/nvPB9wfs1eQenv/tiel6XB/9B7oFlI1gewun7OKgshAIyZ/ye4OQg9JvGjVEt8pFa/kJ9BM/BvJ3KSuAbqX1z6RiR49vpef1m6T7jxs2wrzQGxjKP4+n/7xv4Jv80Pf+NnmUlrwtlYXkKjJHhN5WtYH2rJmcpcewg+37grtdcj0f/K2HR/8549L9fI6j+d762Xv0vN9eA/CU5haT/fXcao/+l8whp7lCyvwK9nab/hdSj/6VyYDzX5mx7LPpfsPOR9L8AN3/uof+NgOe03D4Oi/4XyzkP0D46V8D/6X1Ewc811QPjOWRE/wtwY4nSvJKT5eHxrlX/+5qANkay6H/ne12aE0r6X8Arp8Vk6X/h3oR2WvS/JRmvhKT/BTT9L5YJ99L/SjIM6TtQAvKfnp634+b0vwDof+eU0//i5yFT/4sB3SqVWWP9L54ffbXlNZSem3wybc/8Cet/IeX0v1F9L01L8yJO71uCzoM0/a/GEVOuR/9b0v2C/hdjmZ9gWbwE94xF9b6WMTGdX1v1v1jnS7dB2T9NL87LQf/7eOLHL1g/jG1Ba/W/Eq31vxSqz6VjLar3LemEJR0xHWdB2XQ/N16SxldnUUr3cfMj0DFr4ytJ7wzzKWl8RcdWkr0tp5vW5mWSzvr96XmdNQbrrb8m/yVdtqTXxnP8ko5b03djSmMqOr6i4yzL+MoCHV9p5WaMrzhwmyzjLE3/HpV7W8ZMpeOoDqA076Y6fdD3Yf3ezEMG2iaqm8E6fzq+grk8N76i7aL2ABSLbUDEZkCzH5BsCsCuIANOPugZX3FcmF70PeP0niVbhV+mst0ClmtT2UhpfKVRM74qQe1ZwRYC63soNWMA7rpS24mS3YTFpmIz8bJji32Fxe6CG2dhG4zXp+ftMABubGUZX811vYTqkmS5HFb5LiffujO9aFsHKSdTLdl8eJDkERG7Egw+F60vPG3FdieSLYqH6LfTCoxt7grgsSu1e+G+kZyMESPZLOB9pTwluTfY0gClbx58jzV7G2p7g2WfgPad1L5v8/gdy0yxHQ7OA7J6XJfl+2f5Hj4hdc5jOvi+XELp4aTL/vB3kNPzWr5xl4z5MJI8DrZRGwgP2BaJkyeX5j8aJbsCKpfW7Ju89k4lubbGPB8r2UhRubgkH6e2VNp3kJOjS3DyD4u8XdpXssP6nin7/lSea0rl0fehdY6KKckhMNQmTLITo3D5aOr5fnP7pfmuVN4HTLm4fCpTuUz+W+zWPOB3sjZX1+b0XJkWSnVKeebrJ82zuW2gn4H/Jds6ix+fF+tcCsdQ8AB2lF608Vft8T2Zr7tHRl+S6XPzTyq7keQ9Vl0a/YZbj/Mw676orSTnI+IBjgV7SvD1pPaVd9G+kizrfyilvMfAybmo3eZZco1n5mcabDg5PWNJ70jtPWkqydXOCNskrhfg5gnzMZ8awLpQHAdFYpbZleR5nA4V26UC3H7cfovtqjTmhBR0tdJciuptQcaP7basMkbQ63L/qT8vp/+V5JYW+aVUPgZfQ+kY7dpTO12A8z3+qcCGoVbWisvhys+og6KNm7ANsXXMA3NNOie2yIhL5Vnw6PM5O2cKns9I+n+ch7MLeLlwrOQvHsEyF5Tg+kP7/t4iaSnfDLXHhrHio0Ia4dTE24FDuS3k/DVoPvgW+4yMNlAgbibuE3gOvlbw6ilm2fnH25T6nll9QLXyNbz5MVnvfg4sU+K+aZ+j9HP0n5ZDbVs0HQxnU8PZvBwzKX3vUlnTXA7Y31B/AexHQP0DfiXnI+mXpHPi4jhg34PXC3kk/wcLNTIzjSNlP/VJLvlFeP0jjqcX9Wja/kxbpiVhfVdwfejRD1rAuiBIZ5mGx3+kFH+DjvOt9k4luyZOjk/tl6gfCoDfM/Bbs0cCOfFBAcnWSNOxSnZEkoxVshG6yBzzLtr+9+SXW3nseTCcnGPeztnplGxy5n6lPjXAXOY8t/to0vWNFlsabd7J6d+4bdQWJmL3ws0vwI6lNKfx2KuUxqua/QnY9FJ7E8u7TxqXaGymZ3EjZ6xjE+67Kdl1aN8di3+gxU6Dgm0zMuwxOJ0KpPeZ9mnHe+0iorLr+XkHewaQm87brqGU2jKU3skSkj8eTjk7BHhXYLsCGl+Tgt8Lkt8VtRGWbAa09wbVzZd0/7hcrw4f9Pic7F7T0XOybMt7Q9O5gyzUolu36NGj+nHcZryehDaO594bFr02l5+75zX9NB0bzNuoPs1jw1way1h82ax2ZBDbxOLvJoH11aXzuIR+W3W3ml039Z3j9KZwfb36VqxLLb0T4Dwies5e+lCqx7ox8XpMOk7hxrMe/aRXzwh4dItYdwi8h1I8xirpBjm7dzhX6ldo1fNRe3iP/u4MSsEfsaSXw2NC0NNYdG7zNxq+6fAtmOeB2H9Rs9vidGcwn/TY4Xv0XxE913/MNtxfnN5K01VtppgsMsLcVukd5NEdlcZBXp2PRb9T0slQ3Y3m6/ny9KIOB/4fKW0r6Vy4+V9pLhjVmzyaXowbkaUHsfqZesqB7wEet86/aVxiqz7CEu9O403yW4L6tVr1ApwuQJpX47gcJdk+lmlDjGTwkwXdOIyD6fycyuhBPm+Zw0tyds3HVpOrR2ToWE5+jNDkAlGZQ0+Op7JvygyMtS0+KdlyDKsPyH0DnrGnZpt7MMmyCJwH/nN+EBFfYyyHoN/AknzB+i212GBiu48rKKW/Ac94Go9tNbt9GO+dM+AZr2j2EHjub5nvS/qFDN/nEnSO5pm/Zz/DeN6szZ9L8oCILMLyvMM8nLYddCkWX2sa3+YScw0ybJM982fOzpba3EZ0QtxxeJ9k88rNj2fZ7t2Jl/WW7GCldlF52SvktzbPlXy/MaenZ2tu4vn/f4TSXLbGN9yj57Jg9SHngHOV5p895pcW33OPXB180Tm4fZp/Op4ncvNDC3M9MK+lc0brfHAG5nOSnJ/O+yL6ROscjcN6DBdriHvfZPjEl9DsivF8Tpub1fjUc+sVUJunzSTbe3n97Ut+99J8i66DQDkWyJpDSespROxygKgdDp2f4H0whrs/8WO7qP99jT65RmfjLQO+/7RfLPNBj54b6pPGzJTS/JIbx0lzT6tdTRbzub2FUlijjjKPvX6YXowjQMdnWqwBzUfW4kMr2QdxcOOS0jgJxyJoFZcAg+fu+LdnLOYZE1G5AI4nwOX9kRxTskmQxlLe8RUG2mIZQ8F4SLN3oFhsqEr2D6WxEB43aXYUWowfbozD4cnL+RhKa7l4bDRKlPzYqM2G5gunxVOAmEQbB5IcnePx9OLYCX7j8Y4mO7LKlUoxGDxjnpJs6qXpRfnVG5MsJ8e++TMPyG8sv6qJ1YCxlHMg/PbUo31fNLDMV5Mdz3i+HZJcyzvH18ZcWO5nlb1x27k6OVk2rofWWZKBt4wLQeXb3PfOav+k5SnV7YErG8tapfz30HUqyfdKcj9sx0TzwzdVigWRGWfCEntC+75jrPcJ3QbvgIjc1yv/tZTDldvSZsuCdn95xhgwDrox8bIjyl/kN2DRTZVk4Vi2LtnGcuM0SSafgeZ7qcXEsMbMoPmoXRs9lsbNeLVQh9RWS7wMTm8gbT87PR8vGfsbYT2tZD/nta/z2N1RvQVnk4d/Qz7JRo9ye7ufm/fO2zn7PWmePO/j7jtJZs9B9Sf/KfklG0GYN5fmFdh+UIrllgHVU1N7QwveeB1WLLE6anVIYKso2TlSO1DuOltif1hk8JJeB8CydKrT4vLQtQIeTy/GAcnSdW0qyNa7Re04rWAZjZZ3rh9kSfg3J5uiZWfGEAFKsUQw3Lyciy9CY4xgm1Npfi/ts9i6Hgq/PVhlIoeGPIDUt1ljJmlshqHziZKOVYLKFOl+ToZX2i6Vi21fqd4WM1+nWnlfC2ptgqP1cP8h7gnc11emF58tKeYJ/o5ztsdfT3y7PkYplXX+b3pxPAy/M/oEdJ/SWjkUelyNjrXX9/LxVI6fAuMG6rtM92t1ZOjZrfFFoA+57xIXRwVsuB8z+ym/bvNTHTw+z+h5PZ7KNt+c7l/ah+3IoV/gN1fOt2gf/m2NzULtHSL25jX26RrHlXCxW6x5Rn9DRhF9D9L3odX2oaRvkNatonM4Ts4pyeak+X1k/d8ZLP+nthwl+2AsW6T77kzPbPU5GSSVZwNY1kTHiNRWFID4JACOL0DjCXDzZdyH72yvD/7O4PkL/c7RuCElHTcd+2k6ZM2GDss5POv/Avge0ey7uHcavk/uM0Rtnu5Psh0RV8+MJvvGzyRnowNQXeJsK0JtUSSfEZx3htp14JgT1MajFF+Cm3eXdCilOdacavEgZpkZyM6ojG5GG+tpunVO/y29rzidshZ/AeB0M17/C0lnS78BWBbDvcujvhT4Pp11azRuAW5DSSdH20d1VZJ+y6Nf0uKRSN8Bi/4H2/pLfv1ASRdBnwdNf2D1wz89vbj+LzA/S5wfPZZFf8VwbuJl/bWyYZAHU5+JzPV/KZoc0WL/z8n4NH9xaosmwZWN7xVJ1sTJkChef22rX3ZkzFAzhuZk+hgqJ7GA/Zolmf7MBqWcjX3JN9njh3xcoKUfMVefZr9Ox+rSeKpkpy3589L93HjJOr6C7XdIOvMA4fXJ5exmufHVO9OL4yuvfYk0L+OgemwK1S3S/9r7dX5PgUyekzF5/GFrfGAzxleWe5bOQzXf1UwfVdwmq/3T30Lf1Nr/WMZJUUr2KTPU34DGP5J8Qy12n9yc/gxJaXs0X8+Wvpxe/0wgS7ZeO76y+ANw8o2ST8DML5M8vrLGUKU6Pgs146sS3PhKs5GqGQNodhS7sP5vKYYLrP9rjUduGV/RsZvHh7DGZxBzZ3rRFy3LJ5CO2Wr8D0vH4fOx+PpZADkw9A/9Dpb6tETNd04Dj284Pz08zrX65NFyPXxPUormd4fj3dT42XE+czQer7QGsNef7kcC+Mk9If9LY/7o90/6Dlpt0znwd5DaQmmy3Bo0eRxnY2OlZANcOxfWbDpLNqOj1/+1oun7S+v/vsTg1ZNjtPmglZIfmWWuafUP8/qLlfSzHPAu4fyrSnNJ+i7S5qna99vjtx8ZF3AylctTOz8v+k6GuXrJx600p5fKxVBfLItMgMs3X0+Yg1vGEV6fKaseJ+qDhWNTY6LXEuR4XrR+qz2+N5qsHn8zvXNSTfbjkQ1RHXArsA7M4utkAY7F43Dsx8T5P5VkWSVffM/6vxQaT0D6Tnp9kzjfITo3KFHSW0q+SeCfxPklAZx/EkD1oZqfCSfD4+DGg3huIfkaAVE/ImoDUVr/l8LZJdf4CX2CUo4s+aVUPucHJPkYWfyDpPV/OV30iPV/tflAllwXKI2ZaqD+PG+jVIMrq+Sro8WAp6ln/V/wm5B8aKgvjOQn47EdiPjhzHjmhJTo+r9AKR8nI8DjQs2mIQPwoWkl569BG9dZbTQi9UrjQfCDwdcK94fkA8P5oFvagmXoXLyiWiy22N78mKz38YbBsv5vyR4X4GxdSnoYy9q/2BcFw9kK0PV/oW78XT1PUs5HBJ+TV3+krTnwemGfxz+nZBdklZVZOSJpSSeW6T8i6dEseVq+T0cR8YEDPPrB1mA90p2pbH9FbbHw/zvkvzXeU8T+CuOxv9Kw2l9J9wS1t9JiZlDAzwaD360e+yuOAyOa/ZVXP5xlf+WxxdLka1b5NpUj75v9VelYzu7Kan/1uxHaHk12sAT7K0pJv/tkKuuCNRlGlv0VRbO/isbTGGl/hWWkXvsr7TmpGSvAWF4a29fEit8IeMf/3jjwkm+fFa3PasasNTZXGjU2VyX7q6xyqZ73vtIX0bJr+lCipT4NxjZgX3WXpAcktdhe4XJr+YH8175lWI9jzSf5Pvw7yeuhgw0WB3xT8bi99L2j9lcSHvur2u+gR299T9gmMdr+KmKHpcVcrPkOenVh1BYL4orTb+ucUp0Kp2dpZX9ltbmyrjXfwv6Ko5f9VSbS3EvbT+ew2dC58Ej7K8u8O9P+imKdS3uw2lhF0MYOfyhcJL85+6vWsbGj9lfwrYL/EdurfbS/grmkNKfkvp3WfJoMyCITagnXphb2V1yMBWqHNYPHH1m2V5Z1JwF6/bTvpdcOS4oL4bW54mywSv8x1K7Kan+F7XQ4auyvuPkMHhfOcnaIaSGNG6UxJba3em16Pj6GNvc6V9jntb/y0Nv+CsC+ph7brSz7K7p/M+m6lKUx90fpu5tpl6XNefE1eJukQCRWssXuSrO/0mynLBxOz/sQW2O3aPvw8ZDieSDtCw/aN0iTqXtl7T3ssCzXmKNGxqDBjdFa1sfVa5HD4GsljXmo7VVUT5Fpe6VRa3s1o8UL6m1/ZdXPfDjJdkw0dtHnQj6uP6TvJthVlXRBMyUbqRr9kcUGa9fsr2riPB0LeSzHtdS17SJaf5Xg5GEe7hfwyOEydX2XSRqVC3qI6get/cnZL7WS93j8eA+mF23hDpj2HRC4MqjdHM3DHQv2dbcnmz2dVwYRtdvj9IhYn6jpBMHez6or1PSDHj8UTT9YKxPn2gf7pDH6JUOeK0yelrLBWV4G8jNubbUbU9lGssS5hrSc22v6wQsoxbo/i+7QowP04nnXe2M20HffCO4w6Sj9YOa3vgVWu1x4d2XpSr32tyPIGmNwukPpeoBeD/dFK92h5zsW1Q9m6hKXwE2Sgs4Q2+DU6t9q26fVkVEvHCfJqKR4hh6dYSkeGtjlUfs8y/qxXByG0rjHqi8s2c2UyNAPYtv6Myit4TQpl+oAS7phGk9ViqvqRdIPLh2PfrCGzyafTjCL/0gKvznmsTPVA+4TJfl0xNejpU7Qi6YLxPpF7O8CXCAp3RfVHVn0iZx+D1OKNxzhCJXLAflK/XirIaCvi9ojPyK/KZYy8HWi/0frB2vILp/TFcIYi8a14sZamp9Thr/TaDSfugjwzga9YI3PVm8k/aA3noIW31vjQyYdQVReZtH/YdnddwxYL8ftnzl2UqMbbK0fnOWXJV0+7ruILQCHt/8oNTqxVnpFCa4cThaKj9HkppTevgpLAutVLyf2RYv+adk2jlnOYr0ns7HIsVvcD1JfwLOSLQuNvBNKaHVI15RyFuUdLYtdMtz7FGLKgv9xFM5mAGSi+HdLzjKpBJZTer9BB1NZ7hkpz1P+90yemro0OVqNjPHBVLYNkY77gKQ1cLLrUt6WslDNVqVkw1Irf43IYFvKJDW5HrXHoVjroP+1coGI73+NDLS33FTqU2tfazJOrKst5ePklLU2ToBXPnpvKstHrbGGovLLHnBy0RqZKyc79cgOvXLHm5PNb8GKpX21dZR8QsEvFKcSVKZxY3pef/z+9Lw9HJd/CURj1OP4G/Q3pNgHsxTbw1sfrE2orb/kAcrbNET6Nraq77FhP4bLg2WdRwulJtZKaR2slnLRl1CK47pk2XZG48Z4fVvwWk4We1FIH2wp2YtKx7bAa5cjYbGVjZ4HN2eU9mvnitPsPmg1F/cAcqxSHsmHg9vnQfLf0OaHYFsamVtm2LTW1us9doTcPFpexI452u+4DK2fLD44Wj/Q7VI/1cTv9pA155R8blqWz9VH67xH9ml47qVau/vMsr19NJqs876H0pp6YZ/0/ozajGfYm0txzzBcvZBKa0ha1peUsK57GfGH+DJ4XA+s/ZMlt6J+IldIqmHNl/UOx+MyPC68szB66B5btj16fiP6Yd+wvLdLfj6avKImLo5Vxpsdd8dif1uSbbeCuyatkPzPPDJ5TfZeqrv1+Y0Ar99zmvkv+T15icTN1HzsImV67MRfVaB5tLZh2xapPKkd1vPWfBJLaPqkkn6phofCNor1WNh+FqXwG9/7NL4DF+sBoPFGaNwRLHt8BaUWNFmpN75JNteZNEuWeoapz3IMR2nfGVSXlufMVF7f2wK2/8Hl3kapBXzspwlwdXDbT0/Px8Odf2vrpNI14LJ9VCQ/S+x/ywH7rqJtUh10H+eXK/nrcnjsorz6au5a0ti/oLf+ZvLrp5fKVyjFMY3PMf3BbaP7rdwmqYfatex3BUtsZ24fzdOSz5j/meBz47Z5YkxL0Hxafky0PZ46Mv0SLyTB+Qhqx+DvGT2uFNOb4zHiJ5LSfZsCLe1ne6CdU+ncvTyZni9/H/sT45E1Z+malqL34uxns8p+G6XQf1n20Rnn2ZOs9zHHz0zagtme+IvpmW0xtR37k+zj8khY4nTgeB2UqJ2ctTxunzfOSCn+COVQgNsvldELrq+OCC8L2y3gc40cH6H2OWopf75l2K/lsUDl/LcQp4Q8ErcUJF0zl4+mkh9FDVdIyu3zYu2ryDHcsfQcLLp9mg/KvYJSDs+7EJOp79sHJD1li7Jb1LEvaHrjUr6S3T1+hrxjFYss2cLcbipr8+i8bkzP1pqh5dbg9dmRdGxW3RzkGX2veeBi29DYTnRbbewcaztGc4xoKS+gsrZMNijNAORj1H+utJ6RN/6ZBr4XS/ki54bP8XFhm0R2HDH6LHL7LeV41zfycIzSGY+swetLV1qH6jy5Fpk+fKV1q7A/H/Q33raZXnx+su6dFvcclMudsxdvnLiacuj9Dumvk34P/8rkw22C398yqQaX73hLhm9mFMkHs8Z/sxao96hB2d8Z9mt5sjleKNzz1bPc15l09Fh55eSxlPkH5k2ScmTHQqQ+Lz+gVMLimynFYwKwrq8EJ2/mrqdmLwdwY0DuG2qNjYqZ+w18Iy0+xqX1kiTfYhw/k6L5Jnv9Z7i+t/iYcLIgrVzOFvX3AnOZnH2QZvM5I9ktleBialFdMzdX5XTMT1B5nM6ak39741lJ+hJaLiev5Hw7qF+HJO/TANkCljF410IGLPMs7tmOxrW2jPGisZlbxJvluM+0z3KMh6hv2vxtobFJD7b74B17jRyjvZMp83uFeydYbPWlWJDSN3Aul3u+fxTA7yPJTqYEfdaxXVLJ5sWi76NY/Lu4PJw/ifW9gXnNwHycJkOV4HT9FnnSXCfV71jm61osIAkuv/eZgLGLRjTOAY4XQvHEVqHx1CkeX29MTRwXD9w77w8D+Byz12rE74GIX3Yv/3RtPCJhHddGoOWenl7067T4S3Lxubn3pOYPqNnoRP3fPH5iJWj/UMAO/j+UWvyBJN8T7MMifSNgv+bLUpo7WPw0vHMOyUeA+mXR/WDbieltJ63pQmvshCU8uimgZL9qtb+02GJ6eNnYRu4Z5+Z/2nwwaqPWyl7Lak+jAd+J0rchOofNRJMVcrp0iz0Ap7u3zLM/FH5zdiPQRs0fB/hV2F6av+PjJB2iRQ/u0ZNhjkga1e1EZQ49sZxHafxdknlI8k+v/EKTW0TW/6Ft1Y6f50t07IfnUiX5BmUeL1/bwpVRksNLPJj+X/7wAP2Oyjcscn4q23hn0uUcXtmGVV+g+WXNXDEcF50TPER4YrpTO0sr0fGY5MugyTeiNglavGeJiCyD486kyzlq5BstKemJLGTEq43KNzQgZiKVCUXkG/Q4+kxbZFwe2UcmWTIIT33eY6x237+R39cYcLnwvpRiEz009oU1Ls4rKJXkG1TfaJFvvDU9001yWGOqUFmHRS6RRVYMiAy4ODRLkWNI+t5W8g1N7kG3l84h6oPFySt+IamFqC47Kt+I0FO+kQmWb3CyZqvfTi+kZ0jDajfQYg30Wd6wmerWN8+2647aBHNrjXvtQ6024NF7ZG4/6FJB5vTGlGNzR8myq6MyhSjcXEZax6Jka9aLy0L7atbiqNEZc3jlPR5ZUhTcPm2eypF1v2m0ngdlQJ8XTr/KQeVo3LzFgtY+mGNoMovvUWrJj/NKWMqI2lVKNlBeqFyS28/NOyxr7nJthO2edXu1uUt0fkFlqViOqo3v8f53pudtyvD2ko2ZZX6SMW+xzFe4cTiW53DbDyeffBiO4ZjP7ReUluYp3vkFlkW3BNvLSHYz3DxCst9rgRT/WrJ/gXFhKaZ0NtTmxAq1N7EcE12bdBNE0ie3APsB1nJ+sttletby9N4bnnUza/w3MVF9ite+VMIiZy3Ni2p0PtH21IyJgB8c+TLgxh5/k1TK48FSjpQnc76nHWPRb1l1X5QPDO3j2qvpyC8r+6N2yy2Qxn5RXWFU32htVy2Rc7KWg58Rr96ulI/ah9P90bXgonblX1YcW7NenXUMrNnAe58LKQ+26WlJVC6yVN33LjA/i9F4eNycJ2LfatH/QFu5d4nVjqDWL4L6HZTIrCsL7EOOfTksdg+tkOqc16+6O+lrXnG+JtraWNx5wbZSnLzSmlYa8/0n2YBgSrYicxn0OQM5AfzHcxKQM1p8YyL+Mx6uI6zzF2qHYslj4XoAi3wX1/FpBacJNP5DVLfM2Z1YbHWuTrZ1izCc7NhyHO1Tr4ypBqkOumYQ9sU6x7QZb9fyUPB1zrBZqkHy1dL8v7zU2FJZ2ojbym3nnhVr2dFnEeD82kqArQYn2/SuLYPZFOhti8bVX2rfEtqsEZVP9CC67klEH2Zpx+g1R2rWB9Hg5OJWv0xNvm7x5WzhA2o5voYMnYqVlmtb3ELprcpysKzoFEoBTqb0aCqve/CI/G7NKZTS3xJZ+uNWdrA9ifoSZ/ghjzxXCbruAL1fuPduaZ0Aibk9kn1xjZ0x2HR+PD1v48nJHG5MY2P3e2xUJVqVyxEdt5V80yNj2RKcjYRlDvE5Sjlw3lL9j51Ybbglf3yOkq/7m9Pzsai5+NSlcZ0lTvvj6UVff0+sdykWOP7N9bs1xrnXfj4rBrrlGM+1rKWnTUoUPK70HEf9FmaOK9ty3JhI7O1diB1xksn69h4byPJP4fwYWpXNQfWrBwS8fdZBl2ykQEdNt90RjrXEtfDGxOBkOBaZbkkG1MK+xzN/fn+y29hKcnpOXu8ZF5bGJnRfVjwKah9J780o+J702E9l+mZ540hE7PEyYkRcNNQNSLEg8P6/p3H2Lp5nroXtijVuw4zVhwnr6Uvn47XD/T0BOJdZN/URSuE39z/ip6TRS7dX63/E+eJY4giU5tqt9SMlP6JITINMfQqVKZfIlst6xq0tYw6MijPA3YuSfKhFrIDN9GJ8gA1CiwsQkRt54gDg+bzk71+D51q1mI+P8NGfgbFD1Kc9Y2zXqmwcX+Bdsp361Pf0mQfo+C3zupZoZWtsBc8tsA8759vO+akfCNstY0BpjhPxqfLi8Uvn/Mg5n/LScRQ8bsM+4/8ylGQGUMYHEz8mxNtL4zpurDb//7ESrk0jx3V0DHQJpRlo55OlU4/g8ae+adzmwbL+gGc9Fy9e+1QJmrfGt1rSW0b1miUiNjqZ6yRz1wTbRWB7gha6JuuYrtanWfIl9tRj/Y7V+iJz3EEpyL7x2AjygSwc/+bk5R5ZZStqfIpr4kRl+DNLfIB+S/dyC/m/B07OG/UDjvrW4u10f6s2RMfj1C8XkPxbpX2XUXq5cHxL8NiD/sfjr4xxFmy3yudbyPFblbt0NNke/t6XxocWGSG3jbbnJvnN6Uai9sBLg/qvUVr7lnK+oJIvKQBj/LdQWqLkD2r1C7X4g2LfT3yPcPeqZ0zYwr+zNP7L8NvUfDjxduyPSWUg+F7EPpdev0yAk8FT/zD4b/G35NB8Jj9DKZYf0XkibP9qkteR0/wjtTwc1HfSArazyNBFZvg71vg/1uo+I+0D/iOp5tPI3btRv8WSrlXzS3zC/N4oZfZgVBvmvpfGntp2j4yzhqgs9BeUgv+e1c8v6vOX7d8X9a+L+O5F/fUOHcdYy8fyOdrHsO3nye9rF/G5K9klaPs5OwbN70zzc+tJyabCY2+xFD84bt4m+ayN9GXz2pNYfBw53zOYf0jbM+1QOJ+zJVDyI8uyWef8vmp9wTz6E48fmNeOZ07BFgf/jtjoaGuuUn8g/F/qe+47PY/7qI30eaHtFDqm1HyZ4Bpk2i9FfbFKtPC1WpLvlNdP6lhAsr+qscfKtC1bfZ18zP0v+RVF/Y9K+qoI9w0sxQ6uFdm+VVp9lj6nWK4Vlyeik6jVsZR8xSIcFDgrbJeOi9aDj8VyPbAlezDxPmycT1sEqx9ciX/Jb2wjR+3mLHIQsFOrtXXz2LZl2rRl6VM9utaSHpfbTtvltVsboVeT9EicL2PWGiJUTzADMnn8O5MRclVqY2blgrDdYnuWaVuW6R8KdmBZ9mhzfu0bsGQsthMj7MdGj+9ajxu57xS2m8Lvb0t/cflLtmG1jLgnWtmAafyBUmojZrnmkn9zSy4VtnvItu/SbLT23YaLs285y2wD+38OLS/d1vp8avDWIdVJba8s8fBLeSzM/laSzxb+/d7E+2jBvijUhgr79Ws+/pY4AJK9PYBtrUr2UJ45q8W+CoDYAfR3pi0WBuqA3xZbQPqfi1MfiVvvsatqESehZM8E9Ki3ha1UFrU2UT0o3YecrmrE/HVXyYizYUWzicqUgZXg7hkNzm/UW0bUfqnG1ulwYWC5DdiMHZLfh6jPjia9X/F44FYnHk263Y/GI5TSsui2jPo8tkc1MssoWXFjOD8Tq20SPSYDPAeSxvTR+UDPGDhLpmSf44X7RnLfTmobRGM+t4gD1BvL2jVeOxxqx/OYsJli8bA5orZCrfHY+GTZAHFxjTM4rmAfbHhAh2Sxa3zDsA2XzW2j+0rUXBtMti1JLzsfKX+pzAMBOFbab2UJcQJ2ncsN+7FHH49ouwSVZc86GLjXcbyATDuyFsfge6PFPaf1I/est9RFae8+K1yZXp3YWaWOiK5mtB5s18HzwQOSAuCbn8GsK5JsEEvxAK+hY636qky0ftR0PJExQIsyo3X1aMusi/LK/bP1L2Ajatn3gZI/A9An4v/WY0boikr2t1JcSi52ZZbOKkOHNULn4rVB5shsi1ZXCXxdWuiMNDvp3rbVmUjXxKPvAdtpS95DlFKy7cQPUVoL1Q3R7TUx8zP0KJxOpwUl3VCrOuHeiug7/kJpBMmOLAptW6n9Ef9xq4+5JXaVFM+qtJ+TEQKanVatn8IouLi7UizeUgwnLU4vzofjNEmxmEoxmjSssYMjfE5+U9/03pTGJjhPq/ol3ZMl7+PCdklfc9SINxqVe17YpvGdMc/SdDp0DWvsGyRtl+Dyc+VrZVId4BtTTP83Q+dnnBz1waT7H0Eeq/9Rhh9TFCrP4LZFsJxX1nkeCL9pHkx2v/UkU/7VAoufdYaPuAWP7ORvZ/5SOVlktSejnNa6Nov/oKRvrK1PAx+jHfvOZLt+7zr6+QP0uyRvxOB+kfrJo8/LiEdQS6YcpsQ94XfrOjHadu14jZ6+nRnPoIXaax3tyx60vD5Z7aF5tG9Khq+hp4yI7hz8hS15ufpAnnpx4uWskg+w1+7+bKEsus7FScXbpy3l4dCmUh7L+4vLHy2Lvvu871Jt7D/fo3cUpDz0WdPKyWCEbcpBx3OL9sHS+uwk4/m+eb6THtlgVnzjkn6M5pH2t8JSR0lfZx2XeMcz2vWvLa8EjWFREweD05Fa/MYyYm6cBLiY3RIQ7yATiy8fJVJHBpHzw2s2zf/vTuV1naztlmxKtXJLdUX7KuteiOr4PWviepmfEbq2VVZ8F4jxAnEP8fsZtj2cno+NyIG/NZKMDMdj4XQXnngupXKs5dbU25pMvUxGXWfI7zOFfBSpXrrv+vRsTTKJ6wlg21xcLvyO2AXjNn66hdumgcuk/z1wZXu+swBn4yH5W2fhiWVEfwO0zI8q2qPFQ8J5SjZCml0zzYOP89ojSfcFtoPC/ylRO6h9gMbsPTfZY1GdI78xNA4wFx+4hNQGDfw8Z+hbdxVu3T4t/+g2Wyi9U0r5S30EeWh/fVbYpwF1WN+7XBmR93ekrVl11/KE/MZcaIAWN8RSBm6f1E5LjBKJxwj6n+6DtS81snxzlop27pY+6s3oPutNxB6ghV3AJZIuCc13qHX9uE9q/MjgunHbItfU4lc1mhbfKw+etVNr4WzC/yxs5/CuU1ETd5Juz1g342VU1suGcqX9PWJulmJvWuNzSmWOwnKNjhBw3FElh+T3YUKZESzPvZbn/ORfS7kHtxLL0vSkt1B9t5jjKFeUckpw9kGW4yicv20mtG3wn/PrPWUoj/YVt82KVGa0HEs/cHDniPtEunc0uPd5aR/9nra2xzgpWO1OsuqijD7/XcHTXziv9/rCsVY/yXkbfq4jY8yITksCy8upDH0+v5LdQGlN+beYumg/4no0wBdc22/xK5/53/Si/YPVLkKyoYC2aDEOdgEpTivnj19Ci/tqzWtpZ6ndIzhG0P+YnvI2Sa7egk0HQO4txaPAegVum1cv8cSYl3sWInVF+sPSXxI41nnLuOLQJx+iVMoXrePbRhyjlOKVz50vbNeQdEU4D9YLPWb2Z/LrtvxfGSAPjZnxIbNtw2C9Z+k2jY0jbw3QLq5voryO0ghSmV6486Xllp5Hrg3fVpxX6dkt5T8mZMiDM+HipGj5reW0gspdYVvPNmBgLYjW9Rwb8xwX/uNtS4J7hlrXdTzV1TN6PrWy0hM6Z5bm0SPnxta5M8a6DgPn+wxwfhqcXSBnc4J1SLgfJftxrG/D30JtHRccl4OeG459U1ojQ1r3oeSTyPmpYjkX1aNhP4h5/+8oL7ab5HwhSvacuA85G0psB0LlDlj/ocXapfoSza8R9wX33GGbak4GsJnKcxp8j3DfWVwXN6aY4wXBuiL3GUrrhpTg1i/5slDPjOYrjZ9Jug8/C/T5xTHaufsKP9fUVh3bHnHPPL6vqP0Slttz9kgl/Z2mj8a+atx9he3mX2PQZG/YRoCbu2uxHbVYiJdRyr3PAC5GgRYPxxIPi3tPUhs2SjT2Eb5Pubgm+BksxT+h9481xoMnHoGm767xTQe/5Dn9jQH7x2q+nti2QvNj1HzvgNME7CvF+cBQnxbOh4Xzf5nJ8l2gPl9YJpgh95e+oRz43afJMX9GqWZzJtmSUbjyqT1Q1AaGfve18bRVBx8ZM3jG9BROZ4DhdJ9WnZ3kfwBsEF5ZvEcedVxAGyNxvERSCa4+bX1Hy7pvdDxVyvdloWxpzGQZX5XmRw8Q2viKYh1fvTPJ9uERtG+V5LcPUN9B+l97v2r6HU22q42vSmOqmvFVKe5oaQ5wWSmXzk+j4ysO3KbS+OpvlP4t9E1tnCztvouWS+fdHNcQDwuU5uxSTGv4/XsB2h7OVx3DjZus1IypSuMr7bl+25AnY3xVoiTf4MBjqF8mfmwl+atwYyqMxVaVs0n1jK9KcOMrPOfgnpOaMRd3XTFeeyhpzfqSzjhii6GNr/C66FSPg9PI+IqO3VrId/GYi4N7x1tibUe+g1ps81JZpePw+VjXFLbUBf1B+6nUnxo13zkNPL7hYm/hseu1AqVyM8HfG+5bhsfSpW8e3U9l5v8yKdVp0DwWeTvHj0Y0mWrk+yd9B+fvzCWUejmcZJ9T63fOiyaPu2nII8HFZ8taN42Tl2GwLJrbX7LJ3ijU2JQeObDauXHfQesaSVZ7nKy1h7jxvWeu2Wrtm5L8gaM2pv47hX2e73fNmiqlcj9AKeUySWvkJJqvvWXObpnPl+Y9fzNpFM84whufHj8nLWLdS/Hmo9dzfk5KMo6o7KP2+N5osnr8zfTOSTXZj0c21AusA+Pmx5zujgPHqwWkGLhvTeUYu54YtJZ4rhL0+mnfS2usUi7GpvW7qektrXE8AWvMTaoPxXIMLtYXJ8Pj4MZ7XExHSdeqjS0lqC3EV0L/cHC+kB4dLo6RRv9zZMkvtXoo3LGaTGsG261x4DF5KW7ZhqFGj63ZubSoYyYao8iLZz5Mj62JQ+SJ85MRc0bCYzsQjRHDzf0ukFSC6w/t+4vHfKV8WmwIq21DBq3k/DVo47pWcRKs+giuXzT/+4ieAuy48Rgpu6/fRCmF5vMg2alkvPclv1/AuoY8Z+tS0sPgcr+dZF+3YwZqK0DBeqDSd5bz5cPnFPFZjPollux+NCKyMiv4Pa7pxKL2SBxRP0aLrm0X8fiIUDz6wdaAXRWWu2DdklW2CceW/FOsaPZXmJ72V/N1L+kgqL0VRfseQNw6yZ/eY3/FcWBEs7/y6oez7K88tliafM0q36bl7pv9FW0HpJzNlcf+qmRzVbK/0mQHS7C/opT0u0/I/qsotZA518Zoc96aeMGj7K/wPMZrf6U9JzVjBUlnXGt7FZ0DROyvOFqOCbk4BMdGamyuNGpsrkrfwaxyKfeVvqgpN5uW+jTNvgrGPmeF/a3tr3D75v/at8xjf2X1ffiXpCW/cnos9UvlaGF/Vfsd9OiscX0WGfpI+6uSPLaEtgZlzXfQY39Vgis7Q98iUZKlz9TEG8Pn0NL+iqOX/VUm0tyrtI+bw2ZD58Ij7K88440s+ysO75x6NNrY4Q8n1P6q1u5KI9P+KmJ7tY/2V9pckvt2WvNpMiCLTKglXJuy7K+0GAvUFovGXSjZXsFa3iWbKy5mgwa9fln2V1pcCK/NVQ34+nrsr7Cdzn9MWmN/Jc1pXpuexbeAuBbWsSOFrufqsb+KyBgl+ysLo+yvsK+p5ziP/VXJBovbl20blc1VlAJ0Lmmda2bbX5WuCTDa/ipqF2WxrzpMgLPBivaF1/7KQ0mO0Nr+ymNjN8L+qoWdlaVeixwGXydNN5GlpxhFxP6qFC+ol/1VVD+D91PbKxy7iOpjpP7wrLtcgrODonojj/5oH+2vauI81bDaXz1PTV+W5GIe7jN45HCZer5ouTXnH9UPWvWxNF8v/aDGAZMCVC+I80U4EI6fdW4Ptmj2dF4ZRI3tHo5rW7Lr+3F6USeI57I1+sGoLpBjnovVyFNL8zm8X5PhlsbxNF9L2eBsFwa+i+8z1LzTzzWk5Vxf0w/ieaFXP2jV/0XwvOu9MRsOFoBXh9FSx5T5rW8Bpx/kzuNeQl949JujdYMW/aAVTlcoXQ/Q7eG+aKU/7KEfzNQlLgFOXybZ4ET1b5ltLNWRUadHRuXVGZbs8TibvBlN9+fVBZZikVI0HZ5Ehn4Q29Zn6gdxuVQHWNINa/FUo5T0g0vGox+sIerLUAu+3tw2T9zaXYTq/Ur5vL4eLXWCViy6Q4zmGyMR1R1Z9IqcPg8jxRuuRfKXgX0XJlnPeqshLWyUHxny/InSJesHa7lB0ho4XaEU54qOtazjspYxGXpg9a2LEFmLZDSSXjAST6EU31sjo74MPDKyN1BqAcvuvmPAejlu/8yxkRqdYC/9IPZl4HTXuO+8dgAS1v6TqNGJefWHJf2XBa5cThaKj/HIUGd6+yosCdq3mb4brfqnZRsxWN5ivTezGH1f0L6AZyVbFlrzbqBk1nGW/F7hwe/RaygFJN8HC5pPcyvOTrLctQSWU3q/QRhO7llTnlQmVwdNo2hytBoZo2aj0Uq2+QpKOUr5WspCPXYq/xJGyGNbyic9Pvrc/mgdWrmAZtuTLQPtJTct8YRJo3JRrKst5ePkk7U2ToBXLor7uybWUAs5ZqY8lFJbJr2mHtmhV+6I9ZvemBI1vrI1lOLxU//QUr4bDDQmxvskXSLRGPUWsE+ltN9bZmm9pQw2DZHe3y3rLIHlsFIeLPc8Wig1sVYs62G1kIvWxHWxEinf69tC13Oy2os+IHD2ojW2plaidjkSWbayFvvZ0v6e52ydJ/cE5FjcvqjfhRWom27X5oPYvtQ7l8yya62p13vsSLm5t7yIHXO07y3t+UD4z8k1Sn3g6ZcaHyAPWXNOjnuNy7fU55VR1NxTLe9XDU8fLYGs825VL31/Utttr704d5z1eOyvQP/j7RfJcaV1JC1rS5ZoGU+N88NYEj1t+aJ+IpH35r2Jf094yoKx2J2F00P3uOTz69UH+0jtO1+TV9TExrHKebPj7tTY1Lb0l6bXozWc71mmTL3HOSwJvH7PaZRqfk+tfOGojbdlWxStzXRt5NJayfQ/Vx+2bdHKi/ZlzTXS9EmWNZ8jPBS2UazHwnb8buJ8G7n4DlKch1nuCXJhzvYDyyS98Ug0Wam3vGyuM2TJUrEP5ivb1HNMK7hz9gL2QLhcr80RPvbTSqQ6aB76DdDWR8VwcUGzkPwsvf63pTpoPnrsN0KZko7XYxfl1R/ja6jFAW6pG8/UsVvyZcc0njlnIHIMwD0rLW0CR1GK7azFU+7Vxs+YNBN6Xtw2D9x7SttfotTWaHtaMX9LIM62Fm9bg/MR1I7Bti1aHFJPnFItfum8fSPQ0n62B9o5SecdQat/dF9k45VL7xOc/WxW2dieGfovyz464zx7UvMO1vDGlY/C2Yxj2zFpuwVLjA4L3npL5bws5IFt3hgjLzPHSfUfOrD2TSu4/jwiSNst4HONHB+l5llpKX++hYjst3KKpLjceRvog08xKeWWgqRrtuTj/CiWhFefUnMs9Ee2zl/D8y7E9PR12AVq9Kwjy943qD7Ymm+mZHOP35HesYpHplwC2o5lbdH1ZL6e8vrc66sj6di8ernR91oEHNtGWismC1ovrX9JHG9pKS+gsrYWbJIA2RjnQ9dLHonvzVK+6LnVkB1HjD6L3H5LOd71jSIcb/HIGrw+dJJcF/bha5HpuyetITXXo8U+20z2eywSG69F/DrpfL1448RZypPKzbzfpTZlPicz2T6aHjRfzIj/Zi1H0zPf4OyycfzDyP4MjlG6ZPD936rcUvknZY25lWWzhLlHhF7xRS1gX5kfUFpLjU8o1v1ptipvoxTrHiNoMnLtftRkMdo8cNYlnJ+e2XF41wLTrvVBkPme8PhgS/E5uTZ5fFajsUk5oj7hLXy6tPuuxldIk+9F/VM0G+TfjdD2aLZjVnvFV0g6Y7F7i6A91/j9dJX81tBsHaQ6aXw5uk/T1dTYP3j0fx79kSanl/RklthiHjm4F85GN2sdgY2CRaYhyTe0703LmPPaPK2EJe56lOw40q3jWeO2Z8bRrulDiZY+s9p4FY936LHXCuVGx1SUuQ3fo/ZYvm9RtPF3aQ1nDG2TZsf3owHp2+yxP/RQsnOotQFtZX+B7XTgt9VHV/sOar6I2d9BzS/HSkt9m2Y7VqO7wP2TFScQvpOeGH1etHKy3ovcXDRKdswjjOfbmRn7LCr3qZGTaGTFV+uFNnb4owKu73vECLL4NtDfc+qJ70LTErXxYnpTM5fUqJUHtaLUJhrrgsa80GJJlLirkBVHwbvmszRmahmPYJRvPxfTxAL1Mcd+kNTn/JvJ7hc+o82BsE0j5/P8GvMfwx1zzlBviWy/YEy2/NLqz6rFFeDyzNs0f9SWdnst7QG535LNoEeWW4M2z/XYfUWp9S+L+IDV+lNlAL5ONX2ifYM0mbpV3t7Tp2aJfiJSDLjWvhI148WWuolR1NheaDqzGjkQ1stwZY9ey5nrD09chSw0u1cJq21qjZ1orW2lZgMJRHRTUVrq2naRmr6UbFGs3C9g1fdl6/yi5XrO+0smjegHo/1+gNB0cdn6wVlGdW16Jqs6YODa4rGZw3Z4Gg8EQDfXUj+YYdfHQeezHh1hC91grT2hFlOmlO9KRR0tZYQPEZa4oB7ONaSlTEDTD87zwKh+sKWPSUv9IPd+7ME+6AezxwXcd1779rfsi33TD0aha41wjFpjBL4luB/m/zXP1y7p/0bq6EafWwRvLHULv23Tawq4HQ8TiV6/mnjfmIh+sGRrX6MfjF7D2ljUJWr0dKOI6ge9RH0ZatF0hZjRurwWUHmx1c9jtH4wAtZzlfJF+jGqO7Kg6fOwL4uW10NLn5oaWtkpa+yifnA0nH5Qs6+qGYONlvNHsL5vI2T5bfUE6wI35H9tLJoaPeEoMuOwULDs7jsGSUd3XEGNbrC1fnDuQ/BlmPuH6q7fELZ7OGbSGmp0g630ihJ3gscBkuwUb/f4/u8b9Bpl+m606seWbcRo91bLZ2XU/SD1BX1+sqh5tkcwWg65NA4EZrml5vegodkIaHLTKNG+ABml1CceqNzTeyxNLRwE6pLQ5Gg1MkbNDqOVbBPLqW+j1JK/pSzU4u/+zvS83/u/aPs7aH8PGWxL+STI5CTbGkxUlkePlWx23pmej98l5WkpA20tI9XwXj+Qm4F+lsrGOHsgLc+hcFwUr1yUu1ZeuWgrGeWlhmVnQ/1TLbJDfAyXB7bdLBy/VLLW577BkGXz1pOSr2UtpdgcNeV614nwsGmI9h5vWXeUI8KrzLZWZMaDj1ArF31J2ZcR1yWDGt8Xq2wmYi+aZXfqpcY+Zyn2s/+glDs/z3la58V0f8acOAMs/6D/e6LNDTk7U+u8Msuu1TuPtpZB91tsflvKzWvKxjbLETvmXrL4iA7h3UnuH69vD37veY7LnHcuEa+Mgrv3etjd15Z9CaW1fdCD7L7NrpO+U6l9eIaduLWMPxAXyX+cL9P/ANun0f8zl7fbaZrBaN8LOF+pP3ra9Xliyi0BGH/d2RFa6h53td0rbYDvR8vYN5pMtlWsnRqbWmu/ZflytfQdK+GVn99k0pMGXr/nNEOtf9uS4dr8KoKzScH730Kpxc9PKudVYzmlskt28J71oz3UxCaFd0WmP6PGXF9JL4hTCpV7vkLSElo8EpqXpq25vqW0j1IjV+Y4g/DkzUQ611pqbI5w+z7tCPctwNDvBXxDWvqmUP/aFj63HDX6Xc0WqqZs7d7J0E/3xKJX52Iaf8Wc+zmC1EelPKXj6PF0LURuG6WlTeAorDGXOXq0L2qzGKWmP6Q+kvZZ36O17Wv5jueAGMIXksD+gZodixZ7NAqUvQnQ0n62B9o5RfpkX/vKS0vdXYkl6cGw/ayWl9pIl/JlknV+I8h6D3N4YuzXEI3NYLFB08qwxvn32L1Zy5TIajPHoYPa8+jB0Q5S86y0lD/fEriJ0tb1Up2wpjeQjoX/j1D6CP3HPBKw5NkFTgnbJLj9Gfr9CNFvQw8fh12ilQ5W04eOPu+lUaM7nuHs+2e459Q6FtJkYzUsIeaTN8aLpmsbfQ8tqa9qWFJbrLSUF4CMrYdsYpOE5j9XI2v0xB3bbFNaRuScHieTEUfM0gcfolTCu77RsYAlj0fW4PWhk9abwtvhd4bPHpRlXVMK8/o23UzP32OQZtwnWfcZJXK+lv4oUVu+dk7eZ6AHu+CT2RMsL8kum4uViDlufG7HC4XGhtSe09q6lhhDcmVFYtSc47iCUfFFV+rANvwHzH/wPTooQH0BYDv2reH8yTXgOFq+lp/+1vJDmrUm4CsofQX9b0FJ35xpQ6WV79GDj/ani9BSH0bjLmXGX6I2kRTJbpHm4WgpN5Lm7Nwc/gJKLbSc92S9l2vjp7TijrBNwuK/z/22+Pm3iIXs5XJhOyXbP1/rn5rYIK1p5Q96MbEvOGj52Je8dNwllNK+WP2Z2/uQjj63CDV+mBpZbXzI/Acyr1+27xkX5+v3gbzFpBKczwH2XZL8Eix5NN+XJbJPviO14DE0nnNljMml+Zy2L6KbzqKlzXm2fXgroG+jNm4WZhvxw2m8nboHyQ41g12yYWxtx6jZmkn+97Vg//5SDAAOLb5CDaP1CxG092yNLc7otQQjbAQ+LOzjyLYBamWfodHShqB2LcARtHwWd9E+oKUO6/6OgGUzVI65FHlmL5kpZnR7srDIpjX5Ir5fsp+T0f3jBZ4V+gyNfo57M1oOuTQOCDRe2zVmm5WDqbxOIK63lK9Ey76wwMk+94GWckwuTpq0v2WdHrAcE+xFSusAevDYqGgyVkseeh6lY+Z9JbloRLbJ5YFtPy4Ar1z7JMtF6bWX5GmXhG1LI/v6jZBdLhVvfGFvLGIgsn8ENfFfI2sSLp2a2IcaNDaiB2sdnC8lLid7/cEa39CW/qWtOGrI6PUFI2jPU01sgl6+bZl+by3kof+gdDReW5wa+1iNVvNOOp+m5zR6Xswh2Qxi3wgLWh2cz0WJH5jfkPayTd0VWtq5RuXX+0hvuXft+3/0fHRpcNdUeo5GP9PZSHP8v0mKt2tljD6nLHrpK/5IwLrGXuQYAL9DuPUHLzPbThJYLiRtt7Bk+SB3vHUsuBRaPsu72u6VtmTZuHIykRp5ba39rKU8Ll+kDyO+XC19xlbaXIPTDt4qbJfWxts1qA0KXSOwtE/jPZSWyLRvX8JagxwPFbh7VcpHt1meBe+7u6Vctta2pCfXt3Dy1izOLIDrBbT9ANgOSXXcJim3j3vffjrx6wR+GuQ0U1YUzb/kE4GrJOX4aAC1emPOlkyyjXsNpRbObfNLa/JhMvXU1nJK5dbo079CqbT+YJRzTpbqK+3hk8L2nuy773jv/pSg67b+J+zPqq/0Tsd5JDLXHqR4/OHpeoW16w96y9lMJ3NNvRWeqygFPPLniOw6IsdeMpJdcmmflQsovRAsQ1v/r+W6gpY82Sx9/UEvrdbAy0Y7h8MpvkbgYQIvF+quKdPSdppqHBWofQ6gnJ9R2pqWsutblWSUUaLWZ+ERSld84H78k/mvweWzHhthtP/D0vDoN29Mss51Ja+fvTrmDLj34qyb4tYKtKwfiPMtdf1BL3StwZOy9mAL3izgzb8EqDyMkwNI+5bAJpmSz9vVqW4dwtZxyuD3YwKXj+Z5PD2T/23Q/1ZxxGrOtabemmcFz6Gw7JT+x2h+che2KXc9okhtyV53bzPlxLbrHcMuux9aw51DjzUEa1iS7+W+Q9cahLQWrV5r3mMmfytGx4NcWgzJlRWJ40reLGzj9mWQ6T85gvvJ9PJPbVnPLqD1wdL6aPR9HqVFX2Q/c8BlknL7Wzz31vcKzTPSb+qApEuAxqzoybUtkWMPjNB+l/KU9gPRNnDHRvHUeYCOKZXB1YPtaOcYkw+m5+NRPhC2ZzDaB4Mj+xxbQGOWeuKaeuKhZsWm/JHBup/b1wPO9rmlrRzU0TpOaBZLiAHQknsotUD7gaYYvM+C1EapbNqOKFwdluNa2jntIpoP5/tObiC4dbalvEsB+xudY9KTxmi98tIo2X3WgvWa3H6sp4yU3yK+6NLigY5mpMzmH5T+o+TrhXeuuDKWO8K2FoyOR7c0RsuqV9pyGaVU1l56r+O5HL5f6H+6D7jE5L1UODaLS+T3JUe9XD7YNjo+rYW/UbrSh9F6jEz+2MJtK4HjZGa9t7jYnNr9Pzp2aGvw+8x7HD2+t+yw1Xhu3xn9TljpyymUUkB+Ku0vUSuzPUV+S3V46yzlG30tWjBa9j6yj0t1e9tdG7+yFKuzZdmtuCZwt7BPy/eq8Vh6nd9j8rRcUy4zPiicw/ybu+9wXu0etebD+bOfb01Wao2dydmGeONvespuRVabOX53cAal35P0DCl3dMxSjdPMf+m8uX2nE5HeyVoeLnZdhBGxRDNikdKYpFlxL3eJc+Q3ZXT7lkLLeJr7zmeF7SvjyfoOzFxQGG1XsnIyaRXPIxIXA8iyJV4CWO4t7ZP2A6PtmVtzgfk/Aq2d0r1eW2+0rFYx5pbKywqHK2kcbdML04u2oTXxf0v1Ybj7vSY2MJaD3Voxx8RcEqU203ZreUtl9OwDGje0tow1vmguWXEvRyOd0w1mf3Zf7Up/nmL+l/Do/rL1hrV6yVpGP5cru0WNPGAkT5j/T4TtHlkKjSeKKcW81Pav7D41az5hesfTBB4zlPJ+KOSBbZspL8aoF+l8tGNW+jDa33JpcUpnn9jvBgFxLDPLPF4Ao+OCrvFF2wB+428KvERSD/iZfBOlluO8db25PZ9oPtwnkbpLHO8oI/3oTxr3G3KZ+a3Vm3E+B0Gs5xUtvwWjfV2zGe2nvbIf0PdC63t29HNzUp6z0f2272D/oflbd3Gb4m3cN/viZB9rjB7zWJDeIy3q4N5d1vdai3pLeXaV7OekNCa7g9KTQMs5RC/ukFTal9FXlvI4v92sc+3tazza13tlZemAbQf9lnDb3yL7MK8y3N0xomsyYCz+8lGk8uk50O0t29QKfI9q+UrHZqH5fh+g9AD9p3lGke3rPvJcltgfa9/+vy9/S9/M2yjdF6Q1Tbh8XPpKIa+nPq7+Unt2DSkeyG2SlvZl1z/aF31pZK0BxJFVDsfofrOA36PWfEvBal97Umjpl/tjAZzHW+7oPrP0Ke3bUl9E+iDCO8I2idG+7615G6UWWrdlpR/4Oa0l03+SMvtnXiLg/dy2bA6dgF8pbfe+4O2PHnC+8RZfesu2TG45uFLYvus8mmx+4pcW0NaM83zE/Pcw+jxaQ9+5rf2UObj9o32qARx/wxuvfBfg/Mczrm+mv/pS+V9D3jPsf8+Qz8ONLfi3B8+aqFo+/D/SlpVl8U0DwA+9VbkapWO08vB6ua8peNtfc2wPSn36uaP/l4jWfosf/WblObLko1rZo8+zByX//x51eOq1HOvxZz9a2Um49bOt+bIB//6WZUP5qx99Hi8FkN4jUh7LsTV42xw5Z29fWOKHROOM9I5BginZV0T8hh4gsnygcJn/NCarza3buXS+V/DkXQot7w26n/6/v4BrSjkQ4Pb/Q/ZFy46W1/ve36X7ujcHwm+aZ0XnDklb8EOAVuUulTvB41rakf6NaFlPqzbvIqP7b5/vjdFxL0bC3Wst4x3QfDRdWl+0RGtH77ZlPkc9nsEPUMqBy6/xK5HQ7v+aWCDe5y0j5kiLPjqJjLZzHcE9Zd89Jc9JgfbFPWZb6ZgSNdfLWkc2I7+/SyQ6XtnHflzKc5rxbK7kMvre7M0u9rOl7DnNnMvfbEgpNoyHlm1s1eYSfxC4bRylY3Haq38vIm6h1MLFSjz+VVngPqttPwfoGS+idMng+fPotqzUMeJ5svhF7gO4n6+glO6PlN1rfH+FpKV8tH0j2n4PpRycbKE3Pxi5M8m63DsoPTu1jx9cU8dZ8hvTut1LpseYc5eh9/tJ4ixKrc9K7TMaZX0GVlb2j6XKeaLH3WgIjjPQsp5MSrEaInEyLGVz5dHjRvdLi3uD3iN/kf2lvvTUId2TNfFIWspae8p4e8mHR7e1B6fIbwzN5yHahkhdOC6N5T2VGYsouy+k/vHUkVHnyorE1w05jXgLpbvMbwxSPsuxEWraXHPemefQg5H3CbeeEAfkvYuwHquVa72Ho9f1roNXmdTbR9q5lY61PiMtntdduWcp/3PkGwEX/06LQ2fJ05uHlcfe3KZeRp83PgeOs8I2uh3iCtL5Hp0D/jU9H4ewBR75QNRG/xUDHt/sV1A6kpb+563aO7rPTgqtfe8PGtfBndMZxJL644xAaR/OU1OHBW9fWcuBbdcRWluuo7SU//qOUFoDTOuL28xvS7ktsd5TnwqU9rUE2o9/4200XwY15Wnng2VBdN/X2zJayqIoWrzQqwRrvl3lv4Z8FEAr03JOuLzR/cu1iQPHSo7020fo2KyYzZ81wFq2pU29Y1jXvmdL8b4hD8QGt8QIz4gbvrJSw1cM5xS4Z0M7pnRsBGt9Vr4iv619UtOWludjITL+Gh03aeVk8kkFWfWO7oMVmexxrlSHtd53SCqVC9vpPcuVab3ftXOreZaygGcLz7Hof7z9k8L+Ep42ldrQk6VdK0//rciU5E6WtXAu7Ak/JaHVU9Nn2rXwtKN1P9TyWEHLay0L9n+I8m8aUbPm1MrJZVNJZln7TkZfPZleLGtlpQWXkqCxMryxM7j8PeOzZWPpn5W2/ILSX9B/us3K6PMZCXffvp3EJSGtLdNbnvRcjnwvRe7TlbaMljXsEj8L204itD+09Sj/RHjXvPyzkhbrhrZucw0vB6DHjeizCJFzzTi/mrKWcm+MvueAwyAZZb8slGUtf6WejGfwSMhzJFBqj3TMaLj7V8pzJOyXuLCA8xuBNM5rNV46qijjfGHfzZVu3ELcROkucWqS4+J4uCUg9ZXWFg9XtmS1OYMrFWTV6z320QnkCkpxv+GUo1SeRqvz0J4BnP8USkcinc/odkXazN0D0etYi+Wel+o9Nen3kvQePjXlncOfKMVw26zUHCsBc4zRMTdXVnaFvxi4/bVljz7Pmv6Q2NVzXFnxUnpHtK6L1tmqHdpzLuV5ycEXKLUAY7r5GG2cNlr3A/SMb9GScxPv+3nOSWasQtrGVuViIs/SueBxVj5m8B5vLTeLzxmkmI9avMme8SotsTNxfqnPS/tW9o83A5SelRJvktRDtK0luPZl0vL61F7DFRvHxm14n4WRNv9LpMaHdB/ZoPQk8ZgBx/aJjOlK/ss0H01H43lWMvB8k6+itJYNSkvnCPtxOgp8j2aU0YoPt3Db9hnunpX2R8vmtvc4t2+3aPv3lWPmv4cLAzmPsOQrHZ9FVtwFrmzt/XQepfvOr9t++pXAbSvleR0BZb9uhL4rtPwbB48n33dto+TX3oP0+9bj3YvPt0d9SwZfK+3+3UWsz1RrRp1DTTk195V2TjhvzTiiVAfsx+eEj828vjXlZY+tMuo9Vhit/zxJvFFJZr1Svhbt3he0fga/nNHt7MV3CGl/Vtk1Za38P8colaD5tbxanpW21Ix1Rrd9ZF8cT3l9YC2Hyzfa7mBlZWVlZWUfeBOlko3WDbK9ZNvFlSdtW9FtuIAsO7DjSi4n80MAy/reOD6itE6JJb4rF8OAe46+ZuBsYGickBlONsL11YGBdxnmY78sXIO/GbhyMHRd+LOGY+5s23hnC1cGhut77ZgZzpa8VOYMt77y7wXmMrn1XOa1j29P5bWUI2vmcPfSfBy+v68ycLE5NRs+zv/ZEl/yFoPmV835PFn80LlrbPnefcNgsRnbMFj0xNyzbZlvc22XZFQY7jm/b+DLTuA6oX2eYyxY3hEc9DtjeUdx7+Af0O/vUfr9dt9txL+T/r4AuO/cv1N5bUYuXvCPW0preHHvDS0OMec3aIkVHIkbIb3HKafI//cYIu+N14xY7KU5uPhlFjsdzm/UovPixgX/GODyW8YplDsGuHGKBe39oo1b8DiqBBdn2zLG5OqKnmsJ7v31x5aLBbhzLeWXgP6Q+qV07aX3rydvDdE4QtZxbS1zuacRMCb6zcBdBu49qVF6B89w7w/Ld48bm58JcFrhP4aPJn0deO67i320uTWMufWMS99xoPc6nZ8QuD7CcHHTe/ofcXMgy5zIAjfmidpSl2J/cvMkS2zdwyQsbeWec27+R8mKk6fNK6PyUC1mkZWWc9gsLPJD7vmxjGk5Xzav77TFL3smso4itvfeTGW76MfT8zbD1I7TYssZtRPjbKSOA0RlDj2xnIdVrkxlAjDWl/Jb5RfacVq7LPINrQyQO3ByCI984wclv3QMlo/cYbbPcokHiPl/VL7hkfNr8v6SfMOzNlPt+nBRvYOF9xkszx4XW+hrYTveHx2nlWKyA5x8I2rTG5VvRGQZS5NvRN9tFj2RhZHyDQtcX0TkGxLQPss90EOWkSmT6NW+GW68bOEaA5T50IHWF5ycIgrVN0oyDaqTLCHJNjQscoksWsoyPEjyjZ6yjCXINyJo5xCNwc3JKrD+2SrfiOqyI/KNmrjoveQbESzyDU7WbHlf95xzWp4njkgcuShYrrGZ7P7bnMyjxre1RFS+8R2Dx+/C48MQvUe486mx5SuRaVtH5QpR6JiUG8/3sh+BeUppvmLV52acQ6Qero+j1zirT6mdHoa7B7g8Peg534jCzf85HSuFk7FxcxeNSPuykOYznjK48bhl7kBlg68Yj6NgmaS0PzpPkWy4SmTZi1r4UUEa379N8kVksK3nJd55SkRuG0Gap3B98Qv5nzXfaEXUbuZmxbFeuLjkJTuXHvMSSsn+pARnk6gdE41Bvwki6ZBbcJRIVmw1yzzFuv5Hr7grtfailrwlLDLUTJ0PteP+3tCOUjmtsPpQWaHfbE7vwn3bvbobaYwQ1S9F53vRslrgmbeVdOSXlf29xjkWXblEVH9Yq3u0tK2GqK7Tcix+jkDHlzG/nXWams14hCw78wwyZf243JbPD2eb04LofdO7vn0japvKzXkitq0WvRDX7qgdQZZvBPUBo/+XBuebYNGbWXw9otC6OPnlqwipjZ68JSJrjVl8WDz2ICXoc0aBuZA2F7HYTUa4bqAkz/US8dextJFike/Sej4Nwj2nmKhu2WqXo2GRD3GyY8txXL9GZVQZMi3MV8r198DF9aDU+GBRqL+Vtt/KaLuqaLsx3LNirSP6LAKcX5sFTrYZWZ9iY2CUTRpXv6W9I9sc0fm0kgF4oPofrCPL0pVZ2pCF9vz8TFK6L4LV3vALlH4h5LH4ZX5hzIfJ9AH11h0lU7eiYbnO0fkXJ+uJlGPRhXLyokcGPHlbA+fCta+WVnawPYnKbbJ8kUecXwmqt7Rcc8s4nKOVfTFn48nJHEZfm1J7rWSXV2L0+G9jwLtWKxCJMcdBbbo1rDbc2rqTVl/3YwPSeE+zleDs26W1/Li1/eC/Zf0prt+tdvfZ60ZJvB44JnJNo7S0QckCjys9x3G+C8eB+o8bgddtiK7t0Nq3YmXst93ro5Lpn7KrYB3lwfTMvx+nJf231fbqrLJfKi8SR6N3/A0OTS7V0xYpKjuIxN6YOcdgmd9Ex7mzfKQ0zpLGZ5nxNywcJFOyM4naFmb6tZWI2opZ7Q2j5QNRu5Zsu0mpfUu2PYq+b3raH0Xjb3jr8cbdAKK2Cb8n8dZUjsMR1Z1m6bItjNYTa0T8uJ4Ix2llXUWph6hur5WfGyUafyNT77fk+BuWvojO1XrG34i+r3vOXWc7pfmZkXzKorLUTDZOWshmI/E3LHjiZ9QSvUd6ytKi85T7Hcmed2TPW0a3hwP3F/Sj9xr3ausd5fqPpOd8Iwqe70NcjWsoxTbrOG7GAfP/gNkuEWnfCDQf1OjcgbMzzyqHguce3pgaJXmmdb5Dj8HpfA7R+cePSbwzxdZ4WtI8RRune+S590iaZd+ZZefUipr4GxLZ8Tcia830jsPRylcBx+TgYnPAPIi252OyT4q/Idm41NrARDkKkhVrwwJ3/XvG37DYQETnKbVxNzxxOKL1jx4faXj0BzXHSjqppSHpxE5C/I0MvV5PvXYUj94tU6do4V6nekboRv8IclH4XYrbge/JUXE3omTNE7Q5BIbuj+iXI0Tvpd717Rtc/IwsXU1WOZbzkOwIojYIu4TWDzOnGUbH36Bw8TdK8TgAbh7dOvaGZ07PxdLgrpFmF6I9J9H5Tqt4HBxRe5ZIrA2N6wi6/QyzvQT3fAFZsTdmsL7YE2egJuYGYJUPWeThnLzo3CSvJ2yRM0X3a3E3AK/M/xyhh82SFH+jJs6GxGi7quzzAbg1krLKvorS0fE3tGM3Ql0rNuA9rc27IvO0HkR1XNw9+zb5jfNyMTMy4mxIRGNsZMTfKNE6lgXUczj5YmnQ/BKevFrdpWOoHqXXNc6Ov5GNR4f6aAfJeMZa2sH2RJOrjG5f5nlJciWL7AhDn4GoLXFP++KlxdzIgIu/0Sr2xgxna91rDLgx0ir+Riv78Jr4G2+S1FKO5Tpb5jw0ZsbM4wC/bsvwxqmwlp9lQx+NwbHG3xgDjrnhQfMZyPIn2AXfip6AndTodmRz3BGPXUkm9x1k2cn08rdYWvt6XtdI+zz3AsDdT5F7Szufg2m8nYCGNf6LhQNjHgzXJpqHYin3TrD9lrowWPcDPhgPtkTi3rQgEksnQsTHRYrbY/FJgW3vMPsyqPFP6eWXIvmnjLLNLPUJzofbqck8pbq8/ifa8SNsgLxwdio0zhMX98kbA6qGczvAaB2jBaovsYL1KbCN8y05QqmUR6Olz0kWmWPUbJ+VXfEzyeROYXsNo+3qLYyeNy4d7fmz+mBQel7j7PhxLeLjLZnRc2LOh4X6rHjuaewbwl3L0f4qeD1YbX8WWf4nPRl9X+4SN5n0Jtov6fp7zqVG90+0zaPOi6vHamdBfUZ6+rBY4uVIMXS0WDpWP5JavxPO/0TzSdH8Uqx4/OxrGOGfosVRbeG/4vFN4dp0OoD2rHG285QMX5Qa/5WesWf3lUz/lJ58htJ94j+U/of+c/msXGAYLcs8yUTsFlvGdt4FX5QWcM9FFK587jpeIL/pfy4/ppftfI2/y2GQXyqO7YE1Pjg97oi5jhq3pn7+JlEeEbz6Vy+PUErro23Jbhu956XtJ80/pTdLa7PFX0WTZXjkHZm+Lr3j6e87ljFaT7jxI/VL6blWwb5g9cvP8v2IsJli/jAcuNzSvn2jlz1KjZ8Jtb/h1n3loD4a1uPoerLZ9PRL2TX/lDdRaoXeLy38MqMcd6an70JP7jfEWv+BAle2dkyUfYnNe5K5jFKO0dd4iffBuyjdB7BeXXtHWd9VS8HzHGSUs9R7kL67R9t0UVp+W72MbjNn7yJtXzlZaGMyKneEmL93O6L5bnI2X9J2C3crjq2FXh9puwfOXqrVGB7jsd/q0Z7aNnrpeR5Ru5XRdkwWf2RPWVyZI87Lau/oLW+0/ZaFqI+5d83Ffzue02fCthZ4bYxGELXd+ZHBclyv84m2j2K5p3bBpmsf7MVaYL2vojYmnK9VpBzJJgqT6Q8WwdLGCPdQarUBi8LZWbW2q8rg0qB6HxkY3Tcz+FnKtDX6C6WZYH8fb3zeFtT2zwi8axGV1iSKlHPDgCV+DN1uKfckEV1/OQqNLyztw/+/ml5cP8dSlzd/9DyojRUXR7k33ljKS8AzVxnd1laUbNksx3M2Wkcrw9Y897BLdl9SvGEaQ2tULC1ab+t15lvF4qaywBq9/T8oBR4Q/gngbcMS4XQXpX3ZRK4l7XvYdr9RH2n6F89xGdfLez2XiNanuwK24YgcX9Jte/OPJqpfobHDWupyRsVDa62j6lnfaBtDCxEbuHeZ/1n0iEvY+l6l9UXvCRjT4d8RPNfVc294z2NXGa37sYD1iqPbknEOpXO5V8hfQ4t3RDa93p81tLwfTgKjrx9mxHlJx1vHXTXxJj3UxBmM2qlq8Xo1Iucmxcjl9PmW2LvccRHOGuujYJlI6zjDeLw0Oubx0si6D0bbktDzmrddIinH6PFW5FvcomwqH7mDUoDKkFbG+8V44OSASwHaKO3Lvg77cD1XxjFy7BrVB0dinUWJ2Nhxx8H21u2N9qE3hlzURjIyr6mZG9XMoXrUm4VnXYhTyjG1tqaeMmrOc3Sfn0S+DnB68sXUbwEXIzKDaMzK1u2yttXDqyjNJNovnO/6qyiN1Mudb+a1e2t6/lpkXRuOqF29xe5esr/vgWVdmNJaMA+NZWSsQUPHFKX1ZeZvmrYmLUUbp3E6yFdICr8xmk2U1d/aQtQuK7MNS+Y6Sq8z+2ZG2pXN7TiDkM4jWv6ZTuC21pZ1fSA0lsF1pn23UZoJ1xefDsLaZssxXPl4TBsZF3Nw/iej42NTPGvqRNbBosddFfJ52mzJz9UBPljWtlt9uj5LoqX/nPbcvCbwFQL7xGHfuFa+civP+IrAbZ+v4znlOp9j8H4XuDKi3CYp3Z6J5Z3d2s54ReYTA5FyRp9Xb7K+Rxlw19CSJxvP+CKrHAtL7oclQsfTFwZiXRMlWj43f7CUbW2Xh8cM2n7pmA1KrUTikq3kxEOIHNMTrn2e9o6+BieNS05KNoajbfJPIta4bqPb+TZK4Te9f0pxCiWix3GMvD77xMhxoJWfEfT/UpnbieOVcHEypdgmlhibWXFborFCX0ZphNbxaLLaYckf7UOpXwFv/hKHRizHRa/5ruG5N44EaJlSvgy4a9WyvtZw7//WROwBd4VbiFFtKNnB3lKwlGFFq0viihFPOdJ+S7zikUD7e9Yn7cu4J4DW5Wt10XvJksdK6dhSO731ZI6JSoz2IVnpw18Mo9tkaeNS27qynHvDc39o5cxEYq6W3uXZc/MsO8FaSjYvmT4IN8j/UptG3qPZMdEtfhRZPhvc8aOf+V3mTQM05j2g5bGUnUnmOZ8EjhlG6z4tWOxelsRmQTzeQu1npXc77Wdpewsbpujx0vvqc2c5tO+yrudjci3wb7xNOjaDDxeCdJ0sx2XU/+0Ockyw6lcttFqDw2NLh4/j7t3R64lgfjVA2y+tPYLvS27/hkF6f4x69qE9o98rpfYBlmuXjWctGg+e+mvbYX2n0rq97znL8VqfwG/LMdH3sefY4y2t7SJG8oaRL1BaU86S2YXz+g4RPc577BI5XnkBy/dgH9pXOga2jZbVraysnAxGy4Z7yp2lbW8y/yW5tUTNuo5L4gcGHAOZbufyR5jLarE2EPbxqPHlpn4n2XhsHj3PN+ilLfprj67BKreaZX2eOZ3nXj1IBO5vz1o+XwaRzsez7kvNmm3cdk9s6uz15EbF0/c8c9l1z3hsPrLPxxMr7vcKuHPxxK243YCRMTzgG2J5x1r8Fq868fgvQhtwW6zt4vJ57HBb+CZqNvSSPT22QY7aJHM2eZKdnmbjzdnoacd43jUt5hnfTP+vz/+G/OZsAUp69SgbBy30W54xUAu9jedatZBhesZ19xsQHavVcnlg3V+SPtD6vWXdPWkxVvOA57Vz3PRr29/X0G+AHkvnJdcQlroz50Ql8PgQzsUzBrPEaPbm98gF/iXpB9t6vPIFaJ8n1sSPFUjjVG88jkysPlwQJyY7XkzUdy0Dj29erT8rhyeOfqtxnZXXEoH6R9vKevzPW9iF4Wuh+ey0sL3wjOv+SeZ7oQ6prl7fRo4W6yKOXnt6HuNF5aCZMsSInLY05tXu4xbyfw81st9dxjMG/6MBpXti9FrNdG3jSFw/iez3luc6tip36Xjkfy3iSHja6tE7LAHtfE4rYFnpbw3g1mCTsI79pTXHaoj2v3TPecZ+NWs/ZayldGYg2v3p5RPEfySl+z4KoM0LPXIj7FNP1+Kg66NQSvtwHonRukgNer0s9NaFRtoI956E5Vi6DWJqWhjt17urZOigs2WFNfJP6/3SitpYhB59dYv4l4cLBrezxTXwjI9uNcAj0340kH2L52aJr7SEmF4t5pOjbU52iWzbd4stWM23fTM9i1WxYeDie0jxPFrZ+1hiPljKkvpY2le7nk8U8F+25PX6s3M+3rReL5wvdy0t/Ic9HKH0iGxbkh/oaBuzk0ztteOw6K1quK/gtYlrZXPmqTvD/q1FX2fb12W372B6ZmtWa48W0Y14/MquMWhtktp14Kzbg6XsBwbALq2FfLyFf17Ej0+zraN+exn2diPs6oBRdgZYBqeBbfysWPK31gVqPCS8X6DFWOHcYEbLkI8cgIwu076uZzyjWn/YFrZ2lm/lUqm1Uxlt79R7bJw9zo6Om0f3e40v8y4zws4JbOtm2zXrvYX7fISN3bsk5fCMg7Lt66KMuP6jGD2u7HWO0u/ebcF49EIefkPpb2Q7hpMJSFjOh9rF0TmDl8gcxZLPY98WAdvR1drXWWJLtLKvs8Sw8FCyXQIidnVW27sWdmu7QqZ9XRYZdnQ9sdy/lNFyg12B04eD3M8b2yViX9eCVnLQqH0etx8fl3Ute61RKXHogMbG8RxbS1Y8H3w9bw1mpA+6h5NsX7eLlOzrPD5FLeZbo6/9SKLf5ixax8taMlbbutmubDO1XdvFQ3Y7RpCt3/La12HdHF0XgqLZq0G+42Ra2NYtwb6OiykyXxPOBhZfs2zb5hK1106ipW1dJvcboZV9sMWSR+KOsN0b6yMjRvNJg7uXesZoscZtyWT0+Ul4n8uRjL5vM681fRf1pNV7e+mM1gOfZLTv8cysA/XEI/FQY8Pdk+x+x3pOyzWI8D1KKa3qy6JVn3h0Xi10kZG4siOw+AJ4y/LoR/915rdQ43vwr8Au6IZH6zc5PR34Vkjbpf0ZOjt8PC7vnUmOr1xqR+lajta3LllXq1Fzz3F6qkuF7ZhSXuk4qt/02H5mEdHD4vsAdKr4d8YaK731m1zf4H2j9a+tkHSHXp2idIxW5k1DufsKF1tRIhKn8YZCySetpW/aEvDEn2+BJVZ9q7q5tZN6shmMZ0wwuq3ZcLrUV7ccLYzzJIXf5wv5R7IUPSzoWPHv7HUcWtIivs48H8/2iX2wxeIP28vvtoZMWRzGq4f+Z3pe1v8P2vYP+U+3cdTI/v5B6VL6M0KtDNTLDw3LXTqzXs4ju8O+tHRbVB7Yw+83Q25ZU76UZ7QefqQtQba/unZslg+8BZCr0/9Aa91/VkyiyyStZYTccN+IytCjz14W2e8EL736eWmMuNa92ln65vaIUZAVc+APA9ayWsQD8fqKcWVcbtQ2DvxtHBE/ZQnXYIQfX0asmBHfz9oypbnVvtPSds/CST//lf0Hjymw7PwvlPZaW8OjMy7p2Fu3s4WfMlwLy3XqHU9rdKwvDy3tFEaf277xNcNp8htoGfNsH/H0Aei9qX/Bq0a0eHJcP2u+DZbyM6+1dIxmjxQ5JsvWKUJtbD2JrLLhm8N96+nvGWqnJX1fqX51tqkHuTG1zbfoNC02/t4yI+X24LojH0drne6ZLfj3GbLdW9YIrqO0N7e3dWf6wUjn+WknbhvznTaijVeA0bFtPHEGP0oGt0PL28Km8zMHLeq3PBcjbF2XBHeelnOPrC1+bov33XVOoLQ/Wu7Xhfpgf4kM+5OTwCcNGH1OHJ+R30ugRd9bros1v/cb2+rcRo8dNPCa3Bca8RNKKRZfhQuF43vwmNm2SaCn3/GS8fRTRr97GN03+0YLffzKM0o+y73aMMpHPrMPd51W33IrPy+AzLjeEX8vT/kvB8jyS4vUrdH63DUOg7Roy1I5asRhw7KzaPG+Ga1/v1VAyruUdl4hv09Nz+xELbYcpXPn6qI8ErZz+R4J/x+dQLhrIe3TjotguWZLwPM9tNDDfm/Fby84uv6e7Vipu0ZeuPUGOCzvx9Kchdum6axaAf3pXYdnqevxlOIHwZoNdLvHxuwGSimRWFr7DrdmxlLYh3OIMlpOjXVko9uyIb9bg200tJhnvfSUsNaVtF1CKi+jnx4PoOVaVp41x6J1fJsAV87xFu3YY4GonDsrxhqnb3488bpnfD/0igEHdf/q4HWUvs7sAzYKre//1s9VCU9/ZhBda61F/b3eF0tkdCxCK9G4hEumpBfoUb+2TiMw5z1Gv5fA8Rb6f9+wvBNH1o3bsAtrZa6snDRGy1CsHDdg9DqMPdd6HN2OfcAa3+Rg8sfgxcfibTT2EheXyYMW58dyLEXKZ2lPVlxPzq/asr0HETtRzsdG2u6hVFeNXWutzfQuMMIOacQaMSW/QM1nMOpTOEJnIclKvTJUjyx2hHyk1ffwH5RSPN++JWKJldcz/mwkvvmSke6pEbF9W8RLH3EeEq3j+VFwvNrsfr1IfpeQ8pTK5sqHfsT/17ic7WJC9mL0OfcgK46Zh2tT27XYKQ+31xPH9LqJtmXfN73XD5qBccn8+/cdRLtnuPhAn018DB8p3oMU80faf/sEMCoWyD4zYq5akr1Y82bYG0r2hxn08v1egh94S/A1yvbpsXBIGO1n3oJbAxjtH9baZ2yE/rOFD0wLThn2S/zG0HoOMOJa9sbzbcO26DU26R77511lgwAbS/z7Q7LdCuQHW9rHjRllrysxwh4T2wpG7XqXzoh3T29byhGMsPG4v6dgWbJV1j5aR7RUuPsGdB2j29Ya6Ryt945H10Pv4R7P/+j+bY1V32R9n4x+r41mtH5nXzkg3EUpBdsTamv8lIAyqP6KA7fNkj9Kyz6NQPVRJx2qG+ih03mFcJv8lvL2aBfXvgicXukD8v/fLWBn+y/Z7iXb7jdTp2YpM1Nv5dUhSft+3GGs12bVW9Xpqrh7R9M7YLtsS55doMd9M1pftI9kxYn0gO2RrHlPGfMvhdbrUnLcOAF8M4DXErHW+TFKS7xmyGNh4wC+cxuURiiN4bi80XpGcrQQwN+H/t9Vou8PS/xWKe7n6FgxJZ1lVoyZXroqzu9qSYCsSNtvxdMnWf3UU5bk7Q9LOT3b76Wkf7D6nGt1SH7n0j5LmzR6+waeJFr46tXqwWneEW3cNXrrPTn5LN1HdcA13+bRsqR9hd5Hf6PU8q4Y/f7qzaVt6pER0jK4ffR3qSyp3H1mtP585o8GzOVqftcccHzkWIzl3Vtbx0kGZNr49xWyncvvZfR3hAPeU/i3hlTWnT1nxPvspJznym6T6ddF5ayS3NWqU9N8xSztwe3K9mPj8kC7LH2vxfaojREyIk7JyhhqrvfpRKw+l5yf5z4xn6Nku/sqgyVPFLAXgP9wDbAtQWsfW8+aa1Fa2Vk8dHBT+B3F8y7HNjTW7+vMCH1bht3t0rhOqNWZRTizg9B+i/DpNoXybhfqu4323y78B+g37lOUUk4X9mWR+b2e8fj0f8LgzT/z0UL5BqW1fMZwu7CdA/ZLNmp0Oz3+K4HXlH0ZNm2lNlvKsdZF82XZ7kF/jIyJdk7Bcjy3HcezHhV7rRXSO2cEI86fe78sgU+Y/5+Q30sF2vwf2vafkPe/wj4rpW+p9RurfZsxP0/xNTujZMYcpGt6ZqHVwW3fIDLPceVFW/SVHOZ3QI3+Maq/LOkmPXYg+8jbyr4WXKg4FrfrF5RS4P3/C0p7YamPtq8HPy+AEfFXNV7eAzznerilts7DRkTa4G1bZt9bz+vIgPYMS3np2NpS16h3QE+dJXArmZZle5htx0DXErU9k3i0MgTPNSq966X80fKyiPpZrtj8UK12U1oeT52jz32f8NqQeaB6ebwtm9J7hlvz8q3CdonSGpqecvYlXrvVjmV0O/eNN7dY82lklLF06Po5T4RtsP1qYf+usEFpKyyxWbh1GGoYuSbCzOPt9scM3PFcPuCJsl9bV2BjyGMhs79ouVx93yK0tnHPsyXPMYGTcfxU2M4hrT/NrUd9fntM6fpG+QmlJX7twGZ68fmoZfR6HRw9+nIkpXP/dk8YFd9o3wE5L7e9VZ3fOTiuxNs2fJzn+Np21jJ6PZ99XTNoZWVXOJ748TNsL42xLfm1ubpWZgY4PlGvmIG9ud+JrDhRHrjzHdGOk8Cu9e3o5641vfqx1/vDQ893G64rWu/oeBgRlhp7xRoDtDfXEss6aAj0o+cY3K6a9s3H3lloP2nlSW2w+LtBfMsHW+hvK+CTHTmG8gEpi24fQfb6T6MorWdlXQMruobWfL+1sqP/EaWU0jE0D3f8ksB+h718IjBQd6vrOIKSbY7Xz2Yf8dwvVltNT/2Rskp5uGOy7YVxvZHjRtiF7yve2EPw+33yu8QNgpafO4YrQ8vTGymGBce5Alz8C9hH40KUylkiUvvp9tH2V/uExccnG7CjseY5n1Bnj7WfpPWZlrxG01LpKXeFWG+ty47GoKsFt6elHGplt9Hidmcyei2JfWK0Xm5lPynpJEvfPE6+8XdhuwTkoTIVTm6R+TyV2mWVvZTKl/Jz23uvIfZ3x3pWdo/RuuIR/DG9uF4T3ifl48Dr/LR6b19EKQXn457L0WslLR14L2eXtwQ9Rc/x/z4C74EWZa6sROHiKkjbQfdTymMhSwdFy2zVnlI/4P+jr+USkPpQ2z+akX1jaU/0vE5PvjWNMtY96llXT2abz7sopb/vku0Spfx03aRSOYB0v3F5JR09XWdpCTw0AudLt8MzwB3T6j2itSGzLo+e5/sCUn7OZrNUToRRtqetz8vD7wylfTSPhciaRrvA6UL/4Hx4+2kCLisD+HadRqklPz7uv4ZI6waV9u0aeC2dmrVrdolz5DdGOy7C6PPdZUasqbOyH2sQreTR4vt6wcFoG8+VlZOCFmPSkmemh4/YEuH0gqU8pXzAaD+1XcLzXemBt/1PGp/Pk4QyeqxPsGReNuy3criySI4KwHMA64gdkt+Y0vpjpfpHvrMkWfqtFTePjGT4/GaWRcuV6vKc26PAsZF6evKn8LumvJbcWEmj5RoxS+IGSq190LPPLfn34XpZ7LQidiM97E+4+lrZw1gY/e5YWbHw5vTiej09eDLZZYLZ9eF6pe3WMkpI6/FwlNZ1seZbWdHQ1q2pYfQ6MTOPp+fXsnnMoB3H5ee2b6b89XdKbdDamV3Xyu7RK/4LXjulZ1098axz05PXO9RxvEOMXtdmXUNnN8Hxv+g8CJDmSVI+mp9u594ztCxum2Wf1h7L/K9URqkca5lZHO8pPeOqreRxvwNSvZ72RM/vQPl9kIB2/jjPnaQ6e9A7RtDSGBUfa2WlFu5dOPp52idGX99WjO7XFTuWuBEQD0oam9C4Udbx4uhxaxal92Wv+kvtsrzXs/rAUtfo99M+vxctY3I6f7iDto2OU7YUesxpR4HP0XPuo6/JWZRSsvvoLEoj1Bxbirk0Or7WyspKHM5eEr7D0vaDQh7gVcJdxMHEx/zaZeZYYp61WzVonDJaH5eXO07DU6d2/hyevEvkbHJZLZm/x9GYWweG/Usiep7ePjkp9OjP9Ro9z+8EbvvoeDAQn0nabiGrnB5wa1ZHysGxFKWyve2wHB9t766C+5j2t5Z/RDtnRsfx2iey16wvES0zup796L7NgL7vvfl3Aa8v0opMizhBEj8WoHlq6hndpy2vk6cP6bae15qivYdaxg3bBzx9vdR2rSybzPdV61grHDT2HxfzBfa1bMfhFrqN7reCY9jQc9xX4Ny5bfuAN3ZZKaZZqaxMbjWiNq7TrvBoGhtPa4lo/fEoyOjzWhLSd2pJcZakPKPjQlmhdjrRtQB3Cc81zbx/uN8t4n1l9U/POv+3UGBNtZZ13NjCbYvQa5259yvbaeX9jnWt5PGNkY8r9tN4XdY6o9D6NKzHcOeK93/1lNcEID/dRvdbKdWxdLzXZ1+hMcQ8eUtsTiilGGLRvJlyS4xWF/d/H7FcA0+MtVbti0LPMVqONabXUeH/0QkH4gKNbsdSOB/IA314vjE4ZlrPuiAOXInzhjxrzLE+vORAemd6yiiVk0W0PS8Fj+957vD+sOa1HsfFfxuBxZaw1h/+wZZ/tmT72z8g/DOI1rENRp3XkvjesN9KVjlLo+d9dxLu2YMt0vYfUPpDRfkSNA8+bnTfRBn9jJxUtHttJY87nev7IcCIOncNiLlSW05LXxeJvwkj2tDjvPaNd1C6D1jOaxfPt3eMwl0Erj3+jekZUy6jnJFxPUe/l+A6au3q0WbLt6DXc7+E9wbI66T2ZPkrl8DPhvScZMWEXEosStzv+P/KGEb76+wK9xB4m7T/XnL9J4F7RmqP18pp1e5e9Bz7LGWclcmlaT/Hor37sOd7w1tn5Pkf/Vwvjb8X0AZrO08KnnMffV0i1yv7vHrJvriY3K05m8iI9vc4Lw9/FLZLeMrR8ljOvbZvsX89XZ/lopBPgysnSqtYAhFwv18U/mvnY8kjrY2T2a+j+HKPzmVpwDtodDuyGf3c18YnuVjYt8uUrln2uWfOH6XystqzpHPNnuf2bpvGD5VY7HjgG3+nA9wYT9oXKadU/krddVqpA9sGrsTux117Blr1gfbOW1lZKqPlXiv89egtp7zprF9qT62M8MYAaEy0EW1ogTdOnidWnacuS/k0z+i+G43UB5ZrkdmGFnEoR+lvRuuWWp3XWSZPzTt5H/qLYo1VWXOsVk7LdmvxR3vHQ/V8d5bShz3asrKyBL4ewOkC0hrSVmhdteVl89sW+jtaTjY159Wj33adHn2VDV2/He+7i3iV/M7Ae29k3S93k+jRD1nlcO+A0c9Lq/fVLvC/BVKKFV/K7ylnl8Fjq4dBRp+Dh8j5nUXp+wywT2Lef0o49n1Sl5THyg3DfguZ/pSvKGixnrQ8Wvmj6BkPq0WbpXMY3a8rPkbEBxsRm0w6913rwzMMljxS3pp6PWT0c0251xG151Li+o5z24ilD7T91rp64r3enxKkPNI2enwrLOceOWY0lnM/XdiH5atQ5tdMPb3lyp71U64Kvz3H7zP/NeQTwkcF4Bhtv7VOy7lz9Yy+HpE2U74x5rOev1RHJp91wFOXp52j10kDsr4b3JpxdP04nP8rx7FWRvflykpvvkKcM8A9u5bjMF8J5WicI6m0j9bFnaO0XWovl5/b7unLWrhrUHNdMvm6sL3E6Bi/Kyu9oXMWjCXPJ5X1S+15p0HZK8sle+7zDvmd1Z5S/lJ5n2zzcM+PVJf23FnLqSmzB1KfeeQEVhmIpZxaRstMOJZ8/fexv3cNKv+1yoW98uULJ5CfCNy2CD3PwXJNf0LbfmL21/bbknnMEDm+VJ4GLm/TEe87YGVlBJtEcJlS+dl1nkR69OHo+3JlJZtLnciMY+iJnbiLaOd8UvtlX/iFIG33Mvq8doXSM/P2jsK9D7zH49+0n3bhXcM9B7XPFC4zq6wVmQuG/Sv9+Hmlmi8c/MngOb5UToRI3S3JOq8sXi4g5S+VNbp/syn1j5anV3v25T5cwj3v4VBBy5NZl6furPNf6UPWe8Oa96iA1tbSsUtGelbgnLU8Hi4s4Hx3EW1cj/Nax7a0zJbzifNbpP03V3aKWwKj29WCU5MeR5XmsYD7TOo/msfaxghXttDf0fPqwRUFa57M9mSU80gA2iztPyl4ryXdX+pH7X7BwD3f43w9zyBXRsY7oiWl86d5Rrc167zw9W35XESpadsppezMPs4+b+DPwvYSWeV4wPItbm47ej2QlZWVPP4S4PJk1jX6vHv0oRdPXaPPeWVl18HP3ktbRtUvPdfR90S0Pdxva9txP5b4wrDfCozdaRme8floHTllxJo0ozg3ybFX6D4rr03t1iTgzqFHHRqe55z2F91G878m/PbyMUop2e8yro5WfI5SCl3PwrPOxcj1MrLX7YDrIm1fWYnyZiX0WV4Cteekkd0eKT89tud15/Jm3C8r+RwTuG3HjuMtPFmpxhIrZqXMxoA1n6WcrLJG8FiAixsbGctbYiBllLGEGE6Unm3XxhtaniX23xKfLXg+NihtXVcLPiRY8liIHrd0Ss8OzVMqw1tXadtS+Zb5f5I5Zv5HubBAzhO0vNZyWpEZf06rS3r/SjHo8HGeevYZ6KNfCbh/6D4uL/w+j1LK6wE+JKmVTQLW770lv/Q+rxlXtIKeF2b0929XsFxP7bnaVeAZlLZF3gO98J6XlCezPRnllO5VaLsljwV8HIzL8G8vv6LUew++LpQ3+j7TyB4nv47S7PZAnmMDo+1VVny8kUDr9ow+v5OKpX+xn7Z2XKmuI2X/rvJdUh5rXRKj+2EXOO5UxzFTF7eN5qd4zqFUzsry0MZr1jwnGUu/7GLfjbZxW1lZWVlZWVnJwGOTbbWzxvm95WTRu74lcrzlTZT2st2O8H/QuZEs</Data>
  118. </DataArray>
  119. </GIFTI>