tpl-fsaverage_hemi-R_den-164k_atlas-Destrieux2009_dseg.label.gii 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Thu Mar 14 14:54:14 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
  20. <Label Key="1" Red="0.0901961" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_frontomargin]]></Label>
  21. <Label Key="2" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inf]]></Label>
  22. <Label Key="3" Red="0.247059" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_paracentral]]></Label>
  23. <Label Key="4" Red="0.247059" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_and_S_subcentral]]></Label>
  24. <Label Key="5" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transv_frontopol]]></Label>
  25. <Label Key="6" Red="0.101961" Green="0.235294" Blue="0" Alpha="1"><![CDATA[G_and_S_cingul-Ant]]></Label>
  26. <Label Key="7" Red="0.101961" Green="0.235294" Blue="0.294118" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Ant]]></Label>
  27. <Label Key="8" Red="0.101961" Green="0.235294" Blue="0.588235" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Post]]></Label>
  28. <Label Key="9" Red="0.0980392" Green="0.235294" Blue="0.980392" Alpha="1"><![CDATA[G_cingul-Post-dorsal]]></Label>
  29. <Label Key="10" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingul-Post-ventral]]></Label>
  30. <Label Key="11" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
  31. <Label Key="12" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_front_inf-Opercular]]></Label>
  32. <Label Key="13" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_front_inf-Orbital]]></Label>
  33. <Label Key="14" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_front_inf-Triangul]]></Label>
  34. <Label Key="15" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_front_middle]]></Label>
  35. <Label Key="16" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_front_sup]]></Label>
  36. <Label Key="17" Red="0.0901961" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_Ins_lg_and_S_cent_ins]]></Label>
  37. <Label Key="18" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
  38. <Label Key="19" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
  39. <Label Key="20" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_sup]]></Label>
  40. <Label Key="21" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_lat-fusifor]]></Label>
  41. <Label Key="22" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_med-Lingual]]></Label>
  42. <Label Key="23" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_oc-temp_med-Parahip]]></Label>
  43. <Label Key="24" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
  44. <Label Key="25" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_pariet_inf-Angular]]></Label>
  45. <Label Key="26" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_pariet_inf-Supramar]]></Label>
  46. <Label Key="27" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_sup]]></Label>
  47. <Label Key="28" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
  48. <Label Key="29" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
  49. <Label Key="30" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
  50. <Label Key="31" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
  51. <Label Key="32" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
  52. <Label Key="33" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_T_transv]]></Label>
  53. <Label Key="34" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral]]></Label>
  54. <Label Key="35" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Plan_polar]]></Label>
  55. <Label Key="36" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Plan_tempo]]></Label>
  56. <Label Key="37" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inf]]></Label>
  57. <Label Key="38" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
  58. <Label Key="39" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fis-ant-Horizont]]></Label>
  59. <Label Key="40" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fis-ant-Vertical]]></Label>
  60. <Label Key="41" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fis-post]]></Label>
  61. <Label Key="42" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
  62. <Label Key="43" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
  63. <Label Key="44" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
  64. <Label Key="45" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
  65. <Label Key="46" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
  66. <Label Key="47" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingul-Marginalis]]></Label>
  67. <Label Key="48" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_ant]]></Label>
  68. <Label Key="49" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inf]]></Label>
  69. <Label Key="50" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_sup]]></Label>
  70. <Label Key="51" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_ant]]></Label>
  71. <Label Key="52" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_post]]></Label>
  72. <Label Key="53" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_front_inf]]></Label>
  73. <Label Key="54" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_front_middle]]></Label>
  74. <Label Key="55" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_front_sup]]></Label>
  75. <Label Key="56" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_interm_prim-Jensen]]></Label>
  76. <Label Key="57" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intrapariet_and_P_trans]]></Label>
  77. <Label Key="58" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_oc_middle_and_Lunatus]]></Label>
  78. <Label Key="59" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_oc_sup_and_transversal]]></Label>
  79. <Label Key="60" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_ant]]></Label>
  80. <Label Key="61" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_oc-temp_lat]]></Label>
  81. <Label Key="62" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_oc-temp_med_and_Lingual]]></Label>
  82. <Label Key="63" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
  83. <Label Key="64" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_med-olfact]]></Label>
  84. <Label Key="65" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_Shaped]]></Label>
  85. <Label Key="66" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
  86. <Label Key="67" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
  87. <Label Key="68" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
  88. <Label Key="69" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-inf-part]]></Label>
  89. <Label Key="70" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-sup-part]]></Label>
  90. <Label Key="71" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
  91. <Label Key="72" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
  92. <Label Key="73" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inf]]></Label>
  93. <Label Key="74" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_sup]]></Label>
  94. <Label Key="75" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
  95. </LabelTable>
  96. <DataArray Intent="NIFTI_INTENT_LABEL"
  97. DataType="NIFTI_TYPE_INT32"
  98. ArrayIndexingOrder="RowMajorOrder"
  99. Dimensionality="1"
  100. Dim0="163842"
  101. Encoding="GZipBase64Binary"
  102. Endian="LittleEndian"
  103. ExternalFileName=""
  104. ExternalFileOffset="">
  105. <MetaData>
  106. <MD>
  107. <Name><![CDATA[Name]]></Name>
  108. <Value><![CDATA[node label]]></Value>
  109. </MD>
  110. </MetaData>
  111. <Data>eJztnQnTFbXSgEcEFFTAhYuoKLIJhVdwu4K4nA8URP////neKU8X/Tbd6SWdZOa8k6qncs5MJjOT2ZLe8nyapsdHfHbExSPeOuKvI+4f8fcR3x6xO+L8Ed8fcWnPXPbNI97eb/vpEd8c8ccRfx5x4YjTR7xxxMMjzk6v0rkjnh7x3yOeHHH1iF+OuHXEjX2Zr4/47YjLR9zZ7/OnPdf2/7/Zc22fPz/ixyPe3R/fzO9H/O+IM0c829d9dn/cM5/vj+Wv/e9P98cDzOfzaH8u94745IgP9u3y7XQ8zefznyOuHPHzEadQOwKXED/tj+3Bnkv7Y/pjfxx/7I8J2vWzPT/uz3nmuz3v7vn4iP/b897+XL/YQ9O5fT5f24/2x/rOvj0e75c92R/3nX3+4b4NHk2v7o+5XW7t6/p6f/639//n37/t2wWu58v9+pkb+7qf79vj+f68IL9Glv24B67vj/s2nJnv3Wf7HPh8z1/o92OG0/vzmnl/enV9d/vzmPP/7oHre3/Sry8GnpkH+xyXnY/1D8SbCLgHMHAv/IHa4hrh7vTvvXF3305/7rm2z+FemfP5eZ3vl6/22+Bjm5/hM/v844lPc7uf3TOf37l9DusgzffUO3vg2YN3wXwfzvc9XJNP9+UB3M7wfH6458m+LeAaXkX5XP4eA7xvPtmfF5zbvOxrxB3hnK8g5uOf7wW4z4HL+xyeofneP7Xn1z1zmX/2+4XnAZef4e4puD9gHdwX9L0IzPfI8z0XEPBM/W/fBvDevDi9etf/jzl//B6dma/zUwQ8d5/ugefvKmG+1vjeh/ctfibhvfv+9Or5hG8FTfAexnyIgPa/MR2/p+b2fmt/XpcYoN3hffNgfz7w/n4blYU2eWs6fj8Dn02vtwt+rgFYhtsH3nv4mYbnGq71d/t2+m56/RtxGgH3PXwzPkY83Lf5d9OrZxvaBn6/mP59N3LfFy7N5f7ac256dd/gd8T8HriPmN8V8zV9in4D3Lv8yR74pv3NAO+F+X74eQ+8P25Nx++7T9B28L37cvr3mYV3yQ0Efkfe3IPfJ3M/6jYqc4X8/m2ff4/a4Ifp3/t4zi8j5jJ3EL9Mr76tM7/uc3he8D0P28zrnyNK39+LBd5igO/uX+h36fs75/T7C8A1p/eH9/tL35sAPGefkXIz3LcX4L6/c7m7iD8Z6Pf3KwT9/mJwwn1a/P2F9xFN8P2F9zPkM/PziN9RH03y9xe/T+F5w+8o+o6Xvr/AQ4T1+zsn/P2F9/5vDL8gTiHgOcLP7x2G0n0FYxK4p56T8vjeuYbyN8l/fO/Q7zV+Huf3Pny38bcAf8cvMusuoHX/Y4D0jIF+6+H5hvX4XqLPPO57c9C+AL138H01r3+E1nH9BNpngH7Dt4Sbk57gnsL3l9SvmN9F+N6Svj20vzHD9Tek/sdPzH/uej4oAH0V7j349sRfawD3Zf6Yjr8zQA4A70Z4f9Iy0G/C/Sc6xqHv2tI7mPaR8P0C9zv3TODvF4yLKLQfDf0r3K/6jlkG/En+4z7Ytel4fwz3yXC/jPbNgPf2PJxe9dkAekxSHw44s18O+SVU7sWeL/b72aE8K+F9APge+YuBjj84uITlHRxPBWj/8zzzH49hOeg3FvdZMR+hnH5/pT4tHhfT7zX0c59Mx99bM/iZkd6lwKPCOnpM830HfWbgy+lV//n0dLw/QPsFNxigbvwccGneL7z3534E7YdTcL85kq4ofD8d79NL4O8L15e5XIDruwCzHGG+1tAHgrEBx68M+NtZui5YXohzPN6ggPwPZIB4zIH/074SBpeV3vGc3BC+DVR+eHZ6/duH5YlS30Z67v+YXh/vlOQbVL4M6b8EkEfifojU99D6FRxz28A3Who7cXDfYzquAvkmN87S+gNU/gngvjKF+3bPgN4Af/dPT6++/zP0ewwy9t+nV7JTkJ9yclTgDAOM7aR3mZSwHIb28ebxnOU7CHByWcr5Sf7GSeNG6ftF+/n0m8SNK+k3CG8P4wL47nBjTmn8CfXS/tWcOBkO5qXQtjRx3wSQG9P3vvTuB/A7FWTEeOzBvb/n78OXCOm9Tb8ZWP5seWeUZCx0XEz79RTpnUDHyjBexu8Abux8gYGOnwEsc8Ey8d/3wPb4nGD/8F3BzzaX6HPJjbUp+HnmnlFujI3l8FTujKH6zxJUbg+ye8i5cbo0XsfPJYxfpHE77n94Ejd+55bNzxf0k7DOAOsOsPyIe464sT4e71vH/Ph545bj+42TA8zr4NqW5AEgE5CeW+4+5OS9kr5DAo/bYd+cTEG6Xz+feFkA1ZECuB9B+xNcf4XKEkCeIPUpQSeDl0N/guprcN+Ck//Nx/Q+go7nMfMzNcuZqZwBZBNU7yOxm16N7bn+DtYN4TLcb/wcgx4JMy+jMggO2nfiZBfQB/qCsEO0TNcRsG86RqCyC9B/nZte9dXOCdA+XElfJsk1YLwgyTWobKNESb6Bn//Sek7mQXV3mgwVM7+v4XuDdXyc3uJngXkdvAskGQenHyyVeTTJx0y/a5yMBOsZKf9MspyEfpN206vnQBpnfIB+30RwfVeq06RwCW//m1AGl6X9XrwM76skT/lheqU/5YD1JbnKZbQvqa9M9bBg53Rqel3ecWc6bgdFZTGwL6qvAKRrXOp7wD7pvlvrfyncu2B+5k7vc3zOO8R5hEf/i49R0/9SvYVH/0ttbmYZQEn/C+P9OYexhFf/O3/3sO0VjB2s+l+Mpv/F71M6Rvfofzk5b0n/+zVzHpDAdgJ/mzT97/wsY91vpv732vT6fcWNW0v9PgDbQ2KobJOOW7k+KdYNS1B9L81LuhY61qRk6n9xmdKYEut/sc0uRktc3wd/O6DPgO1BpXcT9172jP9KePW/D0j9JXnDvP4tlMN1oOMj0Afjd6Q07uPGo5p+16L/5cZx0B6cjIfa7kT1v+8y/y3g5xr0wZL+F/h9vw7kzqD/pUj6X2n8hOXRcF+8IID+V9O9RRI3fqPybG78VNL/Simq/8X2yiAPB70vlY1L4x/uGyuNgUryc03/K4H3gW2nS/rfR+T3o+l1PTA3zuHk8FgGjWV/twpw/V0sa+ASfs9b9b4R/e8VlGv63zmnul6v/rekC5b6+pKOwKr/vTz59b8SJf0vldtT+T3V85Z0fRrSvjTdsbV/ZRkfgZ6Z0zVzeudI/8oiq5Eo2daBrwzVWdPxG6Qd879kSwN6behjeftXkr7b06/CY0g6lqQ6cYpHvq/pzTUdeomSfZ1Vz16Sk5eeD+uzKPWvYPxM+02cLF0D9sX1qTDgC0Vtsim0f6VdV6rvL9kARPtXnD4Rj+ko0tiAyp1LfSkucXYFmJKNAdVlYrsD6F8Bpf6VZIdgtU/I6F9xshGun4XtF0rQY9JsHCy2D9QGgrOFAH0PTlgWWepfUe5MdUnrZ0ljdY99hWZ3AfqGl5Pcv9JsMSicbQbXvyr1rWh/T7Lf8H7/auw9npPciud7pdmQSLLckm0Jtje07IezQ+NsUUrQ7yJnr2KxXbFA7Vss/dzfGegxXZyO2yZQJPnjGZIDJfsZnKzjf823RbJ1gPzZZJc3WL5vFrg+v8U2wgI+HpDza3Y/VhshzV4I2w09QmUeT8flDBiubs2uQdPX3isso/ZIpfFOCe6d3jJp3z/rd5L7Zpb6P5yvtQVOF2PV/Wt6T8n+ymuHVQP134rWQd+lmh6ghNU2zAu2JYuOi7V3svSehuvqRbNbo7oOD9o4GrfPpyj37OvzKf4teED+l8b/Fl1M6Vyz5BBWuz0rkgxM6xt55IOSjSCF2gZ6ZR0l+0KufyvJYfB1gO8fZ8sXZf42z/Ic3H/k9GScD6UFi82jF7jvdhPvk6nJl0r+nIAkC4Lt3iO5xEOUS2Aduff6wXYWG06Lrae0rVWuRtdZ90H1nC/27YbtSKluktqXAoeYrk/H7VuvM8uktoHxizSWgT6DNM7h7GYBrg/A2c1SJPvaZ9NxW1wY03nloFK5kp2ipIuWoHYpFnmqRKleDawT9zDLcmt0UxpSP4mu1+p5gnILHp1+xM45gnWM7q0Xj/Uke2rN5pqWA12f1MeD8XnJXkGyyQa822YRvX4gb5jze5NsNw72FfdQOSxX/ofh9BTXI9xD9ZRsNrxo7YFjUGB2zHJvwv0hLO+Z000DV6ZX/qKSjgLrQ+h/CYgbRu3Eo/EKcLpCfmOyEtcOJV2LVh7b5FO0GAtWfmCwyMgg58pDvb+RXPM/sMK1h9U2J8IvAi+n1+NtSfZGnH/E7el1PwUtRoVUjraHJquF9yXoNyXfC+ndVSu7xHpGq76P2liV2o6zv5J0UZJuqmSXZbGfonZSFhmdpBPBYwyPXRPWD3By/R0D7cPOWG2TvDpYaJuIHJWTjWm2QhFZnNXmB+q5y2CRZVH/UoibSH1npDiKAPWnwWj9Ba8tjZY4u2NJPwf/qQ1MyWdHs2+R7Fk02xVtDBGxQcG6Ngx+t9bYk2i2IqX4kSV/Ii6uJLb9wN/mf6bXvxeW93vUdoN7Z8A72mN3wcmK3yR5yb9Jspew2vxythBWOwfOFrdU/gJT3qJL45Ikf9JsD/A3j9uOsx/g/My5/14kXb5mB2DRsWh6fOu4+oPp9XFbqX8H/bho4t4bFn06pyOf+wqnUE65P/n7k1Tfna2//qmw3OKb5vFTk/TL874t/SCLzljTC0d0wVyfiep5LTrdB4XcYtdt0eFa9a0RXSrX19fewdx4wasHtdjvlXRb1K8Pw+krLTpK+n67RnLKfIxWHSPXP5bixQJUV8ih6QCj+j6sv6O6PKrDg9+aP+KOkOmfGE1Yv8jpyWicW/juUn9HKX4MRetzRGz6sZ7Co6/y6J8iOiQ8Bs/UE0Fc3o9IWU3vU+O/6dHd0Pi+Fr0M1/egy7l3vKX/xZV7RPIM/QjIaErjyi+n13UeVh0H1WPcmHRdBqebiPjwUNtS0CFAHqXWvzWaND8Nzj82Q4Zv8fUAWT7VJ3ixymiprBbHYcayAsitcltOBk6x2iJbdHB3hOWlNoBzLp0HN84AOcBPZJnFh3dG8unI9hfG8gpvn9ZiM2i15aXf9qivsSRvl2QMXtkCjPst32aLfSbI863yAqrbLckJuLQTllv7K9ivWbJ98Pg4a/oF63g+Cr53ubF61P6bjt/h/1vkN/z32PrCWFfTh+D7lltvHYNn2Dr/MfH9M06+yQHvKE626vXPlsbO1lg40pidi4sj2TJ77G3BVw2PfS+g3yUf74ivNx67Uj9vCU4XVesPHknXp7KNbEkuV7KrxGPOyBh0TnRMlTH2LMHF9rHaDXp0cxn+6dJYUdLxWdD0gNIYEY/9OJ89yafvb5RjLPH8M/zfIafnUrKtp88kjddZM3aD8Vt28o7NYJ4CPF9BZNwVRRtjaT74dJxlhfPNL/nol8ZNHvD50PGR1p/L6tuV+kUZ+iSKppuIErF14fTfnr6RpO+29NE8SMdEdeUlSnpw0G9oOva5fyb1Xy5Or96T0A+j4134rcUWwHD3ENSDdQk0ngCONyCB4w5Y4w/gRPs63m2hzxXxgcXxCrzxET19I22cbylD4xhY9KElOF9Y2gez+kJkwMVXlIC+ELfMEwsB7CjuTfGYCHQ97jvR/9CfonpDzoYe+kbWOArQh8I2G5gRyRMvgdqHeOMscPZmWqyFaPwFgIvD4LU/8dioYDh5JZZbUt1xL6jNSw2aPbTHdoYD6sPyWiBia+OxycnqL0a/e1LMnhqsOmNvvIYSVObHyf04uyLuuxI9hoitYAlLLAc4T002yrWFJOfVZK4eGWxt3AnLdppcyTKO4OytND0T7c//adjPXLZklyXVa7XfiqLJ2N9nyIppQeNbAPOYhfo9RGJacPJ1+F3q72UDMTAAyebMGg+jZLuG+5WcTJzu53dDGcu+pD4tFy/jIfpN19FtaN+Y6mdb4tFZXJrq4mpQ/QHVJUj2cCV2At5x9qGn63u4VGpXSwwObKdoKa/ZLz5AvzkdEpVh0DK0fGn9eVTPefK/lCT5yXkGj72SN96HFKOjZFtp0YlZ44x44oJEtwWiNp0Yi63JLKPBej1Jv2fR+2n7sSLFEOHK3Z9ejyfSI64IBWQUmk6SLsdlvfuS5CHUxob7bQHaEfqOpdgj0nIroIss6VZrkXSfHFTeiG10Lfa6FGusVElvS/3zOVtf4EahnmiMExzrBO/Hak95y1BGYzcd73Pj/5Cy7EVAxz2nD4QyNxWgDKdXxgkvx7FRuOUS1I749iTHCCkl7vikclhuK8UqaZFo23j06dy1oGVK8USy46xwzPv2xF2R4rBw8VfuT3xsl6wYLFxMFktsFo+sPIIUp0Wzn8C22rQ8XleyYbjN/Ac7C/q7ZO/OtaE3FjfVK1G/YM87/e+pjX4EYhuUbERKba7Z3ANz+5XsC3BekgVysnNu3Mf1i7FcVYq/Io2vcJtxOht8jCWdhOSnS21FpPgnVNY4242W4ptg2wKwaeDilpTsEDg5C9aB0DSPDyT9/Tw2Ltkr4n77PO4o2QdK+mjJ9g7L2OZniX7XtYTHjNz3Dr/vuPczfqa5Z427rzBY9kzvq6gdEVc39TGR7GgiviQ0LkXpvqJyEGrT4fENwffJ4+n1e4fTjeD7qmTPgOWuVv8OnKjfBu3rceNEz9jboneW7jlNT4x1s5eY/1Z9Ky2r6a/wO5La39C4BhhND2fV09HjgfbQfLIkPRb3bHI+D+8y/zW494CmO8H2cdifgeoqJD99SX6P7d9meTAXE3vJ8//OyepXoPkQWG3gONmv5iPAfWMlud6I+eksciBOLvSIOSbJbh/kNdiWjOsXAJx8BOvxuITf8y39o7229JLNPLdMG8dz/sjSWICO7Upjgrkuagev+Q9bx6vc/qTxBx6HSH642f68Hp/dUv/KMj6y+uTW9K9q9BVa/0qz49xN/6bd9Lqccs5p/+r8dPxZ6dG/8vq4AvBdyvaR0PpXms+q5Kea5YtKj6f0fETtdaDPItnJeG2JsD2RZoOCfQwkv1AY23t8QiVfT/q/pn/F6ahLYzrJlpPz3/Qky/y/2E+gdf9qDfP/WqDHlOn7SKH3IL0X528+yEs9/ox3pljy+CpqcRg9uhIMbnutfwWU/AoxWIdZ6l9pMn7uuGq+fR4/QW4/uG/l+Q628v/z+Pp59gPtAXJyrU+r9XMtfnyaX14J/M2x9HG5uX+l+X8ttskeLP53Fv+2OZ2dXv8eWnwJSvF4o/50Vtt5rs+fZatPj0n7BlHbKgtQXurTghwB1+3xeZPGKaWxixVpPhjNd80Sc6tl0r6Dlu+khDV+BPc9lOB0MTX6U+7biJ/j6PgsCv5mWmT+Wh0Xp9e/xd73aiu/sJIvmGdsHPH5yvDzkny7gKg/lzSWxm3zKcp7+WvBdYP/2DeqRhfDnWsrOUQtkgxM689I+let/1Wqi/o/eWUdVh8qz7Xg/FqywP1HKV6YNca2FGub45qx3Dcoh/s/w99Ji9ctIcXw9vgyPZzK/kxW5u042VIWHrkaXu7ZB6frxO24m7b5fwF8/vS/NP9vaRwj6Xc5fyGK1A/g5JeYcyS3julqfcyyfYEs/j8aWf4+ljjtNJ5ejW5KQ+onwfqPpuOx3iU8PjtUb19adx/lrf10rON0TsaMoXHnJX8b7GtTWs+Vgxi4Ul8v6muD5d2avUMrotcPyxzADwb7w3C2FZp/DHB6iukRqG+MZLMRQWsPT1/Jmzh5D/ZjscL5r1h8WLy2Kl57FS2VfHQy6wWfE8l3xeKj0tovJTr/LyCVz5h7oORrUvIx0fRHXrBt9ampPC+ixR/BCqdXy/IXkeJ8WvxDsr7Z1vYHHR/+721Lq17KorOiNlZe+yvJlr2WGtmgNoYp2WRl2V9xaHqInQI3jxJGez9q93BL+yvN5ikqpy/F3eJ8g6xkyDw5au2vuGOgcYooUXnkjNZfo/ZXmh0W2GJp15X6UWlY+4/PUH6WyUtQnQnVo0QTtruiY3yP3plD00O0im/vjVev2V9hethf3WLyEprsFvc5ethf4WS1v+L0y1HbqxnOf1nqa5Z0zBxaLIdI37hkfxX5Dmr2V9y3D/pV3u+gx07KypvO8lH7K8i9/dWS/RXW3cF/i55PoiY+Iwe1v+LiwkZsrwCcODm4JkfHdsit7K+o3D5iV+Xt32fTwv4K8OjArzr2URqj1MpMqY6SyuaisR9AptcqSXoQanvVwv4Kj9FOoZzCjekyZRhUjjHK9qr2G1ui5p2abXeFxxKetpHKe+2vamywNP1djf2VNq6m9lcRPkd5rV1dlo2UZruVUV+2TRa9D7jn5iLKo30wTV5Ya3sl2WJ5ri21vypRihOdYX/lsb2y2mPR/rbFFgvQ5Ei97K8kWyxt/M4RtZ+z2FBF7a/OGNG+MS+YnIsvAXDtvmNoFY9iSUlqIwvSNyZjDKT1BaxjNY9PTU3i4uNG7K9qYoZYaWF/RZF8aFvaX3Fy4icoj9hcURsramuVNb9qK/srOn7T7K8sMY9/nl7FaYug9eda2klJMWZG2V/N31iwvdL4EuUWOyyP/RXWD1h0CBk2WRH7q5pU8q8Du6rWeO0nlp6svvMRescF9thfcVDbK2qHlW2PNZNla8X59mu+liX7qGz7KysRX9ks29E7wu+o/RW9NpG21OSUki6rVAaWWWyuvFD9YEQX2JNvks6b1pspb6rBq3e0UtIZcvZ1z6b6+RY5GURtnRzzsWq6wRpdYSv9YKvx2kxJDptlx5g9VijFZ4joBz3xgXcIb8oa119BOVDyrQH9IKcrtNBynLxG/V8W3Htd0xN5bVBb61jfJrkHLTZHhm5J4ptAW1r5vGLbDP1gNqW4EFl4rl2rPlXUZiyjrxrRE2o6IrDd1nSEnO7uR5Rn6UNpHHSsI9V0r5Z2jMZjsMDFX8dQG3bgvUm3ZeeAa8Mts9Dyna/pBWmsU6suUbPLL8VMbSWbXEKax0PXSW6F07nW2BlxMRkwEd1eax1gKUm6oRq9IDD3A0r6Pm19FFzvebKO0wlS/SAXO4Hq+DL1g1H/kdb00gVa9IMtoLpCTc9a09+O6P9K8R8ptFykDq9+sCaGQg+8ukKMVyajfYOxzZP3G83ZcQM9dINePeJL5XyWkq6gvDVYfsXJmKhtfI0usNbnrAeavgn7uGHdn6YbnNF84jRq9HwWOH1pyXaCxmRooR9sjXStJFrKQNckIwVayjyxDKG1vDQDj23/0qmVtbY8tkz5Xg8ZbZYMVJKJ9qK2nS80JOr7S312f2TybEB2qsW9uIhyDO2jc3NBeOwUuPLSHBOl+SZq0N6tkWcGZJg1foH/m+yyUgquwxPvpGUaZe/P1X+WWc/JSiO+jx4fSasPpeZfQfMW7dxCLonlk9lY6rXa6PzF5FZfUPq75DNKfUdbYN2HJ75PRJ5p5XHj+jOOD8tM5/9ZNgmc7FPbBmTrJfmpBic/jWLx4/SAZYxRe7LTJOe4h3KKVN4Clnt+MPEx+Eu2bCWbNro+0w6uFEejxm57S8dTJBaIlVI8Erq+1TF4fTXmd+ovU71u6xTKgZJ9ZMmfohdUJjr7rUTkmWvCK0fVbMipTaFkX47HfPT/xr9Islhu/ehjtYznNdtbgBuba/Lp2rF/Fvg8Sv39GhugtQFj5yz73lH3ckv5RCs5Rws/nmwiNktW8FjtU5QvGa/dtsd+m8bgormGZR+j20+S+yyFByS3YokzFrX/9+q6su7RmlhmLXV52W0Q9cnIjvUWofUxlN7/ETL0sKW+KddPra03S99I/UVatcO8H04HXOOfop1Tpi+MRisfo1F2DPTdUpJ1zrSYc3YJSHJuTld9FwHLwH/qLslHY41P+S6z7jTKTzrcd3iHiMSubOkXlx1ns2Q3DkT9wCztge1OuG0sczBr7Z3dHlYkvRNH6R32UFkPaPVw5ek2kp6M05dJMUUkGbAHLIeprasXLWVRHvskT72j2orzk3xhKDPHW31jKsdj3Snro+yCbGlLo9P1Pfj/C5JTuO1ondnPEdh/WWI+eeNFYR0FJ4/z1pcN598tyf0fMMvOodyCZLdYsnO01m3db0Z92vmcJ3kP/3dpH5b9csdOl7eM/5nlj28B28RIyy1k28y2iDue1U4jwecz+lg4zqMcyJY3c/rKzDqp/WsmT6aYPs3bHpFte/CkI1L8/Vb70BgZd3Dp/MJwFa2/ymxzNYB129HtIbWLxRZUsvmkcydw9qGR9RlwdUMMT+5ZkXS4YK8u6T4t9vMl3Wl2bNcItxiWfsyt2qHUJreS9iP5kfzN/F8aLf0jauP1QD1fknq12BiYf4zc2OetYg/1gju3WyjH0HVe35Ua8HFk1NfjWdkpYL3UDuUULml6riUmrEvjjhe/WyaUW1IpxlUUnOb/XFwmHLvKGstpMpSR4mNx5WjeCm7eGgydo0Mrj2mRcHu3qFfiP8x+uXK/kd+YQ0zWe/+3iW8TCU9ZbtsoWt3S3Eae56L3XFFL4AcE/L9MlmN6+V5q/pjebfH50vO2chnlrdHu6x54nxWtj3ZH+F0qh5etDU4upvHSyCmF2yi3QvchLStxB+Uc0vmUjum2UkaK3Vha92uhPiu4Lu+zkj2ep2NwbmzOxUHAffBSn57GVug5Hu01hhzFHSb/esqN44mfT+s2JWqfHQ38rDxnuMb8x9BluGzEh8Pim2mxU7Ho2Thba04GuGPAulzAqq/ibBwlH3LcNhG/Y07+r/lTRnzL6HXUfETmuUvuEiw+MJxciPpI0HlTuHaJxMEDu5aSzSj1L39bqAsnbMsCdgua3+VsS8TpsSPzF0jzAGA4nYmmHyzJaCVdxAxnp46/UZIsJ5LmMS8XC8cyzub6lXN/nvYRaX+f++5avjOe9waG89vS3hvcM9vCPwyOUfq+UDh/PIvPYsS/MRJrg7OpOyssx+8SKW7CW4VtufeC5dsY8Q/nnm/OFojCvTckOyKA+y5bdJCcX4ilHx9Nmp2XJCOZ9fb0fUv7DfDuqLV9kd4bUSJx2i3PTTSOS1ZMlHk7Ouck/k/7jtx9Dd9gvIzrO0E/yxMnQmuHaFyArDgCJduKP5jrbfEd597ZXn9uyzfI4qfq8WX1wn3n6Psv6rtZ8lcELH6Cmp+exZ+Kw+Ib9gLlkr/V0nXH9Hg5uOfa8j3n3mdSn6HGrwDsM72295yduYWS3TRdDoAtb4ZNMB07Zdi6RmVXXD8pEgOTHi9XJtM+jtqDWbbR2mJ+32g2QJwd1CdMudI4VMIiO+XevZbE9U9r5x6TaJVq9M9ArV44EmfWq/MGJPkulvNycl9OnxTRm5R0L4Cmn/DoAyIycst5UNnzT8wySUYtyaCt27TCciz4mKz94Iw4Tlqs0Kh8Xoq34KWnfKOnf49XroHlGzS+RVS+sZt0e0yvXxu8u3+eXvdbsLyzo32jnrIMSUeDc6q3maH9ektcS4t+Jwtt/C5hPQ8vHvlGbdyxDDlH5L2c9S2KyDdmfZsml6Ax7zKh5xCNRTXr+95D+QzV/1kpyTeizxUn38B6Rm49LWOJadUrPSO/NX0oMMs9rDLdc5MeM6FF4sbrFvkG7kdEZR1U53teIOq77NUTR8mSbWTJNzgs3zVNlhHxq7X6zVrkGzVY5RylvmgpDl3pnUTt3Vr6dvRKNXIO2oeWZBdWe+0WUJu5GYsdrWY7a5FbzFhsqDl5X0S+EZFtULmPxIixiRdpDKKNRagso9U4JTuuupeI7ZyF2j6+Fe/YJBPtHC8EseiSs+BsBbW2lOZExvVmzXk813vJcZ0Bq33TGZRzYxZaPmt+4SwdZqkOGKtE7EfAXgvnoIel899o+lktZYwvapBkrvi/ZMdCkZZnAeeeNV+tZu+WQcnGqASMTTh7Oyk+h4TlODk7PQsZ8UbuGZdjGxYcK1oCy80z4oHAOKfUB11DKtkzlvDYRUbGPXj8E5EXnBKWZSPZfmf5NnnsQbVxDqeL4+wj10hp7NNz31IfLGo/62XeH/1WWuWzvZj7SV69Uda1ivYBrf1EvK+e8xhabY4l2+YWRPVu1nui5fG37LtyzyW3PqrLzNaNlvSjUT1tz2OMEK3TazMS0S9H8cpE/qzYF5UBZeuZI7poiywO57Xyuvn+wXPYWObb6cFplM/2AJy8KcsHopboWLQH+N2zQ0Tnimo971ZkLq15H7Ptxe+TfS4siYfCMiuR+auicPux2ENwQH8wun1kX14s/jqUrGOW/H+oHxDOI3Mt7QxsaVy6zjBfN7gHuPW0rPXag1wby7clGTiG67NbbJc1qG3UjDbe5LaR7Koo0ralejxlM3Q6NHm3jfiXePzfrFjnNGlJ5NiWPlcL2M71tPGPYpU7aNtF909t5bhlESK+lBZ/yiwfgp5EdILSdi2Oj9OTUJ8Ojuh2lnponAyrXIfqB7X1tdxCtN7XKHo9J14/p+icCzXzJpwO7K8WvP9bChYbyCyi1xnPFSCxm14ff/X0g5jH9VS2QG0HuETtnSPMdsJg0+yxLeZsoqXlXmicVS22ZEt/cynR9pCWc2VGJe2aRm24LfcLt10kTnXUZz8LS4zxTBsUwFIe9k/bmcY/XwreOOS19vPZcDEaOV6i3/O7irPhscZj8PIysI3Fb8JbT3YMbdqfonZwpW9epO8xwp5KI3LPYp8Rbn3WPUQp2e5TrDEuPHEysuJptIifYY2R0cKGx2qD/Reznv4GWsiuPHa/nrHdzoFVFojjVGTHpsiyR/TEn8CMsJcDJBuZGvstKzV+UbU2RVF7l9oYD3cdtIjjALp/zYZh/l3yW/LGapjPx3NfavHerWTJGSx+SCU8drTZyaPTsvrnYErl53e3Rz+SHevA8x3AcvqsGAYeG8OInqGkYxgdi8Bq/zMnOj6olXfdmdqkmlgBJb+aqJyoBNwHlrE0N37m8Pj5Y7m3Nh7MlCF4/fd7+uZLfTk6Jqrt13l92S0+7Rg4B/r/TaY++lvzoa/pF5b63JYxcnQ8LPm59/J/B9/tFvbiwAXyG/uwU6Rxd7ZflCd5bJk0oF/n9SMq4bWzKvXF6DIuzqYWf1OzbevpU0P7oJ7+EJV7ZPSxMn1HvDGqLDbsLe0JJHttTs9a64/N+WSPTp45ZCLzzWh4xiYlGZm1z0eptR+olctzvs5LxdJP1LbN6KNmfW8jfsFZvL1vixZy0LdRnuUz3MovGMtMrL7AfwhlM31+AW3c09un94GyrkTNWCRDXt1TJt7K55brD2n9Imnc0GpsE9E/Ul/U3r6veOyeQdSnjvPvjNTj8VXFbZLpk2rxTb2G8mtkWYS57T3+ljU+pV7fUg46HxlF8xWtIdsf1KK7AS45y1vrpEg+mlY/ztJ+uHVWP01q38vZ+XJ8TH63tPs9tDRfn+tT+dp4gf7QA+E3BvsCZvlCevrRmTI7j2ytRRrtr8jJCzOQ9tPKP9DrRzjTwn7Kg8dPkOqwH6NcIsPnD/vv0WVeP7/a+ROz8Mh0P0zcr+RbJ/nYWWR53u0847kWcuLaukEuvjb/OOpnVGNvIfm6lXzf8NgiauMh+bFZbD9uTMd92fDvKH9PNplzZDyTmaQYtXTZrM8o2a9o63titUc/Cclj/5PBGny4vP5ZFtslzgesVH6kvxWno2oN9jmZv/W/oHwGdHX4N2fLdXuy+x7VYvGB8uD1dar9Bknfpd76z9r7JcP3aMaj6+TsrbTy3HKPr5HV/4jDakcX9Q8YDRx/tH2s4H3W6GNq9DRWm7gMvVKL2N9Y90X/czIsyZbMan9Gl1N58byshY5bOp6IjVitrLK3TRvYpfWUSZV0sxa7NS89bdQ4WzXL/CF0ecSGzZN206v4KDuxlJ56ylVhbMLJoziZ1H1mmdVGrcavM4ul2o2tAel76rUl02yKSmVGXD9Jn8WV1ewYpe8jV7al3Y4EtT2y+v9GkL6f0npLfb1swDx2XLV2Ztn2YFiHkGEzZrHlyurXz5TGJUtCGldm2m6Bf7nFXstrQ/Uj+p1l8ybtq9SOFvs5C63i+5fg5hKVbK3AVm7+/VWhHKyPgO8HabmHnt9hGLNS26kSbzjLc/ZYYGujxSWg8zdE5nLY7KmOx4uvscej9lXW/uk5YxkLXnsl7rdm39Ta1qmUNJuR0bZP1H+yJf81rOfsmTi02BqSD0lru6bMeB696SFfwDZI9L/HdmlJaHZmmeNPrz3RI2YZLau1N63v6hSbo1m7Bzz30dy36h3buiUWWyPO9ujG/vrg5Z+gZd77xdMPe2goY0mSDzTl6yknXs4IW6JDTr3thDBzX+H+9KrfcB/lFGm5hWybn6XjscPw2mxQ+wxAst2poWRT08pWh4JtqKw2rjeY/z3sdrKvdaYdD4dkn9NDV0WXH4JOa5YjZ+owrO0KMshSmeeO+paA5ONe4/e+BrL1YCPOoZWuozeROMAZtLa1i9rl1V6/C52geqZaeu9PAuunPHGN8X+4x6x6A6xb8uhRNVtJTndVgmt3abkHzzeJOw+uHOh5Lk68/ifDxhPvQ9qPVYcFdb6Bci8jklV/oZVpdWyldRSsW8qKLZUN2BPV1OHRWdVet166GaoTyoLW2Xp/EjiGZ096nFtpv9bj8eiyIjqbk8yHKKc6ox42i1Q3Y9kG6z3pdprux0J2G8829vemeFwqC1RnIi23otWPseiQcFnrNpwO6qEC9jGwxsbV4uRq22TF19Xi7s7cKKyD9Va2lJdqYwlHsMQzzohznIVVv8PNjQHfJvy7FqyL4fxlSuUx1nI9oH7xmfqXNXJHWedB85PEY0xLGcwlYdlGPZwuSSoz+lgzwPIzzf8Lw/k2A15dnbRdK59sK/ScPX7GVhvkkwSWPWXr1kY/R5TR8sFsWaNVHrkmHjvIkqNxMgquzAgZXw29fBBL9Vj9WaP7Hd3GS5PXLg3vHA0Z8yxY7BY4OwbP/mufjYistaddh9f+Q7I5yvadzromPRhxXJ7vZ4Ra2x0PnnFALS3tUqhtSo+2g/1y9kYXp9d9uSP+5LXtMJoRcQmszDqbbBs9ihRTl0PyQbeUWSr3jGUwpwXuIi6Q/3g5rHuXWR+Za6cX36HcEtvCUkZqyx6M3n8G9HneCURieVNKcyH1iumRcR7Yv/Ah+Y2h9qEt2o7GKSnVoc0HRfel7Te7HSN8oKzzIL2/cZ2l97y1Tq6M53gstggA1Tt59FFeQEaaVd9S6CFXhn1ZYtpYYt5Y9rVkXhjWc0Tm4GrNLgmILTIyXsyWtrTUdL2AVN5SZ6tn/i8D2D68Bkl3y9X/ufB7JOeEZZLeUtJPS+WsscBgu2fkP13OAWWsscesscnOoTwTHM9KOicp/pW0Pjs9Q3npuDzHUzo3afmIuX5axGaj4NgkwDsTb3NKt43GNM/yE6Ix52pj0UX3bYW2odbeS4E7/9HHFAWe59Y6MGD2DQHdfuv9UFrtC3yHNFuGkv2Nd59Z9YziyQLA881yc8+24EO0LzoHRSkWpOc72cqm/M5kszFfG7+gnGLZnnvXXA2Uk9aX6pS2Hd2eJX+WDKzzv3BltTp6g59dbk4a0FWdJr+xP6JkN+P1gbTYy0T9K3txi+EQzqtXe0ltSMt8MvlimmpYfZWhfOkdROvG63Bdvd+NVv/XLP/arHi4ln1pMRT/MawvgX34ss5riWjtgIHnUSvDtWFr8H2P3x099teDnQFO/y+VnVBOk9fGQNpuaUmyZcAJxzXAv71Ji2ddQynN668UlkvQxC3D60pADGz620uPON14f9rc8xBv9nuURzk/vS4nv7L/L10T7Tpwyyz11Ca6P4hHgH9jpOPE5S1xDE5qotdUu/4Ya4wITHQ7rp5arPuicRooNc8upZUOam38wCzDbf6DwLxudOwUSyyVSD1ae9Wi3eetsD5nrYFnMOs579mnv9OBnvsCJJks8NKw3sopJ7eZZb9Mx+drwXiO5aWxHk9bevdlKV86Tjo/hmWeDKmuKLjeOY/2vVvGjIswyw248ZwWl84St84bm87C18ZypXdcqfxomUpr6Fgz6/1aerZr3ynR91s2+Dl+bqTkb8v5ZnC2kJz9APbhws/fDoHH85J+XIohBZRi8+BjoLE5Sv6kUDf1O53nNQa/Rs73FsdGB79ImA8ZH1cpjjrnW4DtOWl6iqBxKs5Nx21PSnGJOVsIrHuj+utZvwnycE7/hGWFnAxJS9gGihtX4L4P14fF70juecbXg4sVhv2W6X2F7wnPHCZc3TPYl9zr00/jB+A4AlKsee6+ovaq+D4q2YFzaDYS+L6C9wW+rwBOB4n90bjvu5bwfcXJSn6eeL2/1XZH83XyxqrDYBvyS0xujQtGy2p6d/yOxNeZxv+htvyaz77Vp58eD7QHF4sBPytSDAju2dT8uq1w7wHNbxbPefIegupcqN+l5kOHffFmH5AXJAda6aA4PxR8f5xjKH3rSkmbI/ypkfMMmv0m940t2TNa54/G78ySrZX27a6x5aDHJMWQ+HJ6PY56yT5lrpuOX/AzwSX8nrfOIwt4kle+jr8PtfGmaT9GG4NQOY0E10ei4+zS2LI0NuL2p4078PuxtI5SWi/tK7N/pY2PsP96KSZkTf+qxq5b619hX32uf7VTWEv/ShtLZsZ+1fpX0Vi0WTGT6PGUno/o/I00LhCNDVQTR0uLCYLnfvuqwHxM36Fcu67z2P3MZJuPL9q/Kvlvcn0+ya8WgG29Setf4fdTj/6VhV79K66fZfEV4PwAPHaItya5n8W927V7kMqxJe5Mr8tmPclqdwFo84XU2Ffgttf6VyV9Dte/kmxjsVzKomfkjivyzbOiffNw38rzHdS+Udx3g8P7HSx9l0pAe1hl6Vo/d+aCgiXepAQ35yvt20LumXdV6zNH5jywzB+Kv3WlpMk2OXBfvPSNpUmTH5T67VqfPyuuNj0m7RuEv7XW7xaUl/q0ID/AdZfkDJx+oTROqQHLkLkYZR7dNKVl0r6D2voSmj8fHqNZ7UY4XUyNbpj7NuLnuDbmmRf8zdTKRceq3veq1v+38jbKAdoviI6NtXez9J6umXeD88XH7ystNgClNJam+mZv3RnfABpTKUsXo20blUG0iCkvycCssda9/S+87Z8ox3onICrr8MpdSrSMQ437j5yeDJ+TRa922sg1kktw7RGJc5sVhxbr/Wpi01pjtmpwfeostO8D1ltCee8+uFicko8fjY/3MckPMV1HeGMJauMYrM/VYuiV9L8cpbGalcyk+XdwslKOrLhj1rozY1NhanRTGlI/CdZj2W+pnmgcIk6vX4oB1NJO1jpO52TMGG8MF0uMF1oOxo9aX68mJka0nlqi1w/LGzQ5vzcmA+7nePQJnH4BY7Frl9DaI+I7b03gkz7n4Ase8SGXfLJr/alr7VVKiTvelnWXfE4tZef/Lf1FOX9Aj80O3Q7/9/jSRvz1JJ87TX/kBdtWn5pe9zWz2hxFfZhKvlLg2+T1W4L3ZYt3V438UtP3wX9vW3r0UprOSiprtb+yyFoi1MgGtTFMySYry/6KI9P+iuufa+/HQ7S/8shqs+2vvLJU7H/U2v4KE5VHzmj9Nav9FbbDumu4rprdVdT+SrOxKiHpUCCPJmx3VaN35tD0EB6bK4/9laZz9NpfYXrZX3nQZLdW+yvON7Y2lWyyWtpfaXEPvLpmyQdQsr+KkvUd5Jjf329Or3wP6bcP+lXe76DHTqoVLeyvPPvX7Kxq9H+aXjFi03VhitlXWcDpGZNb4b6DWfZXVG4fsavy9u+zaWF/BXh04J56pfFJtv0VZ4fljRGCZXQtk0c3Msr+KjKmOwT7q0xq3qlZ9lecPVZWu3nsr2pssFraX2lj61b2V9Hr5+n3ZNtfRWQQVEaSaYdVen5q+kqavDDD/oqzw/JcW4/9lXWu+pL9lWRP5bG98thk4Xax2mwBmhypl/3VQ5R7bK84WtlfwbvcK5+aOaNg/Y5Icx5b40xwtlgZ+t41pJo5orVvTc0YaG32V9ocXFb7q5qYIVY8dlVR+yvJh7al/RUnJ/baWFntrzLlzy3tr/DYrUYGTu2qnkyvZOJW+Tmg9eNa2klhX69PpuPzBI2wv+Ji2ETsrzg7LKvdlVd/wJFlz5Btc4WTJtvJnp/CamNVYunJ6jsfoXe8fo/9VZRMe6yZLFsrzrcf3teSjE+yjWplf2Uh4iubZX9F27TW/gpfm2hbgn5uzjkZo6bTsuq7auqh9NQDZugRM86Z1psla6rFq3fUZGrcb0n2lmFfx8VDw2TVXbLr43SCNbrCVvrBVuO1mZIcNsuOMXuskBWfIRIfeIfwpiy/Kq5PVvKtofpBLy3HyWvU/2XBvddLcjuP7WlvXWuEt0hOqdEpaXzjbM9eZOgHs6nRD3r0iFZa9amiNmM9bd48+kFsv011hVosc9x/rNWFcrpRSV9q0adK1MZlKPGegteGPYJHP9jyva3pB7FtvVZW2s5rs99KNrmEFNHhApzutcbOiIvJgIno9lrrAEuppB+q0Q3OzGO3pyjnfDKydYhPyX7PT6/i6kJegoubIOn4avSDH02v6wSXRi9doKYfbAXVFWp6Vk8f7ROUe/V/WuxHK49IrhHRD3r0hL2p0Rt6ZTLaNxjbPHm/0diO+2uULxHQ0awhtdQRUrD8ipMxcbbxo3SBPdD0TtjHjfP3l3SDM1afONAVSrpDL5dJXipH0ewneuoHWyBdK4mWMtA1yUiBlrJPLEMYLRO1ADK5kTLBTGrkpS2Pa7R8z0uWDJTKQntT274XGhLxO6H+urV1eNFkadK98DHJubkgPHYKdLvSHBOl+SZq0N6tNc9Orb/1GZSXZKT0P67DI0NtmUbZ+0v7OMv8p3j9Hr0+klYfylb+FZ7UQi6J5ZMjsNrqcLY9Fl9QnHt8RpeAxW8Drl9UHmcBy4tb7ifj+IAsmwRO9hnZxktm+1h9OTVa+pqU4OSo2voSWO7JxbXQbNlKNm10fZYNnBZHo8Zue0vHU01MEA0t9kjLfUdltFm6LU7WGdmmJ1QmOscM9sgx14hXjlqyIafLLk2x+UU2/sUjnx19rJZxvGZ7WxrHa+dfO/av5SLKAdy/f8D8P2RwTFUgy0Z31D3dUj7RSs7Ryo8nE2qjRPMa8Fittq5etLLbnnlzqoup/QfKJUa339LlPvg96dnOEmcsav/v0XNl+hjU3MstdHg9Yra1erZb0eOYOLlelAw97Chq9Iyc30bLY8U64Ay/FOs59aCFj9FIOwb6binJOmdazj07Gk7ejXXUdxlq4jD2QItP6Y0TeVLhvsM7RCR2ZSufuJbxNksxNaN+YJb2wHYn3DaWOZi19s5uDyua/oky+j35nXJ89JuhxRSpActhsutuRUtZlMev01PvqLbi/CRfMOu4uLX4fcTFY92RPINdBVva0uh0HQH/8XN2XUGqM/tZAnswyS5MsxsrocnhvPVlw/l3e3QBmq+413cc463but9W9ba01bQkaR+W/Za2hZQV6/Md5n+GL74HsInhlllpYTebHXc8o41Gg89n9LFwcDEWMmXNPdDsX2vx6NFq6u7ZZk8c5XrRKv6+tA+O+ygfGXdw6fzCcFXg78K6Unm8P8s2SwC3hzYvAp0fQZs7gSsXWZ8Bdy6lWJ5RXa7FJr6kNx1lp4+5xbD0Y+7dHkBNvZofyeh3g4WWPhJZcXu+3NenxcTg+MdJ1jGPgjun0v2P8fqu1JC1357Pyk4B66VK5bik6bmWmLAubT7GD1BO9VHedLMDXFwmHLsqM94TFxvLWq4V3Lw1GDw/h1aWsoZ0BeUW6LYlqB/XISZru5X82zgi2+BtPccV2dd8f1+e/M+ERJaseKn84KSn72XJF9O77f19zp3TbySXyJ53qwScZ899UrzPitZHu4PyO0q5O0z5tcHJxTReGjmlcDsA3Ye0zILUJtL5RI4XiMR/rNkft1/vs9Ii5gGAx9g0BgKNg2Dtj39L/vccj/YeS/am1fuHe860beCZ5579rOe1BPesPFe4pqyTKJWT6mvlH1LjE1pjN1OjN6S24NQ+XHtP7RTOK9Tq5DT7TkssAel6tvLL1nQnUV/VVj58pXse/Hy8/jnz/DJ3UU6p8WUCO33JZh/7vnyFcg3tunpiIXriItbYGWs2c9GEdeycrU/UV3i2Y9NsMlrNr2GZv0KipP+b8ejLsQ5c00dYdQ8cmv8G7rt5ZZ8tEsiVSvZPWrwnDW1sN4+pT02vj7O5ZRStf1zTT8z4DkpofprR76D2jcj2Sa31K6XtYu2jltB8nGt8pVv5XmfHEAI0G2X6bbOUsX4Ho3bT2vespl+fHYcD0L47eHzg/WZp30Fat3Ufmh9rjZ2J5pdYI8dpmTx2wV5Z+88Mmk2YlZbyl5Y+iPR7mvV9bRnrjcYpy0RrI4/vjofoNYP3j/aOiqCNr+fxeUZMJxrbKXrtWsY+GhVLKHrtSs9PTXwaSyyZzBguf051/VvNN94TiyMamyMbrf99mvzGtIxvAXXQuUdgGTfnM6CN20tE4yLUyKA0PP78kt+8BudHH42JcYiJtpUH7Vszy/Si/sCtxm2tfF/pfM6ZvqScnDULzocUlkm6G8nfEJPtX4eJyIl7+Jy1nt+ZQxs/Z8S498rEnwhlYJnWL6v1HcE+JF7fkk+E7TSi1w9/az1+Gxbw8WXrEDL8Hbj20OJX1SRNZtPKHrzGpmJk8tpxt8Rq0/sfknvw2LBmE7XzjNgRZdkpZtvkeW0CLzP/tWe8pR1bCzswsOuKItlCUT1WBKt9Vma9S6S2HZ+jeiL6wVZk6wdH2NdpcRpbzfWwRv1gzZhsFFm6QEk/WIodXaMfnOUnkHbT62knwJWjyRIrCOcSXD9sbfpBq71orU5wBNL7srQOKMntonaotfaxo2ihFwRq27IFGfrBFrTSD0b1hK36VaP6qa30g9h+26unw/3HbJ1oll6V0jLG/QWB9ya7vXqEqH6w5XtZ0w9yNvXaNqVta2P9j0zPSF4qZyFDvxu1UeH0iJSeur2MpOmIavSDeAzXUldY8vXQ9IGj9YNR3V0PTqJ+sManpkZ3OJ/zI0O7ZFOjHxwd+6yFD9Itw7Xi8MxbM02+7/LN6biPPPzuGTuqxB3m/xpSTz2hJMuy6vgi8WyWjKan8sYu8egHJV1hLTVxcTSbiVb6wVa6QUzkGq5Z/tmClrJNSfc3Wv4pMVIW2IqozLTlMVnkdjXyu2ysOobnheVLIipPlWR1GdT4n4xCi3fRy1aB+lbUEL1+Lc81yw8bg2WjdN0byra1cU5qktfeP0s2WCNHbeUfOcPZopT8JrJ8K6Kpl3yyJzW2PRZf0LWhXSccTwjnLeVxVGbcWx7oPb6ZLJsEzu8Br+f2rflNWMiUvVKfzUyy7cg07iXUgeWeljmsW9i0ZYNlsV62dDzVxATRyI5B0gIqF22l96KcQvlS4OSiUbnmkqmRpWr23aNlc4eEVTY7+jhrzsc6ptfaoMXYvxbc13+A8pPA2ygHsux0L6G8Jy3lEzVyDSrfwMfcyo8nE25cVRsbCtDGfFn7yaSlDXfG8ze6fdYu98HvSc92LX0ANN1Wax+EyL3cSo+3lPbIkmvV0vp4uPd/DS11TC3J1DmCn0bWsdG6JB8QzGgflQyflpY+RppNQ6Ztw2fT8feWFuM36veyJmY/q9P7XNNbj4rX2IOWOoO1wX2Hd4ioD1QrvzhPbM0sMnzCpPaRYnxmn0PJPh5TWudFe+cu8R38Aco1MnzjJECe0XIfrY65BZofp7We0W0EcDFqreDnmIvHukN4Y7lK7CrY0pZGpOsK3H2ubWOpo+ZZKtmS1dqWUTkclcfV2KtZOcfkJSI6Aq1Oq++4hnU/3v2eM+yj5rgnYdmaUk18KYmsON21eOb1AVraz2bRox1ag89n9LFIMd0o2fLmtVOrg3uMck/dLc9JiqFQWtcaKc5Fq3o57qN8ZNzBNcLZW/dg9HlzaPadXDxMKy3rrtlvKZZnli6Xs2Gn67XyLbjF/C/hPceNGKPfA14034p7U9wvIit+j3UeEeCfCrDuaXTcogjcOWnvBuAGytfC3yhvTVSXtSsASatjiUnTP5X8t0rp5gCuTK/H0MqM9zQ6JpfGPAfH94jIHB630baHkvA15JZZOcQUaQfq35aN91gixzTf45en489LDS1kxaP5oYIRvpb0f81xcOck3Uu0XE3MuDURfVa0PlqNL+Ua+aUB8C0/pRDtI6yRmjiQWfv1PistYx5IY28uFkKp3y2tbzVWPDTuoBzT653IxerUthn9LHM8bwj2J3iO8sx6M2m1jxZtW/K5Ge0/JPkRYZ/0zP2M9huOoPlY9rD5omjHNNo+IEKWPwan86C6g8z4TLuGeOYfxEh2LDMgW2g5tm7Zn+gdb6Q3+H1piXeSFSODo3e8jFo0XXmNr3TLdm5BK193zU90aczXrlW/qaX/L+ffW8vdhmAf8rWQ4YMorfPEuP4K5b2g16/le1mLaz2KpemyI74IlLMNeNCQtSWvDb6V2R6+Nk7QU5RLZMQjwuOJFjGaODvw0XMLLmn+wV4xV2vtzL19bA+jbKupnTXNJUbb3Vm4hfJWgEzmYQPg+y3pV8CWiP7vzR2UA2tMFpuiqD1alj+XJYb1GoD3SAt9uqZHr+HXSY6VXQO2H87Ww7bUR2bA6TQPXS7qRZOPXVPWl9pD0vWNln9KtJT/9ZCBYfD1k9Zp1z1DHhfddklYn6XnzP9su4Ce9gMUTT6HdeNaOWm7NdFK/8/ZGoyAu1YS2vlwcfylctp2S0dLzwxlStsuGU4umhGPX0KzS3mGcgy3LBsuSTJGTeZYkk/C/79Qztm/WO1kSrYzvW10TgJwTVvK4CR7otGywRIt5aK1dliPptfnGIS8BZl2X5L915rwxnz1+LSOnoewNDchBstitnQ8ZctCMd66LHW2pqX+y2PzeIr5n0GpLm4dPDej/T56UpKVlvrQo+Vyh0a2DFfaR+v9ZjN63G6lpZ3P0nkb5cDIZylj/y3lEz1lHUsDj5e0OJVe2yfPWK+F7VWElvbfmj7nU5R/WiizNjTZygNhGUXaFq9v9U4drd9qeV9GOCnnKflhQH4IcLKzqByO64tpOqKI3m0p+rcS3vPygHW+o31PerIGWwSNnnP8eRkxz1ZJZ107vx++d1rOI9gSrBuQlluQbEa4dVm6jAj4WWk5793IeQlbzU9Yw3tJePf7cIGMnnvQSwtfOeBS4/pbHTNwZnpdnnSGgZM7Wbct1eGh1OYvDNte2pfj2uRFJdz8Zd7YzFqMZiuWfSzJH3ZLJzt5nkP8fEnPXQ8kWVhJzma1p8Lz12Xbq2WCj7Ol3mC0TWgvG0vJ5nLNqWX8qVY++i0p+eyvDcv5jJ7nrzfnhd+0DEetTeeh0UrnNtctxXZ4zKyPHn8pZsKS0OYctM5J+BFTfm3xN9ZIC3tt4MP9Pj4U9o3tKDPPyVqfx87zZ+a/B08cFevxePfhhepmMxltQx+h5fE/QjmGW0bXHxqj34lesP/EPZQvCe/8gzXzE2Kd04j4REDt9q3AvivS8qVB7/mo/0BLPdsaU8kXS/LH4srdRDlQG4Mqo441ctu5TpqPo5YtHVa6gvKTDjfXU2mdRktZ8Zr4YZ+39KfkYs9FKM2f+NtUnnMwymWG0rpDZPZ5/HsaH6Muk5cox5TWAVjmgf1ks+Me/lqgVR9iSZTOf2nAd6VlXIPRY7qMcWBP8PPeqt6lgN9Pt1G+ZDQbvOdT3D/6eSUZ+9XK0f+e+ILPUW5Bi4s4Cunaa74bFt+TXrEeN9rAXdPR92tL6HNdapul+NNp5Wh+6JTOs9f1GRnvQ/MxramXYimn2URyMTClctq2mZTqP4tyDLeMK3NSoddvVAzL0bbUEqPaY4mMtkdcGpHYBXS70eeQBecrm2XLkl1fD2isUC1maFR3zemyJVnZ+yTvScu0E+DWLyWNtpMfCafL/NlBJLZoaTus+8uKU1rLaHu8pZEZ8+8QyIiXubEssuQtkv9rBlqcwAgPSB5h9PO4NCx+vZdQHgXLErKO3SvDiO4n2x9j7UB8wzlv8ZwvGa8sxFqPtKzleWS/80fHpNt4RSnm6WdKmTWA30feWKdafa0ZrWdbAqBvs9pcjNanHzoWmxHLsixaxpm7i3gX5VZ6xTH1gHXYpXJ/rgjLeV9DOfDnFH8Oao95xLO7tHigo/ld4b0KLih8xeDdB1fHKL5DOcWy7ZIYLWsZDbVnOdOQNxi49S2PgSK1C44XyB23hZKvdHRbrd7Nt3tLS0vPENcLnEU55hmzrCcvUG6hpQ4lm3MdeNYQLknrW+93QutKZbb0b8qKKdci1ucItHicNWAdQsv9LBmwIbK0lac+T5zQKN4YmR4y6+pFVjzR1vEuN/oy2tasNVcXyodMvnE8vmhGHZmMthmJ0NLuvhTjsxQDlJbj6m757JWOyVrOQ+QYPe+w0rtvxDt3lhOPjh+60ZZbg+HeGZFtPlHWtX5ftpRBPxSgZZYk5y75Nd108DWT47hAo2N2bpRjlnJsaUtz4nzaNo4jydnA541bZoVuS+vAsTcz/fRoXE9LmWi80JZxRDeWxTxmuYPyTPC4iFv/cvo3bufLxH2+rOTUyvn1QLjcsF6O0joge14OYO6T/4O4waxfIi3lKNnvopNC6V1a+27U8MQXXSM/ofynQhkOS93adqP9xjfymX2ZRvqjXiK5tVzL50zyU4D1zyvqfo4Y/T7Z8KH5aVp9WUf71m4sF+7dB++fke9pD6PbcGmM8Klrxei2XBul70Ur33Tct1sDzzeaxZRfE9zzc+EE8q6wjPrJrwXtfC1lcLtwfvSjz7EXJd/9qO+nxbdTKye9260+phK4rt+FMpKffMtvlnR9uPXRfWhxAFrhfV95nvUl0FJGUHtfWfdBfcO5uqx+5SPnDPGinYvnvHvyRuGc3mDWt3iXe9nS8dTSH9e7vafutaVnJOfW156v1sZnhWUSlji0GzlI8XFpmVHH94zJRzGhfEL/R703sv2k1w6NmbtmrOezxHb5a3C9fzF5lt94hM8H7186ppNKVltltzN3z0TvHavf/FOUz4z2Jz9JPN4z+jhOIuBbzy0r+fGv3Y/eg9c/vOWxPC5gPbYsP/iejH5OMjh9wtD8p2u27YV2jJnH2sq333sMLY/FGoPgYQIfBKFzjkplavDOAarNicrNZdrqWNbMzQI3nNvfUOrqxZa2tCVbwr7uGb7lmFb1tiRrXuJI3aPP/RD4rSG/KIyOKZjNKYWfp+PzaP+cuO/7hv2XoMfvPbeNV1AfeW4ZpbYPNzqu6sZhcgflGFqmJ945iiklm5lW9WpgW8rodhsbG2VqYxNE6x593httsfg+0hgXPX0j/+ekR5wPbp/WY4tuu6Gj3UseGzIvDzY2Vgpnd90ilsVIRn9nD53Rfgwb/XlLyEtcYraX6t44HEr2e7WMtqWP4LF9/BTl3rpHn+eGHy02nhXuXmpVb0u048H9PO+5ZPcz4Xh7t9H2vK+X0f5QG21kQaOPY+avKe97osVpbbmfzO/VNwMpteNnSpkR3+6sbS3HNfK7uYR7YzTc/TfiWah9H/V4jtbE6GfqJGBp/5N4LR6j/CRyccOsy/eWOxRGx0FtFVvVE2919DVY2vWvif0M9UptjcuWrklPsu81S7nR57w2rqG8dP+Mjn2+cZzTkxwTfqnQ8ad3zFPrp17iu0q4Ot4vrNvYmLm3z09Px+NHnK7kwhF3p1cxve8SLpB1XBmJCwXm9XjeAWuddLs1Ad/I0cdRC9yT3DIrGfuv3cdplG/4oO24cbh4+187I5F5TEbxfxVk1XMofIzyFteo9b3wkFBapyHNGQH11c77M+K5qLnXtTl1Pka5l/cQH6O8dbto7VXzPlkT3mejBx8klf+gId8x+VeIyHiydI5ZY1Z8zJZzrNmPt25P23vP17qfkpzJWo6i2eLXxI+oiRUxCslnafRxbYxntN/cSLj2OJMM3p+l7BmlfO/22OjLC2EZJVovV5fGFyjvAe4v99rnUtmtjPN7es4DtqUtbWlLW9rSlqbpOsm922ZQs9/MhOv9gskPrV/3V0Mk/8ol88DB58Iy6bzP7Rl9jieZcwxSOVr+7SS4eymrbny8D4TzzUKa9/ntwjpYr5Ex//Qz5vq1bI/e7cytG32smZxnyLovuLpLWOvhlh16eoZyT5tLy0a0M92X5x7htpfuIfz//sYxYI7ld0449/f5f8lyPCeStNyCtv//ButtydOV8g75jaHlPIw+rx7tNhrrs7KxXDz33H9RvnFYcP2x0bEulgaOsfcY5SeBqw5GH2trnqAcyI7hiPfn3U6qpyfZbbCxLJ5spPCRgycoP4lo7fMh+X9/el12Usv9Toye7zJz3kzAMrfm6OPd6Msve7hlVq7ukfZx1VDGsm0tLfbR+pit5+BpT+04R9+Ta8b6zHw49Z17ns753qJeL9790Lym7prjPjRq20PqQ+H29va/amMkQ4yLTxhoLF+aa3B1tsZyXFFGnM/GcW6h3Mt2b2wcEtr97inrYfR5t+JRENyvtZTH+8zuV3Pn9TeTa9Dz2nidOebEtyjPBMe1yK67FfdWTOmcIm3x5UD+IXmpXCY3Coy+vhvr4B+U90Dq42TWi58D7Tk5ifxNfmO0vujoY2/dLhsyu4Z4YvvtmNwLJG6ZNfWKZcjt03pM3LLIuW7Jl7yxHT9mln0w8dfbE8MPpw8Sz8+bcF/9JsoPGUviysH2VwSmwrKv99t+XdjeC03SMm07LWUdL/B1BdnH0uOY106pXb5P5raD7H1HOT8d952kuZTO79vwPFM28px6kuW9RY8l+l46KcnaPv9BSMst1ByDdlzAbwx4G259iS1taYnJ8k6r7UP8xuQjqHl+l3DMS6Xn9b2cwPcoXzO9bPw3Njz8gCiVu4xyjR+CwPZzn+6/k7+vueHH8z7/D5OPIvO+XwMZ39JDh/Y9svogG8f7MpaydJvR/biRuk+Lv2Lveu9sHPMR3XiF11fSwss92fX14NRAOJ2CVI7mvwjbW4i2Ve22WdC6Wz8zL5m8hsxzz9jvS5Jr/Cos47DWl0HmPTaK0rnh/yX9Ze/+12h796XxJclLNuneuqltIrUtkZZTSvu4yeSReqR6vxXqpcc92u5zbWSPbaR9WPdbKtfieDfWS8n+5w7K10xNP23kcdX2Oy31cvsY3RcbxffM/xLPDVwj0HX4/8UAlrm7LfPJWGIJcvEzuP7GjuE8A6dD4N5R3Jy9PyGktnmTQZsLmDtHrh7MNwxa3BF6rFwdmK8Qd/f8aeANhguIrxi4duHqwXDprAFuzhwtQYy/p4jPFc5NfOxSLY4gF/PqQ4QUA5GLkaHF7Jpj0dwjWOIRcP4M0Pcrfd+jiYtLbdF1cjJHi56E6w9bvq/ae0OCvrOvCXVhuGeWq0dDew/g4+S+L5QfGei7x1JGKof5n5O5Tm6OnOh7Q5pzB+DeC5Zvo/Zu4eCeb/iOlt4B3HuDfoe59wbFEu/jAwaLPCGauPeGxf75ZwaLPUJ0TKQ96xI/TfZ3TAnLs8PNvXdJWE7LUCLz82ltEY0jxfWd5ueJ+3ZzwPOntUOkz/ZZxXYUrR3o9dbevdw7G74Bln4iYPkGfcfwLoO0vBbLd5Tz2/0/A78zvMeg+ZNybYTB3zJ4ZizfvTMMsP0LAzAPr8fHeUSix8vBPddzPx/Pe8rNhyqNOZ6hnBJJdCzxjpGnSXBjbgr3DrXIAixjqYxY8dFvONe3+jCA5Ryi8RAjsda47bW2wO8dOr4EuPhIeF+e8aglRgk9Rvoetr6DuP5pxNfVIh/MTK18Ubh+sMXOt9aO2eOjEpXRn2KIyHnnY5D0/XCMFh2wVRcY0Q1YzsMif7bIpKkc2rpNC7znYpVdWIjINzLk8zO0n2fdDtNTvmHpI2QRkW3MvM9gkW/sjEzkvzZfn/TOXpN8IwPLs4j79Jr+xaPfySIq3/CcixdNvhGlhXwj8n7O+sZ45Bt3GSS5BHwnPPIWL3AOFlkGxwUGTgeoock3os8VJ9+gukZt/UxP+Yamd4jqODQZJif7OCfsr0XixusW+QbXn4jIN2DbHvKNrHnpDkW+YZF39JrLSpJpZJExH0D0XcTZ5GbH+YIxZ49UK9/g+tgt/bMjcPdoVL6BsfpjWGwqOHlfRL4RkW1Y5T09xyRRomMQTpbRYpySOQ6IELGdsxDp10eg49bnKG+NNo7h+vIWLLrkLLi+ea1sjtPRSmhtEZUVem2dPGh2lZakjT9q69FssSxwMszIWEpLUf1pRC4alcGWbFl6oLVFtO/Oja2yxgV0Hx45HNapcsfo1ctajlOy08My7agtXxZgvyLFL4/K1KN+lhxrSNExSsb4xkpEXkDRxixRSrbfUZlJBMtYhvuO9dJDtIYb80Trqd031weL2s9GwN9Lr2y2NdCniuiNMu6TaB8w0kdsicXOjYPrY1i39RLVv3HX/lOUt6RnXxY/F9z6iD4z0/bbcq2Wrr/tjddmxGqfY5E7WOUSHrzHQfW/mJb6Zk73nK1vj4DHJ5ouehScvMni3/AnybPhxpgjoe8q/H832eZki9pDlPDMCWexOaBwfiWR+egeVsD5ALZ+ruh+LLYQo4n2i0v+OpTsY7b4A9F7afar2SFK/jdfMOUltjQuXWfgrqO0XLv2+B6Iyr85OybLdpx/l4Zl3Mlt59VLZNQh6Tha2nVpKRof3ur/psHJSClRnY+XmmMcyXmUnxf+97Dtr8Urh5C2i+7fYj8XgbMVjGyDyfQh6EmWnrDV8XF6Ec6ngxLdzlIPANfZK+MBfaBm4xlBsqMsHcea6fWccLpZasvK6Vyt/sAa/xjA4/7WdrsY2L90781YdM9Z1FzniIxgJyxvlTh5Ar03cbqZjDZ/MSXbprrW1zzb3zyatHYbnSzX9jfy24K1XglPHPfaebdqscyVFbUx4drGUy+U4+qx2Ln3IjpfUtR+vhVcjMZTwnJahhKJzdAKi9+EpZ6W8zJYfDI4f6De/Y8Msu9b8Bnhlre6p54HicS8qI2l0SP+Rq2uvQU9bYeisu9IjI6eMraITnce90bthHdBtPgbEtF+U/Tdl2mL2Sr+RsSOMMuW0ALIr7AcyyLbip6Xl1F2W1Yi79IesTdmuJgbFnrZQc1EZDAzJV+0SBwOjrktos+VFuc/Qqbc6RnKsS8azum6KFFb7F7JE1MUmHWWvexw529rjc1wq5gbGfE3MnxnrLrAqM1slt5M059lx9qIxuEoEbWP48bOa46/gVNW/A2Lz5pV7pqBJqvyyLA8eOSFWCfmkdv0kAF64m+0HKdE429YxiVUjtFqnBLt+2fFuuPA7ZJZbws7f3q9n6O8RuaWAdeHp34e3PIavxEvUR+YVsdD24vuV/K9LK1rCZcsdpdRO09u/CItB0bH39DsVaPjhyzZaUS+ujSifXZOnps9LgCi4xSPLLrm+CIy7N6U/HFKtjSZMTgwnG3NGpJnnILHK5Yyo+NvlHQSnvGKRcexBF2xpjc+1NgbvcdSEXr2xaLy2F68nXztvfW1iL9R6iv2iL9B8cTfALJjWUR1c5xconXcDU88jl7PSaZ8oJV+dGnHs6T4HI9RLmF5n9MxfQ/5Q62tEpb/9NQ3l2gtg+Oo8f+3xKgYHX8DaBF/ozY+R0kmGbHVkpivc9TOYWQsjpr4GxKt4m+U6BWnJmofgfueNXYWFs4kUNMXp3EzSus0cPwEq++WhlbHlsal+f4t3QOZWPvgtO8fjbfhxRp/gyNLN1GrzxidwJdf8umXqIm5EbEzWxKj421E7NJ72PbX0sK2D+zeYB+tYmx4YmlI8TUscTda2B/2JKpvk/QXtbaWHhtMb9yMJ8Z6vURlNz11j9H9PTJw0uJvZNrERmJxSPE48Pg+w1YXk2mvK1Hr95rhFxuVN/RMkXk6Zt1+zzgYveNpeNmSnCK24yNYQ/wNC5nxNzRKMTesjI7HwdHDdt5iV18C9xk9tjzReBa94I6vFS3nnurZz5DsnyzLLPW0vsdb31NReymv74C1Hm55SVfnPY5s5vbq7XtyCOC2Gnn9rqGco7W9RI0dRQta+c9kQe1drNuU4HQVkl9HC3u9swZ6xuDxMrdL1C+lp8/KaP8TjdF6CAu1vietWYL/idc/RZsbFsueWvqpYKJpx9AqjdY/XkG5hFd3gv1TPD4rNYzWjVkY7UNyCH4mI7H2P6P28DVxxqzxDpbM2yjHtNiX1h/Uth9pd28Fj09b3Fu10L5j6/2N9E9ZMr18VZbo6zJaVqEhyXsOiSX6p9wlRP1TLH4eP6Ic6Ok3xPEuyjFwzXBZ6bpa95VxD7X0Ocnid4TH54TzX/qK4T1heSvgHi+ty2R0/9TCmSBcvNRoXZRLhX1YY7Va47nWsqU2CXQC1xkssvsIJd+n6Bg5Ajf/qoWWPiJr8zWJJK8NfE+/lFr/FDxuHe3TkoXHJwVT8u/w+IwsyT+lR8zpNTFadg5EfVA0/5SSn8oSsfinRPydesono7pHi58Jpvb+eIRyrr6M/Uv3dotnaB5L9ZxzdY208Fn5pLC8BdEx2EOGVmM3S5xJDPh6gP3saJ+TJfi5bElPV1C+Vjj7DYttBLcN9g1p7XtS44NyEona59N5LOZl1K9Eq8PimzLj8UnJ4tdBXA5uoxH1512Lf8rasN77XkbrJCy2TdHtNl7R2m4rw56L051atgPbg9H38mgyY8Ru2Ohtlzb6fC0css1OK/AzO9quy2PvdQj0vh8vrIDWsa0p2v655dQubTTUdiw6F/FFlJfQZJ5Q7vcC0XcBd/6/o7y0bel4LIx+NjDRvlq03S3bUhurnvOfZNmFWSgdR/TZ41hDitoDLd22hzs26/HiMmdRLtFybprMOW6y5saJxjfGcY5bxj1ukUbbMVkY7Se/dP4iOV4O1Mw5ZFlmredzsv3otvNgnZMpWleNndv8nLSwt8rm8QKOYcnM7SPZiD2e5JgYPbHYcUXrfozw2o5lM/I+OL0wOJslS5kMavZzD+VWLHVm2a09ZPgA5R6scV28cxC/z9T/bVLdveDs03rGk9zSyUh0Duol4ok5pG03+lxG2blR+62ZUf4Fkg2WNfaTtb5DQ7P5muNpW97to/1sThKt7MmisTOleESQl+SrGKoPKa3bOGysNmyXUC5tN/pcloikJ+Tar8Y+pKSPi9ot9tBZLhGufaOyV2ssgo1xYB1bb5tCi33vITBad7sWSvrh0bHQ18TjIFHdZQRNP6Ft1/NYl0o0XmTPeJLcPuh731LGQtYxj76uS2G0HcBoHnTaTzT2q2TH34JWPgct4+Ba3meld2T2uzDbd6PFNVnSNW1N72/hUljbuUb7s62okVX1QJLreGQ+vViS3wxm9DW0tJnm/9U7PnakzS3XYg2M9j1dEiP6LRIRW62ZFrG6N/ycNqL5y90VoOVobH9a3jJ3waGhXaPs/Vmv+cb6sIzLdgwt4upLjJ4TI5uebVeKl0npNX9CzTXm/MAt9dP5Snrek0u7zll47fQ14PvVam4WDm7/LeqW6ve0D/SF8W8Oi/3e2cLyHnB6+VHHslZG21FYyIzzkH1so69fS0rz2gC123+x5w2SW/nYWb43u04sMd7Glra0pZOTrhO4RN//dBsObV/WY1vae362E/krALU1idRhpWRnXLJ/aXlMS+IcA10esZuldtzAOZSfI8trsMZRosdj2ab22Fqd18jjmjnvaHfM+eC2S0s9Y3tJbYiRysFv6/whIxk1v2QmnK+8tVwGTxdG5nyeLY+p5/1wEuDa/b8o3/gX7l0OjLYr9ProjD4W4GqB0cdGeTLFfCFo20tlWlzn1vtaI08OAG1+4dHHFzlmLzX919ExUjZy+EXhKrMN/sZI9dJvUTYZ+xrd9ku85rVxurzxuH42Eq2jZp+jsBxj5J3t9dGCWKB/GMmIg2rdV/Z+18ItA5E2PGntuDToNfRcb7pNbx45wN8hbf1JZ8mxhoGsONFWvMf3ZSL/JAOxNXu34Umg5rpo79nSNloc1SXDnevI4xn9/o2wC6LZ+lvrmVAupai/wZZeJclPArfXB9Pr7cfZ8F9BeWbS5gYYwYRymublVwx8TbBsY2VKqIMen4Slntp9jOb7ILcVovVyLC1J9+WSUuS54OYmyKj7N/JbYkvLSBnv6dJ1jtCq3tK+WlNzjNq8EZjMd7GVGt3lRj4/EOh6OueIldFz57SEe+5a7St6HTO4jPK1En03rpFW7+xMOcudPZFtStvd2ahGsymp5WUCpxLQxqhetGO2lolwB+VePO3uaYvS+Vrq+NXIbeG3ddvecMfR6p09Wr8Y0fF9i/ISnM5Bk19a5KmlfUKZ0bqek6yjOVTukJyuA5nsqH6B5bvQou4W36clIL2znzvAsWOt5UpYt7Ec28g4zy3mBmrh197Cv8MTU9Jjm7RzYPUbm/HIqTzvU098qZ+ClO7BNx1kx8vy2Al7jtPCyLkvrO8HKfZ2NCb3XQd/NsBjB6LFe/7Kiee+5OKW1uBJNObA2QS4eC1SrJHsxMUgeDq98ht/isied+nc5PMBzfZ983wHSr4nFKsvn8cuP9tvqsau0mOPLuGJOyuNO6P2KPNYoXeielmLr3xJR1SLR9bKyT0vC8thnYZHvtBiHNqjX1fCOpZqEaPV07caPZdJ5nwmpesRGeda+dEBN9dQ7TxNnjmmavYj7XsUEG8qGqvqrKMchyeGHJYRRI8X4+mHtZBJZPcVPXj6QlTukdG/8vTrNDmMd98euU0LP0BPfPsWeqDRqTY+Uq2NDzce+VlYbpGVcf27LNlatt7D268bTYt+pZUW39tS/NnWvO1s+7dR3pt5v28ZjvEtYznuu8F9Wz6dbN8kSf4ilffIYLGM1yP7qQH6Bdn3XMt5Ey0sfX7oaAwKrb9kfR9lj2W48ZmmH2ghp9doMQeoZx6kjDkNW89x2ILTk10mwPXHpeWt5imrmcdMmoftPQMe2a+H7Pm8MnQ7NZxx4O17Wub7sc4HlD2n3ZZsqXRNonj6Py3kRp5+dIacrETPxMXlpDE6qZ42k6cDkeJpS/GjcU5/e2NOz5TGDi1sq7hxWZYOfE2xZ0fbynrkqh79v9deIMOeoLQtt9wz5uoZQ64mtlyLY8q+5+Z+ZVZ8q0j8sk8c9WfYeURp4YvAjWmkcU6L5NFjjI7ZgsmwU197Arsd+n+JLC1OQq0/fGta+lHX2imBT4q2PsPHdaRfo8ff0ornfTvaL66FjZuVFtfzeYGS7VUWXj+l3vs+RFq1p9bOrfQ3PehpX5d97C384zBnFVrvv4TXvi7bzm6kfV0PmdhS4WzoWtnSlezruBiylNH2dTuFSMqYf9BSThpb/azgta/zMlpmepJt5jxcRDn3W9qmhFUvl+2L28K3eE20sGPy0OJ6jqa1fV1vRtjXtbK5GzkeWss4eqR9HY4DkGW7xo0tR9guZttBWsi2m/NyYXrdRo5bNuONq9CCLPu60d91j31dKX6Epx5rnZiPUb7Z18VsszibLo8vZy1gn2ftw3s5Z2Sp9m+tk8cuqYV9HZWhPUX5ktBkf5otnde+jtratbC5GxFbZgmswa4uYl+XTQtbyWwZQMZ8rNDW9P8SyLSvA7Ls7JZCK1u7LN2Epw/6kJDRX71pYLQtXStOShptW8eh6ZKw/iYrzsPSbep6wdlQSfZUNK6ZNy50rX2d1/4uE4/NorW8x+58pH2d1Q6uFxn33aZnHcdo/almFzdartqK0Tq+tZCtqx19Plm6Oqq3a6HHy6S3vnWNZOt0LwymRcyateCJ2Z75DPy+x7ONdi6/N6DVPcd9a+E8peWZtI4DC/pW/LsELQf3nLaflvMOtEgeXeBIXWHNcUn62BFx/zBvkZz+pmXfIuufGfaxxOu7dP3mUvD6gFjKR2ImWvCWXxPSfeTRHY/WrWFdOF42+rhan+tMLxttKSYJV1Y6LmuckyxaXofTA+nlixWB6nSj290rrKO6VYCLwf7+ZPcns/qZtfQ/y4TqhjN0ElsalzLj6EfoGed/BL+hnDLKdgt0p5Ft1sRllFMydaUnhSxdbk0MgdH6tI06ovrj0cfdi4tKO0TlxJ62bi1b7sncBhaZRSsfk5MKyFOz9eo9bUayeRvlh4r0nR4Zd6gnVJbG0WK+HsAid2u5/5GMjgnQ+t1mud6jr4GX0bqKnkjfymh9o+NmeOyyRsb2aPGsj7RxW0vbZ7b3UljKuVj6GZm0sGFaGz3t+iAey+hzttqBtopHs7aYOqPjKuFl2XW3/J4BnK5Umgs7e+66Qwd0/fg3xmr7mhlDa218l1gXdw028in1RXeE7HkZR8ZI81Ka2yeTh3u0+F2trwX2E3hvX+Y99HvJPDS2cQuk77GV0d/BDLznPPdjJLv6XmB5/OhjGXnuI/DEOMzc7+h29/AimXlu3jemV/Mtf8H8xuwQtXMCe9g1YEtb2lLfdN0BfU9dn169Dzz1lOj5bsJ6KexrleGDZUGzR2mxz9ZY49Nm2m9Y9xmNj2slchwZx1na1rqPHu2T6V8aTaOOYdScrC1iHPeidg4owOozfCjUtHdmu4+Ga5vRx9SS84jeuvaNtraS2fsf3UYzTwpEthmNJVb7Eo7BwprmKjzJXB2Id/+j2yoTjx+qNpdoBM++Wx5H1nGWoO+bVnabn6C8hKe+tXFL4ZDPfUNm9Pt2FL3n3aZkzSmi4YnxXuKfRE7vjw3yk4rWTto724olvsQhM/pdMzPr+XdTns3VzgBOnroPLWm2Yh9Px22jNLyJxqlaCnQeHDonUYu5diSs8yRFtxvB9wRu2cxtI9K23PKTnLj7q7S8tF2ELdlS5vuDi2lWIrKNpc6R5wRI8z1x74ksWuu7D4UfGjA6rqA3BiGm5b5oO5WeGa2NLfOpbehkvW88Y687G6n80oiXyjroB59yYO1bLxXa9i8JUO5lo/1jWsxr2eM4M943o2NdW2S0MK6n8q+bKM9gtDwPy/SWIt9bKneMZUZB32cYTz3WdwN9by6R+X3zfABa/I3e+8um9757XjtrLJ/RMXyssY24GEdSTF38O5PR8Tt74Inxx/lSSWVKaOWt9VmPe7Q9bA+0uCPY5sNT9hNh2YymJ2vRD94NoMZu32LTjwHZ78+IXrLJEf3TEfEPPPHnl4jl2xWN61vD6LgWrfHYnGbF5BxxHXsyMnbtWmLUem2ilxqXsxfZ98PdAawt1miEzBhvUvw4uswaV9LCVwuA3jcjvoul2HlrYO32kM8KWMpwnO2AFielBYeeZh/PdzpTMw8F5WkQvH3WseBxeas5Rx5Psu82Lpfl/7skRsgbNF/WDL/GCJm+4rVjzggj/ZUz0O6b0b5CrcnyNbKAZcg9YgQ/nI734zTbAmzDLy1fKqAPP/SUbWttpUV8H6/N7CFC37etbAzBlnDGY0eYAWf/dpn8zuYfgZa2WR67nTXA2Sb1lK+M1jf1xKM7uGYoY2lfi33NaN1TDSN0KKN1ABjuvrGU0+69b1COz9nTFlLbZbZnqY7RujaMVeft0Y+3sLWrse3red97dBlgY3cB5RGsdohrhrNB7GETuSQs19xz33jaQrID9cLVc0iMSF49UwY99ov1Vpkx7q1E7XufKet6XycpRXQ9tfojjy6o1gbZW28WWIeUpRc7ieD7ZoR+QrP/pmVH61MijNBbae3q4ZGRnm2q2fpnMTqOZW9q553k5mQc4U/Rk5sMVHa8pTbJo4eq0VX9x1hPto5sFCNsRaz+PKeMZZYIfieM9qFfE5ouyzN2HK232CjTQx+XfWyjziPKaBleC0bYXR8yIKOL6J41aF1Z9WYA541/HwKjYzK0hsotqB06N59YqYwFiyxGK9vKBj+LET6fHpsFD6PbsjVZcmHpm9Cizix62nTAfVqzvVTn0hhhMzP6nFsxQhewFB6jnJKht+DsILz2EVz5WkbbtNTQoj1KzP7zJduv0b79S2ZUHIkl8N1CeHcP/m1h9HFLXDDgOU8LpXs8e1+jOF34jZGWe6HvgNPkd6msVG4J4HdA1hxk0dgsS8ByfL3bKcJ7Dcg6tocCljIjGf0taU1mDBcrlwbtt/c5WjnDEJHBc/Vk1c2R0R4198iLxnwx2d5tu6k8n+euEbh+y7648lva0pbkNL9nrqM8672yJEp6h2wdB/ginCO09n3oAT2nEfrqET5Xa2BS1p3kNGLuy95xCXsz2yl7/M/WCnfupeVaPS1iKm284rxApu/TxnFbqZ7M+yzF2aTHZykT4cke/HvN0DaylH1iKGvZV2vm7/FoX4VD5epALMcHfkSj28lzrBZgviRuWQRv/F7vMVqPoea4ND+yEfZXo313e7CUc35UWC4xuu2WxOj3X2ssfuejY1NbscyRnYUUVxWg9hf3UL4Ebu25h/Ia4LxvNeYGgVt2w7jtUvkb5fT332S5tM7DaBuWQ9VJWt6tOLYH99sKxNOwxIi3lOVidVjWbeRyuxNbyk9XRh/AQtKVjSq+V7CW0xihEzwEfthD/wMj4hL91ogfUO4l+1guG/GUPYngdwA3PtBiCp0UXhrLvGT+z/LWX1BOf2NOFfCU5fiVAP0/btnG69D2OxTwO2BEbMjRMpdecp0lc2fA/kos9dvDzQdFGf2eqsXqDzLHSHs+5cRae17AUyYLXG9N/VnzuZTOnRLdbiTavebxc78m/C6V39iglO4Z7X20obfv6LgtpXgu3O+a+g6NVuc1+tqPjs+6BC4Kv63bznh8deh8RVGfn9axMy3HLx3H2cJyjbncSYhN2vo6jZ5HSPKPpL6Sa2B0ux0Ks7/E1Wm838ramdvQY4f8WPgtlT1JWGJKgY0s/l0DrfdQ+EDBa+uF54LCv78ly611WLYdoRPgGJF2AlKZtaTRfqlrRLLR+dlIye/HO/+TZbv7jno9c0u1ZLQe7JDIivu1MX4uoo11g2Wc9L+VJczl9GZDLPv1HgOuY/Q75BDIiltVexxY3pd9jrXyx4zjbemDfdKwzJXS8r22ZqJyzay6Rpxj62/o6Hkg1s7IeZes+/TOE4XXj55/qde8TpHtlz5vVI+5kg4Bzb7GY1fksTnaWAald6dU3ltPJiPmargrgMtoc+hkHId1vp4WwPvAUvbPA6O27bC+VnseLWWuJZ7b6PcPpRSfZPR8RWvjdwfvKVjKzFwoAGW+2nOB/LbU7+UrBam8pw4P1nd9tN7o/nowWma6JsDmFP/GnBnAG3vob6lMSy4Zy5Tg5uR4oxJLnK1InTX722KHbWlL9nR9j7RcYn4vP9tj8SdozQvDegvze7G1LB4D8/j02k9vng1gIr8noQxNLY9nYn6Xym6pTWoxt8E7J5SnAwB96Yh9rx1sV2xt69r9lDjfAM8cNqV1HrT9rJVe8wnhdyn9v7EBjLZtXxNXGbT1SyA6t0xWPRsyrec/620380nnffWEm2NHmm8na26eHu8H63E/Qts8QnkrvOfxN/ld8262vvNHMuvERs9Bs3EY3FooNxD0P17uAd51pXUcsL+Mb8kNUt+j/W/8/hutk3u4R1rOrVuq7s8Sl+BmIvO8L9y9Onoumo3lzPuzpS2NSlc2mgOxMDg5PY2XUVrnQdIL0DIjYoL8R1l3SHPsnDQuk9+YnsfA7bfVccxj8DudoTIArgzMK9PjeF4qWMrMnDpB/NoIro/Zal9eLi90v6U5teY5or+d+s1HPY8P/9mjlZOwluvNCPloi3ev9B4e8S3o9X5vXa/l+xAB3oH4N2a0j8bS+MmwXsJbv2UbXHev+F4b6wTiEfSIMzOSnu+Dkp8tlHmetK/nAqPfiRtj8cSV4WL7aOU9sX02NrKwvOu95dfA6HY/JEbE1xiFdO6jr8EhY/nm9o43Rvv7h4DU990YP+8l5IeE9Lxf2FChsbm4ZTM95riEY+q5r97tO6Jd14A1PlttPJpI3BpLeelb2CJGzUVH2VKMs559Aum6e8vU4In/lsUF5v8F8ttKVj1LYoQMTrtPrGWi0LhcXP2RGGAj5mHusS+uXbztFW3TlnHjpHN+QynT6xsYYUt56VkiuM7W+5L2cZKS1s6lMrX79XJWIWtupY2+SPNASWVGH6+V7HdV6R3WYpuJ/O6dSnGZNnx8fsDgc/Se+5rb9q8FtL2Hc1O/OFwngdHXcy18ivKsdl7C9YqeD8Qg45Z5mN99o2NsbcR4vGf0cWzUIcWNq4mH1jt22dKwxFKzxOx61Pm4Hyv8EThWuq5l3LFejH5me3OacI/8vseUOYlY4kdl1LFEep6TJS6atZylHu04ao6zdWw4KU7cwwZ8UOB9ZX2U94N8y/z/lvy20uL4Ssfdg577yuKmAvi0R+st7SPL3z7KHLdsS1va0mElGg+sR2ytnvvqiXUuFiu1+xrdHhv/8ltnfnHAydo8ZdfMKQM/C7Q4nvvGYyrBnaO1HaxtshHjcmG5htY/j6DFybKW29hoxZ1G20jxx3oi2RVG0exPz3belwXw5TiL8sj2Gxsbh4EW081aJmNf3vo2Njg0P0ju3qbb9opx8j9lnYdRcR+lfXuPtXQO3rbY8PurWspY+IvQw673QQd67mtjoyea/1opnuChAn0C/HtjmeB7lf7f2FgDnD9zttxy43DQbPxb0dqXsee+AM2fQiuTsa9e57qxXDyx9i38gXJK9n6WguV430w67+wxx2fk91LbWHp3be+yk8lov/6N9fAgub6/yG+MZVuuPF6W/U228M30Kv7/NwP2X9sHkL5X33Tis+A22nYj29TbB+rRl9LKjO6XSPS6Dw8N7h3Ve78Z71XLO2L0+3TtjH7GN+xYruN2besYJa9dCxc3UuzJLPY+NXZCJ4HRc8ssHW3Om9HXb63gNtbmELtoWE+Rrhfezjqv0UiW+Iz2Ovee+1o6lvtVKjN6DsCNHE4jYBk3nsflRstRorKW2jE5jQvVg+8EcFwtqQzA1Rnd78bJAcfQ670/jdMK1rJ3DVwQsGxrqQfXB/OEeuumaPOQrpU/F3AMPcHPh7Tci2Wf1mOq3edpZV/ac76RS+najD62jXXxmbJOYhfkY+b/IfB/FWTUL5WvPba1YG3DrGvd8956uAf/fkiWS+s8SPPH4mORlq+B0vOQ9ZyU5h2H4+CWRXhPoHeb0mdw9HO+RrRnfIl8sKdl3SP5Ch1PdBxnPd+WMptIm9bus3Zfnu1byEMt+9PwlKWADNviJ4nj8dXE5suKw7c0JJ96KXbgxkYLMuJAnCS4NjzTELr/1vW3brvtfXZyeMHQuv4oXwwAxlkj9n0o7BrTc1+Y84QtbWlLW9rSlra0pS350nUDL4zlKDXHM03xOrz7otAyWh/7UPr0GBqLpCXWeChr40EiWhudQ0jt6rkGo9tu4/j1pNfWs/3biWj3aea+3kZ1Svs71wl8TM+EY30m4D1nqZ4obzPngOnVhj3h2sFShit3qFBZGiXzHtT2ZSGr7pOYoK209ZnXcEnXq8V5nQ9uD9zfSOOjI95pCN5Xy/1w+2xRH9eGeA75dyZ+bnmu3sgc995j57aJ7Lc1TzvxTud9WYhup9VzUqFt0eu9U/tcWrYpbTf6Gd7o9z7Uyow+/o31IPWzR8cSXDtXp3K8/dHHtzSu7sG/rVjqHn1+PXlCaD13BN53q3pH07LNKB8t4Hw32kCfzY3+fER+fySUkfDuy7vN2vlwT6kNP2TAy7GMrVRPDZw8ryd/nxDuoJxS2sZTfmPDyy8IabmXq4b9WspYuJqI59gy90v336p+y36zroPlHLLvhQ07Nc83wPVfWvNz532VsJTJOl7Lfiz7+jlQ50ZbtD4yNx7wIsX4s8YCxOU+UciYV+szw356ox1zJj3PZ3S7ngTukf+39uDf99DvEj3vw0O9Px7tGX0cG8vC8vzdCpTPQtvv6PZrxaOOfDLJ74eWY7JIm2h10nOTlm3U862R9x1ltXpoLMFD4N4BYzn3jDb8sgP/7Om1nyxuGBl9r2xsAPAs4N/42bg35T8nEly/s/W+6O/oM73xOtb+jTY2GX0eS2J0X/RQ2XUkI+Z/7THgVFrnSaPmP5D2nXmcu1CLbGlEss6bAFjmzfhA2BcXr1+L+c/NC7C0pI0Dbx4ok7FMVsL1XkG5lKR1uJ6vSZ3A1+S/F0+q3d5aZyZfC1jK1LbtiPPaiF3H7xtzu4BWpvWx1XIeMU28f2QpXWHKX0F55vvGkmrfn63fwyc1WdvyP+Q3hisbwXKMWccM/FYAti2VsbClLZ2kZH33et/bLft+tc94C5Z8bBnndUj0bsPLHRjdB25NTz/LjY2RnNpjKfuD8NuK9f3yQyW4LhxPKDr+2OhHxjdw9DlItHyOa5+ZpdCj/3KSGd133PiXXwmwnPZFvfVq24zuWwOj7VUoa4zfIcUh2Xg9LkspRsvo41s7GTELNF7uaVn3SE4tDE436q2DtnNJL6sx+vpQas5FOi/pPC3P4G1juQyW1Iatr2mrY6f9PyCrnihZ9/WasLQDXgd92FJ7QZnSfnGZFn3s0f6CJwXw+amtB3wUbqKccqOwDsg6rx770PYjnf9J4uvO+8sco+I6s49n5HmdRE5qW1rPWbrf4Bm2MHos33rc4BlDlPpOvY97jYzuV68ZS//6/wHvWqcM</Data>
  112. </DataArray>
  113. </GIFTI>