123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- <?xml version="1.0" encoding="UTF-8"?>
- <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
- <GIFTI Version="1.0" NumberOfDataArrays="1">
- <MetaData>
- <MD>
- <Name><![CDATA[UserName]]></Name>
- <Value><![CDATA[oesteban]]></Value>
- </MD>
- <MD>
- <Name><![CDATA[Date]]></Name>
- <Value><![CDATA[Thu Mar 14 14:54:32 2024]]></Value>
- </MD>
- <MD>
- <Name><![CDATA[gifticlib-version]]></Name>
- <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
- </MD>
- </MetaData>
- <LabelTable>
- <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
- <Label Key="1" Red="0.0901961" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_frontomargin]]></Label>
- <Label Key="2" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inf]]></Label>
- <Label Key="3" Red="0.247059" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_and_S_paracentral]]></Label>
- <Label Key="4" Red="0.247059" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_and_S_subcentral]]></Label>
- <Label Key="5" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transv_frontopol]]></Label>
- <Label Key="6" Red="0.101961" Green="0.235294" Blue="0" Alpha="1"><![CDATA[G_and_S_cingul-Ant]]></Label>
- <Label Key="7" Red="0.101961" Green="0.235294" Blue="0.294118" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Ant]]></Label>
- <Label Key="8" Red="0.101961" Green="0.235294" Blue="0.588235" Alpha="1"><![CDATA[G_and_S_cingul-Mid-Post]]></Label>
- <Label Key="9" Red="0.0980392" Green="0.235294" Blue="0.980392" Alpha="1"><![CDATA[G_cingul-Post-dorsal]]></Label>
- <Label Key="10" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingul-Post-ventral]]></Label>
- <Label Key="11" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
- <Label Key="12" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_front_inf-Opercular]]></Label>
- <Label Key="13" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_front_inf-Orbital]]></Label>
- <Label Key="14" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_front_inf-Triangul]]></Label>
- <Label Key="15" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_front_middle]]></Label>
- <Label Key="16" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_front_sup]]></Label>
- <Label Key="17" Red="0.0901961" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_Ins_lg_and_S_cent_ins]]></Label>
- <Label Key="18" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
- <Label Key="19" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
- <Label Key="20" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_sup]]></Label>
- <Label Key="21" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_lat-fusifor]]></Label>
- <Label Key="22" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_oc-temp_med-Lingual]]></Label>
- <Label Key="23" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_oc-temp_med-Parahip]]></Label>
- <Label Key="24" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
- <Label Key="25" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_pariet_inf-Angular]]></Label>
- <Label Key="26" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_pariet_inf-Supramar]]></Label>
- <Label Key="27" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_sup]]></Label>
- <Label Key="28" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
- <Label Key="29" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
- <Label Key="30" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
- <Label Key="31" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
- <Label Key="32" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
- <Label Key="33" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_T_transv]]></Label>
- <Label Key="34" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral]]></Label>
- <Label Key="35" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Plan_polar]]></Label>
- <Label Key="36" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Plan_tempo]]></Label>
- <Label Key="37" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inf]]></Label>
- <Label Key="38" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
- <Label Key="39" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fis-ant-Horizont]]></Label>
- <Label Key="40" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fis-ant-Vertical]]></Label>
- <Label Key="41" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fis-post]]></Label>
- <Label Key="42" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
- <Label Key="43" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
- <Label Key="44" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
- <Label Key="45" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
- <Label Key="46" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
- <Label Key="47" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingul-Marginalis]]></Label>
- <Label Key="48" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_ant]]></Label>
- <Label Key="49" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inf]]></Label>
- <Label Key="50" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_sup]]></Label>
- <Label Key="51" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_ant]]></Label>
- <Label Key="52" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collat_transv_post]]></Label>
- <Label Key="53" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_front_inf]]></Label>
- <Label Key="54" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_front_middle]]></Label>
- <Label Key="55" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_front_sup]]></Label>
- <Label Key="56" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_interm_prim-Jensen]]></Label>
- <Label Key="57" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intrapariet_and_P_trans]]></Label>
- <Label Key="58" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_oc_middle_and_Lunatus]]></Label>
- <Label Key="59" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_oc_sup_and_transversal]]></Label>
- <Label Key="60" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_ant]]></Label>
- <Label Key="61" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_oc-temp_lat]]></Label>
- <Label Key="62" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_oc-temp_med_and_Lingual]]></Label>
- <Label Key="63" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
- <Label Key="64" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_med-olfact]]></Label>
- <Label Key="65" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_Shaped]]></Label>
- <Label Key="66" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
- <Label Key="67" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
- <Label Key="68" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
- <Label Key="69" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-inf-part]]></Label>
- <Label Key="70" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-sup-part]]></Label>
- <Label Key="71" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
- <Label Key="72" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
- <Label Key="73" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inf]]></Label>
- <Label Key="74" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_sup]]></Label>
- <Label Key="75" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
- </LabelTable>
- <DataArray Intent="NIFTI_INTENT_LABEL"
- DataType="NIFTI_TYPE_INT32"
- ArrayIndexingOrder="RowMajorOrder"
- Dimensionality="1"
- Dim0="40962"
- Encoding="GZipBase64Binary"
- Endian="LittleEndian"
- ExternalFileName=""
- ExternalFileOffset="">
- <MetaData>
- <MD>
- <Name><![CDATA[Name]]></Name>
- <Value><![CDATA[node label]]></Value>
- </MD>
- </MetaData>
- <Data>eJztnXmbFUXSxUuEQdoFF1ARQQbUAdxwYRxUmB5xcMTv/33ezuetePp09IktM+veRv3j99S9VVlZe2VkxImsG8uyXD/ilSP+ecT5Iz444ocjvjji/hEPjnh+xJMjbhzx8IjLR3y4lm3TR0e8ecRX6/RvRzw94v2V1464d8TX6zqtvk+P+PGIn9dtXVq39/k6/e2Iq0e8e8SX6zafrb+FD9d9ar+/X7cttON5aV3v4Xps36z7Isd5bd2XD9ZjaP9vHnFl/d9+/++Ii+vxtPP00bp/jbeOuLNO5Zja9LN1v88dcbDyxbqv/125vO7zL+v2f1mP49HK9XWenNeXV+T4Lq7n+f46bf9fX8/3f9b9bMf6xnrcvx9xe70Gb6/bvLfOe+eIn9Z9f75u/50VuT6vruflq/WcyPXSvLfyfL2W367X8hO4nk9WZJ0bCrzGMu/Zes7eXKf/BC6v1/Q1uL7n1+v5r/VY5XpfV9xcr6vwK+zX2+u1lWdAeGe9xu+s50bQ1xeRa934UB3jl+v867D8F0Cu+ctrWbkXrq/16ntfnkEB519cp3KftOmF5f+flV9XHq7nUZ71Nv338v/3UruP/r7yDeED4J4Cz+E19b/dh4+Aa4Dch8KVlR/XZW36FSDP7c0VvD+fKi7BeXh/4ff0bdjH9rx/rmjPjtzjMkXavfHuyncrVwHc1rvrtD0f7y3H7118Dtr1/nA5eR99qOY9W04+T9+v854tp+8VeaZeWrmwnL5/5RrKdX4NrrM8b3g95bnT1/Tmeg3l+ZP3LILv21fWa3S4gu/fr9fr8TX8/pQg7+M2Pbcidci7+d3l5PPbeAhTOQ//XE6/t/G5Rs4vp983j6D8I/j/5nqs8pxrbi6nn3f23L+ynju8p6StkHZCaO1Fe7fhu+CldSrn+tf1HLTrfXc9F2+sv9t98I+1jtvA3+GaCG8tx++Hj1fkHSH/Zf1mf0j789Ny3K4+V7/1vdWm8k74YUXarzZ9lfDZSjtv7d3R7rX/Kdh7hHGwnguvXZTnGo/n9jqVd8e3K+fW43+8HL9LHq+05VeXk+8WQdrXq8vJdtbaL93+Wkhbq9tfsR018v722l+xPwXct7dXdPsrzzBrf4We9pc9x7r9xWUvL/X2V3gf0Os8BP6taM/L35eT7+Js+4ttrvzG5xafJykjYPv7I0G3v8LP6pq250u3v3gu2D369WK3vY327HyyHD9Dug3Ge+QqQbe/+Ayx9lej7yUNu98+XE630cj3xrbYvcT6PfKsSlsubbwF3kOvqd9oU2uwHyX2NsJsAETaNd1GCto20HaC8ArhI8C6r7B9kumddblub5hdIZxbTtoXzMYQ5B7D+0rbHQ8Xuz/xcDn9bpOp8EuAvi+17aLtyy8Xbs9o5J2p+zCP1FSD9zCzf24Y89E+0vfSI3VO9Hvamh8h/o2/KWSefv8z28tC+vBik2leAj6CsofLyfu9be9X2DbeX68RsM15g/DNOm3794+V9lvstjb9OyDP1Tcwlf40PmtoG34D5XRbJny8nLQfWVv3seL35aSNifZle65/Ap4P0Opm7zCG7t9iW/oOgHaswOzYK+r3FZgnv8Vn8RnU25D35VcG+M7VtjHy83Lc5ut2n/FUTb1yjYOVto12z0vfxbMdPLtX2+aC9Pc18t6/sxzbTGiH/LYc2yKfrPPk97dr3T8tx/2a3wCx65n9gna/gP0EgbUxyGcLt2/0/8hGGgH9GgL6+cTGimwq3TdBG0nbO2IXob8Qp7r/Ytk88rwy20aWMVtG/IyCZavcWsH+z1vLcT+owe5LbYc0viAwe8OzCT1bIro+6M+0+lWeDYD+TvR5IugP8dp5q19m9c+krbb6a9IWi9/0wnK67cU2V9pVr519feX35aSPVdrOCNZWWv3Ae+s22r0jbWCljYvaM2nTsI39mXDFQdpBqz1Cv4zX39RtCILz0Q8c+YM1twnSRrD+KvqNG/iexzZBtwGsPyvv8/bMfwewdznb94OFt4FW/1e/b/U7w+s/6P6vVRbntW28TLbP+suI7F/k97a4vBz7Q4XWTlwAWjl5lnXfTM/HZ0+e2fPL6ecY/erI+eX0M82eT3n+8Lfug6O/9Jpahz2j0pbhs4k+H6+P3mDPnm7/Li0n/fyC99xp/z9yR8HiAhbtufrMAPv37Jk6WE63u/KMtmso92/7/d+F9/t1358t1z4A5pNtsHtJ2ls9Xz+Lup3GuMZ5KIM2UuQfwL6R5Zuw+k8sboL3kBVDkfvU8x9IObxvmR2XsTWytoiH9oXrPhP+x/hOr9+h8WAl8kFgnOg/6jf6IxpiE/0K08at5aT/gfklJN4ktpK2me4ux3EoQXwT38DxSHxK7BdB7Cwds7q3nPYLWojvQuxz+e3ZY5H/gsXEbpP/ckzoz5C+pUyxn4m+TKtv+2lQrhH5N35cuF2IyyN/B4vffbGcjOXJf/F7oG8E/SEs3sdAXwj6QzA2eGk5+Z5gfpBLCmajir5qK8RfIudInoO2TNu10kYeLn6b22xWbScyuxHjm959xuxmWebZwOjzaNtr9420yT8tp9voq0Zd6E+RcvJb+1Yw3hr5WTyeFNjivmDXqxL/tbBiQ5pK/Bff33gP/bBwP0cU/2V9DSmPto4V/31zOd1n2Uf8V/cjhLuL36bgOZS43RbxX+0Hxr62fjdm479i51vxX/3ewOd93/FfCy/+y7aTjf+inxN9oJ6vT/qi6P9ErPgv+kW1b1SI4r8CsyW2jP9i/EnTlkc2ktUvxPjvwWL3Ca34r1D1024R/5V7U/YzE//1fLwWmfhvFAMWn7AX/8V39Uj814OVjfpeUv51IBP/FQ4X7oOeFf/Vfmr0V0uMVcd+te8a47/I20vNp13pP8m+Ce2/jv/2cptMq3HfiEr8NwPrY82M/yKZPgr64i1EM9am8j7tjftG9rDEf7F/rd//VvxX+ITMk7pRa6Djv78t3H7B+DBqQWfFfzVbx381LJ6LtpaO+3oxYS9GjMulbr3camPFfmJ9H8//6sWXq/aV2FWWvk7bViwebcWmo34ZQ/x4t4xrjXHrB+q/FctG0L7CPr4X447i3YhnU83Q12XQ9lVU7wz7iqFjc5GdFcXfe/3eVftKrxfV/b4B5kJhfK+hfdeoq2N9doTZV9KX17bVv9d9QP+71gNojV1GG9CjGYj0A0xPIIzYVNq+0lTsK8Y7y+ncswbTJ1hahR8XX7fg+UYi+8pjxL7yuKR+ixYC4z2aERuAXVetnfB0E1VNRVVfkdFdMDsLNRhXl5M6DM+2ythXbVvvrdvxfO+MrH/X8m9dXrjew/KpzsDyR/ToSrSehNl9nq2Y2VevHbR8eRG97WcGuYYvGaDtesHBqldjaRZwmVfG83uL31Lw2jy0uZnehsUtLLtcl/f87Yxmv6PPFHU4/4LpB4vvU7Xav0x7+Hw52R5KO6P7AlfIPL0cwTiwtIPZdq6K5AtfhN+vLFxnlAFjE4fLaS0D+pNvLXb/J8LTFWi/dEbjVNE7Mb9GFi+GzvRSln+cxWnx/ByQadTn8/wfGX+7tczTYT1M1K3fZ1Z9+n2Y7aNGOrDvyVRrwiydGGLpyfS00n6z5awOr97zpF6BvbtvqP8Z3VoFfCdHffWoP5/NKbL0chasTLt+qKfTmjQ9D/0BVuxGtHUZn0KVbF9Kx4YyfrGGPCtVIvtrdP1dwsaU0KAvxPPps/4n+m48f0/kF8rqHEeQZ+PBcloryXJEKsi6zB7XY3TgfMuXdQhTzUcE5ufSyHW4tV67Nm3vUtFwshijF3f0QP2n5g1jnsVdB9ZPaOv8IwHGQtv9EPk2mt/O8uex/FkE+xZsOe5/Rrtq2Zza9rT6UjpuKz7+B0DWxyhxXfb/Y4OM3zLjv2R13yb/BW8dD63TRb2uzj3+KUD0vBm9bgasJ9NnmIFnM/UifU3dJ876iK36MmRj+Qzmc8b+jBX/xzJMF/Cqs66lHbDq8aj0CZnu2tIkWFi+dGuZ1mOLrfg/Z9rDpYXrwK18xRl+/hGeqqllr229D8jBcjLXX5Dn4EFANU7RfOd31ukhcB+mI4h/3tPPs/JZZr37GehTYm3a5zD9HP7fVvVobUsUg9F6Gkvz8gSmAr5zma+p1SNtqM4XENp8nR/wWB2PFV/yYkh6HAeWf8DwzkHEiM8s4rNguc5J9vIiqvkROp62ay3TWSL7rhiND2bI+iS9/BFv/I0G2vnXYJrx7zB74tZy2o+v9UsN9v5s9or4uOW9E+mRxE+c0XUzf2GkKYq0Q8zfyHx7zNeK86t+q4qeJ9LttPk6BonaHOY3aOdV59QIrc7Wt5PxFb14Y0ZLE/U72b3EYnKNSAMTxflY/0J0LF6fpqJX8ezVSH8ieUBab5J590kOr7ZLIlo7/sni2ygZHUhrtyxdR9TuZPIDszoNBLUZPdqLbBnRVFS1E1VtxIjOQftSpT2S96zWMvTE3CytQaRDsLQFWmeA6PcFaggYnmYgem+INtjSCGP8H+vtjeNHOV0sVs982Zn3RhRzF19oJrYe9aOsuHkmPo77fLDEcXAW787Etr1YtqXbydgvHhUNs2fLZHLZsjqy88uxHdUb/8V4tXcc1wfOAbPZvBgsy6fL5NQh+pmN4t89sdJdxUMxVtl+31/4mK5PVTlmz3rxyZF4I8aXKrFFFkP8CKZoYx0udmyw7T/TuwvsPZKJ7VkxvWz8TubjeLQsLoc2ocRpMjG31kaL7Y9xsEiTlYmd4VgxGR1+Jf5VjXM1fifz8HyxWAbaICw+tUW8yKLt64xYkmcHVWM+mfiOF5PRsZso1/PV5XT8ho3768WhKnEWqy/YGzeR/FEW/xiNg2TzTCv16DjFwbrvelzibDzicBmPNbwHU4/2vGSeKysWEPWzP124797z7X+7TmUfmf+e9c+1n1z346t++CjHNvKr9/jQ0U8uff6MX6DX57BLnix+bkrDytVlvo6ZOSbRdtGPkfFRtD4P8z8w+9XzhWe1vTjP8h1Uc40tf7vnY2C+Bc+fEPkSpA70O9wkv4WKth9t21uLf+/KeBU6b5lRsVcymnlB2pZM/M66h0dynyv9+0q/dfYzjJrnSPvs+QNm9cGt/rjed4mlRP3u6zBFttAmZ/vOWSp1WePiCDLf0ryy/nHz7co47RrmOxQNbKbPKzneOt/b6+f+e6mPsyP9/98VXl92JDd8NGe8N49c55RjbrnV/9waL+7GaM9l5Fe/tth9R4n94Tyv/6j7ktmxgKz89SvL6X2K+oGI9OcsP7/u90UauJE+mqayDhufkL1vZuTEe0S6YuzPSf+sN3/ey6mPcut7YqkZKpqlZjN955DREY30oQ6WXB88o8sZ0eew/gnT5jwj8xq9+fe9jMZsqnWgbVY5r7rPmD2ubEzMi+czO86Kj2d1NbNox+blL1ljC0TjCyC4vShHNpNDa+mDGNo28Wwk7EN/o35HegD8X7GtKvqBih7JQvsFtF5Jl/2XWicax4D5Eiq6BY3sC7OZrqv/Ygt5Wofe8X96dBHaborKMVvmojHf85V4ZS8t9jgJFtJGVjQaHlEuG2o2vHid1ncw0LedRe65TNnfFtt2QntnJM/G05g0emyeg8W2zQ4UkZ8c31k31LSB/e6MnkWPreCN2+DVcdn4XdnOrDEdtA/YotJ2WH6tav8+srnQ75f1vbH51nZ1u4fb+dIp59Gr/8n6t1l7l/E5ZnyVs/IrWd3a36rLy2+5Rqx9EVvOmo++U5yn/Q1sHIivlpquqYdMPJxRuU/0PHkH9Ph9q/7fTD2s3i01Wxm071jfXxUbQzRg8jvjf2J+payfPOtTv7hwf/lTMm/GmBdMk/uAYI2vyvzy2TEzdDlrbAxP+5bdh4wmzosZWPNx/Ixby8l8I4zTWvq5qr6uorvTcQumyYviFUyjh2NrvLHwfm+bb42twcq3+ey+031Oz1eq4ycYR2HlLY0gjsXhjcnBNOUzwe8ooLYwE7fWOW4j8R1Pvzijnh5to2xb60DZdWbrZnzv2gcfjQOBvnQd02JlcMwPhPU1Z1Dp4261Dw1tB/XarxbooxmN6UX1Z8l8EyQaSwRh/XLxc1nztebU6t9byzNaV61T7RlzRPtERsch8fSxGW2RFQ9lOUuXYLn2pen+hBdjtYhirnqbl4L5ul75jWOqsNgt3muj/r4tGNUE926H/RdNsdzXN5fTzxazfRrShre6mPb4gbFfd2Cq/Z2Hy2l7WH7POCcS+9TxZitGqtcbibFm2p+MTjrj12W6aW03aE01/s9soxJnt3TZGc0znkPWLmmfstgu59Z9i3zQejwUIavr9mB68cfONq86y1BHLufGquMqlJHfcg6zY7Nov3mP3nxEnx7h6RcyWOO3ZMrsuw3ZF73vQf0+zGofKuO3sLhzg/k5Ld+c1b8Xm0yPsxKNQYOxBn1s6E+3tCJvkmXfL1z3H+lf0dekfXtaK6rHJxHwGwZMM+DF97GctDPYd9HtHNpyUYxb235MU4dEGjr0dVj5Rp7uDO+RSN/F3mmo+WHanF7N07PF1hFZOqDI983yQ1Cjg/FEjCXic1vNGdG6Du9bFbrfjP0G1of24ijRWBGZ7/96RLZeFFs/WPz8jShHw3uXeXkYmVyMrHZOvye92NT1JY7nZnIoWKwtO1aB3i8v9tWbE5GJ4+hYVISUR71/lNfvxSL0PkXxg2wevs5JQF96ez+zPHrMe2fPmR5HuifXwPIJY/7A7DwC1pfLatmuLTUfH/OhRTnh1vd/df2Rnt/zI+n8bSSyX7N52WgrHCw5m2HEhmY+fYTpwiKkbs+fLz59meq+q/Q3rX56JQ856mdtlUdc0beLzaN115lcXiu3V9tXenlWh8XydLP9o1H7SoNaG21fVfUlVr+MgXFtdq11bFH/j96vOGYF8y1V8mFHcmBn2FeZe/ZGot4Z9hVD56Rm2SLPtGJfVfH0KQ2Wb8C+g+L12S3NJ+vTv6Gmen+iXM8tczkreZrIiE01077y8PwbjD/69381kUZqxAaIdBQVu8rLVbRiAL0xBG1faTsL8wzRdopsq4x9pW23Sg7haN4gQ97xs3ICtc22VQ4gHkMm1y+b34f5e9mcvogZWlgLtG+iHL1sTp6ut8JDNdVEuXdoW2fy7BBs886TaUTG387Q4+hcI/O0L5X5VHvaP6sd7NGps5y4qi93hOqYwRasHTxcbA3waF84q+u0NKNevlpFq1fV+c3MORNYO3hAqMbJkag/mMXLI8v0NR869bB3YqWfavkfrD7sB4udV8X6kZkyLIbqtd+VvP0eu4C9szG/EOMaM/O7hEyOm9ef783fqvgHKr6CKFbjcUNNZ+dgWW1E77XcKsdqVo7WrhAfveWrR1+I589n/c/I95P1Dc3Oe/K+R6DH5crmMnl442dY+U+eL+vQIcpT8tDXz2onq7lJd2Eq6L6BRzU3Seco6bwkwcpPwnHGhci3YY3X5o1FrvONvFwjYTSXKBrDnPGAUM0TqjDLf5nd3u3lOKbMlkWIZs0CbXKW/yNE9nwPny5xf2CWX1eYkZtu5dzoPnG2b2zVZ+XqeDk7Pyyn4/gWlt+Z5dRYuTDRGPIZ7UBPHs5o3k1Pvk3kU9f5M9inz+oZZrOVn3+ESIOR1Wj0bNeyB7G/z84La2eQapwCfeiHwKxjzWixq+WRWe9j9s5HnxJr0yI9rsC0Ll4cBuvzclNYvMPLRzmnto3t6jk1ZTkieEw9OShR/om1LJufk/1OQUUr5CHvcGs5xsRm5o9YcbQZsbYXkZ4cuJ744NagLj3SX1WwYjcz9FdIRX8VEdlAtxb/GwZab6WJ2oNmh+l3J75bK/orxiz9VSU+PFN/VdFiRT7UrH/7F7W9P5r+Su9Hdt8i35D1zWf2DWgk8h2cBf2VRuK6LL4r8zWidY58GLP0V5pIf9UzlsZM/RXbp6hNbn3NXv1V9JyM2Ao4zhGz60fGird8R1X7P9JfMSx7L0N0zkZs1lmaK4bET0e0V0x/NVqfpZWKdFe9dY/orPalv0KtlZ5atpClu8J6Z6D3IWrLMI5T1V9lNFaR9oppsbAdZDCt1aj+arQdrMSsHxnzLHahv/Jipj16rGjMxZF2sCcW9hYsu7NO7y8nx9FpU/GnadvLmjdTf5XVXDHw/BwQZumvGLvSX82kVx+SySEa4SzprzL97pn6K022L31WiGyHEb0UnvMZ+iuLEf0Vtmt/6a+O/R5Pl9N+j/tkntZiIVl/jl4e+YS21F+9SeZtob/yxo/2xl2Yob1iYzZkidrLLcaLzmiuPC0WThl4fXv0V5aGZ0R/xfozWifljSfDbMqvnWVZ/ZU1fkZ1DA3rnFnsWn8lYK5pdp2Z+itdbgtt1Gxuk/9eX3KWHivTF9bfPn2HzLf0V9H4KaP6K083leXKcpxDPDJ2i9ZpXTHWx7GMq+NFM/3VV2Tai+VD2IX+KrrGFiM+hggWD9hye2y7B8tp3RVDrpUVk3hA5u3iWEYY1V41MHYy8o6epb/Kxme8WAsbu4iVY+ejtYnWNwwaXiyo4WmkRuJHkf7K4yzrryJdlffd4x7tlaetmhFrexHpOYcC84dViOKDGT/c7FjfDTXt9QtWser1zlH2fDL9EsbdolhcxbdU0bZdJtMormfVkdkWK1uJ2VV9ECPxQY8oLliNFUbxwd6YoNYTVv2plo9Vg8uZjR4tt8qNxAAj0H92i3B/8TWSHplvZvUyYidGZOKDLE6YiR0eLPVvFmSpvOerYzZsFf+rxgr1dF/xwS30PbPtB63LfaSOAd9dI+eiEt/8Zdl/zHBWTInF7azrIcvxXGwVO6y0YyPx91mxxLNAb+wow5b7Z8X4ercj61o+Ku+br9n4oB4DTfMmTDPfjbVigWyc0dH4YBTPQ2bEB5nGvidmqGODWJ+OAXqxYT2eqjWuahUrPnjWqcQHR7i31GKCs8Drrf+zcWtHvwnwotKT69GDtNsz+sJWDNED18Hj92LB7X9v7CgTU4xifT8myvRg5ctkzuNIDDCiOl4CiyWyuGKlDrxOVv7PvuKDI8zeBstdEhvLGz/as8Nm5zvtG/ZuHUXe2RIbHMnZ2jVWXLBnPAVNFFvUccPeOOJMev1lmfgg+u6+I2Bcji33YodbxAa3jg8eLH4sH89djxaAMRIbbIzGxLaIK0YxssgXiutU/ajVfITRXIWzBMZVbxTPxVa5HBZb7htDfEBezHYrMn7sLe4H61zMyE9i9LwTLDLb0NfTAq/9vn2xZxn2Po3yHbJYmoELZDoT9LdWsMZdz+L5PWfECyu+2tFtbjnOSaTDyKw36udkvmuvbOTPlP3q8YXO0q/0+F97fLBb+RwbkV9Pfx9F07vNqF6hJ/c/C9tezzq7gp3LyMeJsVqvHPNPzsr/rfpFHy2+f9QD/Zi9/std0Ts+bdZ3GvkOMd5b9TvO1pFF28hsk/lCkcOAj9TUgvk1LB3cjO8UbUXvGPX4/SNrXvTtJGu+t62t+HzJfbNpBKst3Gp7vyWWI2xd9HWOjC++JZFessou/KIHMBVmazkPCLPzYNAWzuhFb6h1PL0oW7eqOc1S7edZRFrZXu1sg/UZreX7PAdWv3hWnzzD94kyPfkX3yfKWET9Q9GW9vRnR/WsvZqikTr24Tfvra9Hx9x77rGOzHmKfBTReciep1k+k4gtx6F6tHH9Vo4P24esj6JyL1UZudcjRvKg9sHo8ep6Rrcry633Z9QXtnzumb545LeP8gewnEzRL6PLW/P1eh7RPontVc2FaHzZud4uiM7LzWWuLwy3vYv3J3tvVt7laLtdVtOzxC5ij1vue+/xvYi5PmeJSs6O9b6P/BXij+3xdbB8GPTx4vyZvk3Lb31fTTUXjX2eBV6PLbdjURn38ama/tHJ2EYPgNeX09/08cbErFAdMzOj7R4ZkzOzz1W9SrRvmfV1PWxedFxVLXxmjFEGxpdG+NWYp8mu6317Wt5ZbXrLQb9/sU/PtB/oe6yORxL5MkfGW53BXTKd5Ut9g2wvsw7DW1blLkx7QP0P1lvVGeG63ri1Wdg2ZP4DNU94ANMIjAXOzlHxci2rebfWNtgynZdr5etG31j36IlX4zWMxgvuiVGfVawxjd9eTt/b1rweRtZlz8qucqV3yccGXpkPSJktuUf+z0QfH5vnIfvlvQux/G2YZqjuj97WLmntSDYXO+InQrQOtmd6PVafB+pT9H9Pv5LV3rwoRMc0W6f0aWHbLzqVeOG+Y1QzsfSzs+q/BlM5f9cmMetYd8Ws93E0xn7POPNZmp74i+VYW6y1Yz+rZayMxc8Br8KU0auRy9bH5kf7zPafza98j4AtH/kuwgzYudJ6USnbo+9k31XYkt7vNSBbjreajYdHRNtA3bxVR6S3j9aP8jS8WLZMdQ7FDG6qKVtWJXuuetZh6+pjyOaj4H+sO5NvUiUby/uzoOOUL0rdfzSsuHGm3MFia+5l3s2lbqtkfMkZtJ+tHUd1HKj3Sb2zzn02Z+fQIBubkzL7vtcqsLFt9NhO75HpCNn9OAvIeD3PN0T72maC/pcZiG+M5dDtyh+J96ZXrufY8Bh/c+ZZzB5HDI/VWx7VU/2+URY2tlXF13AO0P8Zll9XluO1iOqq8NggM/YZe35m3T9b3HOCdcwVquPEjdRj3fdSh3UPPyZlrG3oZZlnRJfDZ2V2juaMsQZH8jdH2XLb36kpW24tm8UT8v8swu79XdbL5u/bVv6LPx9noe+heU9NGbPHQuzJT87kZkr8zdKJYKzPI5uDEOnlBG3/NduUtaHsXGVyySUvMpNjLPVW8i31+JnCy8Y6SDV/JspJsGC+oKhepkVl3yMRWp1MH9T7HY1Id9TuV30v6Vgz66uyGPNzqI/FrJn/OxM7zsRLdL3MX6ljBeKvxHm9476zcXoy45B7Pguvj8We7Uyfg+07s/ky7+dnCXY1JvEzsn+ZdSr05qextoa9Z3Gd6ngfrc7smJOaTLtntYMI+x5pA99Hlk7GQz/r2TEEMvE+TW9OFMsnqb43PK0y0tZjNoDg+Qx7x4+S/T1YamMpeWMBebDyvePgRPSOdyDjhIyOs8LG6UZ6c8e3HNsCYe+8TN4+HuNI/n90HjL3gN7/Sv72CJl81ay9ysr15oFiva8vp79nl8mXZPmK7D15aMzH7xB69Oa/VfLEPPT50TBNfCYfiLXnLV4dtQ8Iy2XJ9h0yeRrVPoeVI6DzsvRy0XZaOvuGxFa8trEXK9YZ9YmyOmHNOzDt1cQy/aomo2+c9a23aP+0brCi5WO2XI9GbSu9VlZPEyH9VumvHhD2/e2yjK9Q+xOi50/sVxa/z/SzdeyZldH7GOXjCI+N31GM9DGsw8jEwStxMuQzMm9WfCTjc9glmePw7G/P52H5P6v+i8hvkdm3yL8Rrd/TvxLfg0fPOln//K78G/obDZafo+rbyMYLorws9I1U4w4V/0YbD+PWwse7YPTmPvfaaVY+Q+Tf6NUkWP6NyM/R+6z1+DlG/Btb4sWJMswYr7bXvxHxsnHMsn8z/R0Z/0bW73GW/RtW/fg/MwZcJq5njR2Fvo8LBF13ZmyhiOy4OK/B1PJv6Hhjxr8RnZeeMVUs/8ZWzBoDYhR9roTe9m4WGR3zTP9GhnfIPO8Yor67xazv3ffGsnv9Gz3s0r8xG/F59I7Nt8s+Z+Z5YmR1AzPQvo2Khpv5OLbQdvfqgsWu974zPsO3MeLfaPuufU7vknk9mrut9HVZrcTlYBnDi43umxvG/lXiuxG99QtVf0/Fl9QL7l82Ho9UNTpCdd2t+0Ez0M9LdoxZ5ktjfZeIaP+kjxH5KnSfJOPfiPo+mTp6dZXMP9jTB9F+Sbac9TvOG/N1mYgZfZze/oX2m+rfkX2PPlbUlDE9dm//ZFa/JToeZodrnw7O7/0Wrfdt2Ww/ZVa/YzYyJrset/6isUzYYjwaayySQ4KnfxG78NZS87GPMGs81cw62XENNJ6e0UM/d731ZJC+yIzxl84teV2mx2g/5WCZ+13OTFzas0mretEeMn7WXk1rZJ/07MuoTTQ71tv4PrGM2R6/GPN1mQyVeqwyM/t70TrZ+FYU99IwOzDTb+uJmSMjuuUtsGy/3lhhb7wxu1+j9BxTtg58VrUtNNK/ZbFObxmD+c5746xfDqxb3cceX39FA595Nqzl8t7emt775qzGvl8ErLzjDCxW3aNvzcR+9H736Ah6tQiNfX+Xa8a3vB4AmMuR0T1sRc93tNj+Zcp5x+WNmReNpVf9bpWHV0bfw7cAeU6a3aX9jJncmJ78mSp3l77vQIkOZVa+zl2YZvlmib/FhNsY+d6Szh96oOiNLTPdSfa7R5nvFiHMd5xZT5/THj/TiE/ra7Id/c2gDDrviv1n4HWeoVnC3K1K2Sz71lVV9tWCPSvZunufRaHlPFXyurwcN5avkqXiR90atv1R3+++6fVPbImO+fTGzSpU9meUmbmTGTJaQ+YXZ+Ws70yw7018Acsistuq5IBm1h9hy29daDLXuTdO2Kv9jHxFLPbIynnfQBj9tkMPl2Cqf1ucdR3sLunxtTB/y76Po2efNQcGcr2td67uW2XxvgswcpxN03lnOanxPCTch+k+0DrUnnH2ozpn8ryT2wPrNio2K9M+ZPoQn8OUoctb22e6bo+shpvl4ntYue7vLSfHo2ZjVGfGbWd4+f1ZvUVbn+XxX1W/2XnP6u57NPTW+ALWvjIy62Wv4wx2qUnpBe3KynrfEZ4M7ks2T6AXfb/0rHMWx474MzOr7d1lfgrLY9iqbsZsLdXo+BhIz5gYzIeT9eteU7+FLfQ9lX74rSWvr43GqcA+QcUu9GwTbbuMjkdh6RRnaQJRU1HRT83MzbpR2DbTb42OH1HROGW1e1o3ZO3jvvQuFf3EFtqVyjf7sjlMjcz4DFUdrjfmewY93kKLw95bjmOy99R/Yd9jKcwYM6E3/4jl4nh5OYLX1946PmLR9isTXxAqYxJkqfqlZ/plK3ZrdjyBCPQ773ucgUpMeYuxApqf4hOYym/8Lz6KWX6j6jgA0p9n+f6jVK7VFv3xSh/k2UTEdthXXr704bbY5ofOb51TX+lrzto/Kxd+NDc+Yt+aZOlXVHPb2zoXYP2ePPYtcqayZPPRdS45zqvmoI+Ok5lB24Q4z7PrtK0m/63vjFTQ+7RPu07bQNdhulXeEzIrpt5Dj459Zt525vsDle+5VBnJufZ0sTqO+BaZZ+VWP3fmP3eW99CbHz2L6PocLON50O/CtJLvPDOn2conrmwr2455uci9ecnfw3QWVR/fbEZyikfHihrNZ/byhvE3u7+28P9XYD7U3jzgCtjmWsu33H6PLT4z79V7v22RZ6vJ2iSzbC2ZP/OdVfXlb1HniwDz5/0NfmMbH8Uuqn5DNgb132BqxUYq8RRh3zmmDJ2/huwitzQ7Ll7jI5h+tO6TTD0OE0T9iXb9MMakf2uie6FiE26R2+nZfzPyNlkeZ5SvyXI2X1+Ov9uGOZfVvEyB+eA/Xk7mh8n/TL4lI8qZvAdT9CPpfqI1P5Njmcm/9OqtxhlRZzEjFjkz71HYRSz0Y5j2wtb/3Sh7G6bsXm5U8qm8WGtvnmIlDvxHop37mb6/LRj1iWL+XjbPD39vletXib8js/LgWL1W/l3luwVe+Ww+IPrn9DnGvLqefLtqzt3M/LqMlmFX+XIZPE1FRW/Ro7vYAparZuWs7TOXLdMvPEgi1+YBQfof1vyZOpRDxb7vBcHLI5ulWW/t7PPldNur5/USxUUqeWAVDQ/yGyybldvl5Xl9q/5b557lbv208PhNRm+E9mMmBwrPzyz9UjUPK8MWuVZnJXeqJ0/K0k5Z+qsRPdZMbdlfuU412vm38op6849m5wlldFY9OrgXidm5VdH2erRumWvFyjQ/Z1XPhrHsnpjG7Hyxnji8td7ItrL5a4LWqrH/WbLbnEXG/zFD34Yat11r2mbFUyu+LSuO68V3vTJRPVvq0ixYDOnWwvMZ2bwemB9ffPJs3ghS16w+VoXe8aLOOfMjDpb539gYzQ9FDdgsPdo+NdUzOKtasn3bd1vbjaydkmOPtFQMbD/YPK0NG2Uf90TEFlob0VdZerHMNdc5zltrweR6R8szdsgW+q6tdWFnmR4d1Ci7PpaKnqqyvYsw1fSMhz+q12r5VlpzdSGYLzla+L8yxn405j7TW/Vi6e0fLqe1VpYWqqq1qow9IOMH6N+ztViN12EbngZQ6wH1vN8T9OqoLF3VFuMkeHqmSNe073EbdsXs8SF6kfvKW8ao6p3+4nRMlfEi6pay9IxJjuvLuYs0d3per35pROtU0SHtAtQoiWbsivp9pXhtZuuNMmS1P9Z8T7+U0TSN5v2eRd1RNc8jA9Zd2YeZ+4Pj2Fg2fW9/YJdj4JxlPH1OFdZGsraT6YO2GPtnn2Q04Vn9TaTjkflaIzVCr1Zoa6q56zM0QGxc4xlUtTtb6nj28e45gGmka5Rr4ZXButk8vcxj5Nogs7UkEZeT5TLaEVZeb+uy+s1A7ckIZ2GcgBedGxuex12c433suwWLJz1bcuMG9OrIerVn2TJb3HPRedQx62zsupcevR1D19kb8/K20ROv2Xcc7EWn3X+6X4jzKnn6WTwNIitzQf3GuNSFyeiYFs73yIwvXWWLOnu3tav9yMYCZsZcRPepf+P/88GyreJBerzIyviRlRjP+WJ5r56ZjMasZsSwmF9nayoaZGv5zH3BbXnbZOB12UeM6CzFlapY16QS77leKHsFpprZOvGZMSMdG6qMrR/FcUbjKPtgi3hQFCuqjr91EX73xk1m6/efqt/ednv2R8d6LA43wvNR7mt83a2JxkPCGE2l7B1jXgPHabLGZMqM1ZTdj5l8rn57+em7wLNNsMzMbf6mfiPReqw8m6/jNJ/B9EWiN7/mu2SZsxjTOVh4bpA134KV1/MydeoY4Lswr5qzr/tgN2B6A/5H+UdSJsOsPKZetE+Dzeshc0yzjvOy+n3ZKHPZWT563nbJTL/Tlnj51bPzxS0qvpNfiuW9emYwS8c8q65dxNui/EEr3ti7nSy4XmX96Hz2nOesvxHPi3WeKvG82T7OHrbI149y6Ha5LYTN8/an6i+c9Z6qPD+jz2GGGdd4F/7afVwvr84Z+4PLM21KxUdlxSArdXzl1KN1HppsbFm2o3nZmc+I/LMaa7+RG4kyf2Sq53RLf7jsk1em8h67qX731pNtbxiZsZUizYxXBp+zP2rOeuYczTq23nNw1s7Zn5lqTn62raz4BZ8Wy1uwPPanqn49Xy/fisw29D4JmXz9N5PlMvUgM+rsQe5HPU8vxziovpfZudz3N4R2iTyL0fIMDwpY30TCMb6reXeZXD5NzzZmUN0uI9KDZve7qjO1tq2vw77OS+OwA4nF4++ZsO9abVFnA9/PtwpgW4N+MWs8FolXvAbTHjIxkcz6vdvfiplxGanzjYFtyXg1+rdVDtHbs5bfXWF1CHcH0dpctr0eXTCuL98+0/+zSJ3/KGwfeeDUXWlrG0zjYeVbz6IyltHvMNXLsU79v0LP2EiMSNesy/RqkbyxmfS35arfs/ujg+dAjzn1NsE6z6zsW8vpcXvZtiy8uj3weZ4Vu30R+ZgQld/3Pmfw3ileee/83DPOF9bNlnvgtjLvXVZHz/u7Z19nbXsUq71t9IyJFfFTQO+3K6vbqWCNIyLLRzWtfxS8Y5+p1c0SbXff52vX9Go+9h3/3yU/Bmy9fTzn1wa4nli+1TnaF1u0VxV+2CFME/6zM59R/U6FVY+FjDepf8/6bobUqX975WccV+XYM2Nv9pQ5C2SuEeaHyHqj+Sfs+8b7IHruK++G2XmNkRbMIlPmq4Fts9xHbzuZ3MlMPZ6WqUcT9b+NwX3Teb7Z/F+sS58rWVY5vzPWZfVkzkPmmC8Zx3oJlmVzmzXeMt2m3f+LnepOZm2Lse9z8CLQztNBxzWtnt+nsC2GlWvZft8kyzNU41ke6C/XPvR2fJ5uQOqIliO911NywaPlEZJDfric1j9kdRF/hrGsrXFaq+MyW/Xo+qJymf309nvXPFGwecLzHYI+9q3ZhT9V/N7WeBQYV2DzqnGJ58my+jno2U7POewZGwKRcb/x9xbIefkEpqzMyDa+3QjrOW5U/XPnnPkRXnxIyujrm6m3F9z+4xXcl8wYGo3qvYv3rJ7nIc/Klvc527fHk7gK0x6sOquw49X1Ws+jtQ/fDhyX9+x65fWzPMsnPAs2TkpUPlvPVmi/6z72gX1bYl/b1zxRv58YZc4S7Bnaelv6d5V996f+4i92ie4zW/3offaPK/1n4f8AUsqeMA==</Data>
- </DataArray>
- </GIFTI>
|