tpl-fsaverage_hemi-R_den-164k_atlas-Lausanne2018_scale-3_dseg.label.gii 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[oesteban]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Thu Mar 14 13:51:46 2024]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.09, 28 June, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0.980392" Green="0.980392" Blue="0.980392" Alpha="1"><![CDATA[unknown ]]></Label>
  20. <Label Key="1" Red="0.603922" Green="0.807843" Blue="0.0627451" Alpha="1"><![CDATA[lateralorbitofrontal_1 ]]></Label>
  21. <Label Key="2" Red="0.827451" Green="0.427451" Blue="0.439216" Alpha="1"><![CDATA[lateralorbitofrontal_2 ]]></Label>
  22. <Label Key="3" Red="0.0627451" Green="0.592157" Blue="0.647059" Alpha="1"><![CDATA[lateralorbitofrontal_3 ]]></Label>
  23. <Label Key="4" Red="0.768627" Green="0.054902" Blue="0.964706" Alpha="1"><![CDATA[lateralorbitofrontal_4 ]]></Label>
  24. <Label Key="5" Red="0.247059" Green="0.407843" Blue="0.792157" Alpha="1"><![CDATA[parsorbitalis_1 ]]></Label>
  25. <Label Key="6" Red="0.701961" Green="0.631373" Blue="0.0666667" Alpha="1"><![CDATA[frontalpole_1 ]]></Label>
  26. <Label Key="7" Red="0.0862745" Green="0.333333" Blue="0.901961" Alpha="1"><![CDATA[medialorbitofrontal_1 ]]></Label>
  27. <Label Key="8" Red="0.0901961" Green="0.709804" Blue="0.980392" Alpha="1"><![CDATA[medialorbitofrontal_2 ]]></Label>
  28. <Label Key="9" Red="0.282353" Green="0.760784" Blue="0.0431373" Alpha="1"><![CDATA[medialorbitofrontal_3 ]]></Label>
  29. <Label Key="10" Red="0.92549" Green="0.694118" Blue="0.556863" Alpha="1"><![CDATA[parstriangularis_1 ]]></Label>
  30. <Label Key="11" Red="0.941176" Green="0.709804" Blue="0.980392" Alpha="1"><![CDATA[parstriangularis_2 ]]></Label>
  31. <Label Key="12" Red="0.372549" Green="0.717647" Blue="0.243137" Alpha="1"><![CDATA[parsopercularis_1 ]]></Label>
  32. <Label Key="13" Red="0.337255" Green="0.517647" Blue="0.101961" Alpha="1"><![CDATA[parsopercularis_2 ]]></Label>
  33. <Label Key="14" Red="0.466667" Green="0.592157" Blue="0.752941" Alpha="1"><![CDATA[rostralmiddlefrontal_1 ]]></Label>
  34. <Label Key="15" Red="0.8" Green="0.0117647" Blue="0.686275" Alpha="1"><![CDATA[rostralmiddlefrontal_2 ]]></Label>
  35. <Label Key="16" Red="0.160784" Green="0.74902" Blue="0.109804" Alpha="1"><![CDATA[rostralmiddlefrontal_3 ]]></Label>
  36. <Label Key="17" Red="0.788235" Green="0.235294" Blue="0.984314" Alpha="1"><![CDATA[rostralmiddlefrontal_4 ]]></Label>
  37. <Label Key="18" Red="0.278431" Green="0.00784314" Blue="0.129412" Alpha="1"><![CDATA[rostralmiddlefrontal_5 ]]></Label>
  38. <Label Key="19" Red="0.482353" Green="0.156863" Blue="0.447059" Alpha="1"><![CDATA[rostralmiddlefrontal_6 ]]></Label>
  39. <Label Key="20" Red="0.94902" Green="0.815686" Blue="0.0235294" Alpha="1"><![CDATA[superiorfrontal_1 ]]></Label>
  40. <Label Key="21" Red="0.956863" Green="0.478431" Blue="0.85098" Alpha="1"><![CDATA[superiorfrontal_2 ]]></Label>
  41. <Label Key="22" Red="0.490196" Green="0.509804" Blue="0.745098" Alpha="1"><![CDATA[superiorfrontal_3 ]]></Label>
  42. <Label Key="23" Red="0.156863" Green="0.415686" Blue="0.192157" Alpha="1"><![CDATA[superiorfrontal_4 ]]></Label>
  43. <Label Key="24" Red="0.372549" Green="0.580392" Blue="0.372549" Alpha="1"><![CDATA[superiorfrontal_5 ]]></Label>
  44. <Label Key="25" Red="0.411765" Green="0.160784" Blue="0.670588" Alpha="1"><![CDATA[superiorfrontal_6 ]]></Label>
  45. <Label Key="26" Red="0.0588235" Green="0.384314" Blue="0.439216" Alpha="1"><![CDATA[superiorfrontal_7 ]]></Label>
  46. <Label Key="27" Red="0.231373" Green="0.352941" Blue="0.490196" Alpha="1"><![CDATA[superiorfrontal_8 ]]></Label>
  47. <Label Key="28" Red="0.0117647" Green="0.439216" Blue="0.423529" Alpha="1"><![CDATA[caudalmiddlefrontal_1 ]]></Label>
  48. <Label Key="29" Red="0.678431" Green="0.784314" Blue="0.309804" Alpha="1"><![CDATA[caudalmiddlefrontal_2 ]]></Label>
  49. <Label Key="30" Red="0.913725" Green="0.431373" Blue="0.807843" Alpha="1"><![CDATA[caudalmiddlefrontal_3 ]]></Label>
  50. <Label Key="31" Red="0.752941" Green="0.164706" Blue="0.478431" Alpha="1"><![CDATA[precentral_1 ]]></Label>
  51. <Label Key="32" Red="0.109804" Green="0.239216" Blue="0.560784" Alpha="1"><![CDATA[precentral_2 ]]></Label>
  52. <Label Key="33" Red="0.992157" Green="0.52549" Blue="0.329412" Alpha="1"><![CDATA[precentral_3 ]]></Label>
  53. <Label Key="34" Red="0.317647" Green="0.831373" Blue="0.113725" Alpha="1"><![CDATA[precentral_4 ]]></Label>
  54. <Label Key="35" Red="0.980392" Green="0.0666667" Blue="0.756863" Alpha="1"><![CDATA[precentral_5 ]]></Label>
  55. <Label Key="36" Red="0.952941" Green="0.992157" Blue="0.905882" Alpha="1"><![CDATA[precentral_6 ]]></Label>
  56. <Label Key="37" Red="0.690196" Green="0.211765" Blue="0.313726" Alpha="1"><![CDATA[paracentral_1 ]]></Label>
  57. <Label Key="38" Red="0.898039" Green="0.572549" Blue="0.682353" Alpha="1"><![CDATA[paracentral_2 ]]></Label>
  58. <Label Key="39" Red="0.945098" Green="0.282353" Blue="0.807843" Alpha="1"><![CDATA[paracentral_3 ]]></Label>
  59. <Label Key="40" Red="0.890196" Green="0.439216" Blue="0.156863" Alpha="1"><![CDATA[rostralanteriorcingulate_1 ]]></Label>
  60. <Label Key="41" Red="0.505882" Green="0.192157" Blue="0.847059" Alpha="1"><![CDATA[caudalanteriorcingulate_1 ]]></Label>
  61. <Label Key="42" Red="0.0235294" Green="0.92549" Blue="0.921569" Alpha="1"><![CDATA[posteriorcingulate_1 ]]></Label>
  62. <Label Key="43" Red="0.423529" Green="0.372549" Blue="0.14902" Alpha="1"><![CDATA[posteriorcingulate_2 ]]></Label>
  63. <Label Key="44" Red="0.482353" Green="0.172549" Blue="0.760784" Alpha="1"><![CDATA[isthmuscingulate_1 ]]></Label>
  64. <Label Key="45" Red="0.788235" Green="0.54902" Blue="0.866667" Alpha="1"><![CDATA[postcentral_1 ]]></Label>
  65. <Label Key="46" Red="0.792157" Green="0.901961" Blue="0.878431" Alpha="1"><![CDATA[postcentral_2 ]]></Label>
  66. <Label Key="47" Red="0.12549" Green="0.843137" Blue="0.352941" Alpha="1"><![CDATA[postcentral_3 ]]></Label>
  67. <Label Key="48" Red="0.698039" Green="0.45098" Blue="0.521569" Alpha="1"><![CDATA[postcentral_4 ]]></Label>
  68. <Label Key="49" Red="0.745098" Green="0.709804" Blue="0.501961" Alpha="1"><![CDATA[postcentral_5 ]]></Label>
  69. <Label Key="50" Red="0.729412" Green="0.223529" Blue="0.643137" Alpha="1"><![CDATA[supramarginal_1 ]]></Label>
  70. <Label Key="51" Red="0.301961" Green="0.862745" Blue="0.682353" Alpha="1"><![CDATA[supramarginal_2 ]]></Label>
  71. <Label Key="52" Red="0.054902" Green="0.423529" Blue="0.109804" Alpha="1"><![CDATA[supramarginal_3 ]]></Label>
  72. <Label Key="53" Red="0.717647" Green="0.858824" Blue="0.462745" Alpha="1"><![CDATA[supramarginal_4 ]]></Label>
  73. <Label Key="54" Red="0.203922" Green="0.101961" Blue="0.576471" Alpha="1"><![CDATA[superiorparietal_1 ]]></Label>
  74. <Label Key="55" Red="0.72549" Green="0.0901961" Blue="0.505882" Alpha="1"><![CDATA[superiorparietal_2 ]]></Label>
  75. <Label Key="56" Red="0.105882" Green="0.27451" Blue="0.992157" Alpha="1"><![CDATA[superiorparietal_3 ]]></Label>
  76. <Label Key="57" Red="0.0313726" Green="0.713726" Blue="0.0156863" Alpha="1"><![CDATA[superiorparietal_4 ]]></Label>
  77. <Label Key="58" Red="0.184314" Green="0.909804" Blue="0.847059" Alpha="1"><![CDATA[superiorparietal_5 ]]></Label>
  78. <Label Key="59" Red="0.917647" Green="0.772549" Blue="0.101961" Alpha="1"><![CDATA[superiorparietal_6 ]]></Label>
  79. <Label Key="60" Red="0.0235294" Green="0.72549" Blue="0.780392" Alpha="1"><![CDATA[superiorparietal_7 ]]></Label>
  80. <Label Key="61" Red="0.298039" Green="0.835294" Blue="0.14902" Alpha="1"><![CDATA[inferiorparietal_1 ]]></Label>
  81. <Label Key="62" Red="0.894118" Green="0.482353" Blue="0.45098" Alpha="1"><![CDATA[inferiorparietal_2 ]]></Label>
  82. <Label Key="63" Red="0.356863" Green="0.784314" Blue="0.854902" Alpha="1"><![CDATA[inferiorparietal_3 ]]></Label>
  83. <Label Key="64" Red="0.921569" Green="0.317647" Blue="0.643137" Alpha="1"><![CDATA[inferiorparietal_4 ]]></Label>
  84. <Label Key="65" Red="0.443137" Green="0.678431" Blue="0.568627" Alpha="1"><![CDATA[inferiorparietal_5 ]]></Label>
  85. <Label Key="66" Red="0.709804" Green="0.0588235" Blue="0.439216" Alpha="1"><![CDATA[inferiorparietal_6 ]]></Label>
  86. <Label Key="67" Red="0" Green="0.733333" Blue="0.270588" Alpha="1"><![CDATA[precuneus_1 ]]></Label>
  87. <Label Key="68" Red="0.54902" Green="0.94902" Blue="0.270588" Alpha="1"><![CDATA[precuneus_2 ]]></Label>
  88. <Label Key="69" Red="0.0156863" Green="0.145098" Blue="0.137255" Alpha="1"><![CDATA[precuneus_3 ]]></Label>
  89. <Label Key="70" Red="0.188235" Green="0.129412" Blue="0.776471" Alpha="1"><![CDATA[precuneus_4 ]]></Label>
  90. <Label Key="71" Red="0.898039" Green="0.631373" Blue="0.458824" Alpha="1"><![CDATA[precuneus_5 ]]></Label>
  91. <Label Key="72" Red="0.113725" Green="0.0313726" Blue="0.937255" Alpha="1"><![CDATA[cuneus_1 ]]></Label>
  92. <Label Key="73" Red="0.639216" Green="0.34902" Blue="0.827451" Alpha="1"><![CDATA[cuneus_2 ]]></Label>
  93. <Label Key="74" Red="0.647059" Green="0.333333" Blue="0.815686" Alpha="1"><![CDATA[pericalcarine_1 ]]></Label>
  94. <Label Key="75" Red="0.572549" Green="0.768627" Blue="0.384314" Alpha="1"><![CDATA[pericalcarine_2 ]]></Label>
  95. <Label Key="76" Red="0.623529" Green="0.807843" Blue="0.478431" Alpha="1"><![CDATA[lateraloccipital_1 ]]></Label>
  96. <Label Key="77" Red="0.815686" Green="0.141176" Blue="0.282353" Alpha="1"><![CDATA[lateraloccipital_2 ]]></Label>
  97. <Label Key="78" Red="0.537255" Green="0.619608" Blue="0.533333" Alpha="1"><![CDATA[lateraloccipital_3 ]]></Label>
  98. <Label Key="79" Red="0.286275" Green="0.556863" Blue="0.0862745" Alpha="1"><![CDATA[lateraloccipital_4 ]]></Label>
  99. <Label Key="80" Red="0.843137" Green="0.658824" Blue="0.345098" Alpha="1"><![CDATA[lateraloccipital_5 ]]></Label>
  100. <Label Key="81" Red="0.537255" Green="0.831373" Blue="0.384314" Alpha="1"><![CDATA[lingual_1 ]]></Label>
  101. <Label Key="82" Red="0.984314" Green="0.427451" Blue="0.207843" Alpha="1"><![CDATA[lingual_2 ]]></Label>
  102. <Label Key="83" Red="0.752941" Green="0.164706" Blue="0.913725" Alpha="1"><![CDATA[lingual_3 ]]></Label>
  103. <Label Key="84" Red="0.705882" Green="0.988235" Blue="0.6" Alpha="1"><![CDATA[fusiform_1 ]]></Label>
  104. <Label Key="85" Red="0.823529" Green="0.839216" Blue="0.635294" Alpha="1"><![CDATA[fusiform_2 ]]></Label>
  105. <Label Key="86" Red="0.984314" Green="0.72549" Blue="0.529412" Alpha="1"><![CDATA[fusiform_3 ]]></Label>
  106. <Label Key="87" Red="0.0980392" Green="0.764706" Blue="0.74902" Alpha="1"><![CDATA[fusiform_4 ]]></Label>
  107. <Label Key="88" Red="0.258824" Green="0.878431" Blue="0.160784" Alpha="1"><![CDATA[parahippocampal_1 ]]></Label>
  108. <Label Key="89" Red="0.0156863" Green="0.937255" Blue="0.0980392" Alpha="1"><![CDATA[entorhinal_1 ]]></Label>
  109. <Label Key="90" Red="0.588235" Green="0.901961" Blue="0.768627" Alpha="1"><![CDATA[temporalpole_1 ]]></Label>
  110. <Label Key="91" Red="0.721569" Green="0.341176" Blue="0.172549" Alpha="1"><![CDATA[inferiortemporal_1 ]]></Label>
  111. <Label Key="92" Red="0.952941" Green="0.521569" Blue="0.666667" Alpha="1"><![CDATA[inferiortemporal_2 ]]></Label>
  112. <Label Key="93" Red="0.580392" Green="0.172549" Blue="0.0156863" Alpha="1"><![CDATA[inferiortemporal_3 ]]></Label>
  113. <Label Key="94" Red="0.0117647" Green="0.545098" Blue="0.219608" Alpha="1"><![CDATA[inferiortemporal_4 ]]></Label>
  114. <Label Key="95" Red="0.772549" Green="0.482353" Blue="0.341176" Alpha="1"><![CDATA[middletemporal_1 ]]></Label>
  115. <Label Key="96" Red="0.47451" Green="0.670588" Blue="0.258824" Alpha="1"><![CDATA[middletemporal_2 ]]></Label>
  116. <Label Key="97" Red="0.909804" Green="0.215686" Blue="0.156863" Alpha="1"><![CDATA[middletemporal_3 ]]></Label>
  117. <Label Key="98" Red="0.301961" Green="0.705882" Blue="0.145098" Alpha="1"><![CDATA[middletemporal_4 ]]></Label>
  118. <Label Key="99" Red="0.788235" Green="0.12549" Blue="0.184314" Alpha="1"><![CDATA[bankssts_1 ]]></Label>
  119. <Label Key="100" Red="0.462745" Green="0.87451" Blue="0.768627" Alpha="1"><![CDATA[superiortemporal_1 ]]></Label>
  120. <Label Key="101" Red="0.466667" Green="0.313726" Blue="0.4" Alpha="1"><![CDATA[superiortemporal_2 ]]></Label>
  121. <Label Key="102" Red="0.690196" Green="0.247059" Blue="0.560784" Alpha="1"><![CDATA[superiortemporal_3 ]]></Label>
  122. <Label Key="103" Red="0.972549" Green="0.968627" Blue="0.941176" Alpha="1"><![CDATA[superiortemporal_4 ]]></Label>
  123. <Label Key="104" Red="0.235294" Green="0.0627451" Blue="0.0823529" Alpha="1"><![CDATA[superiortemporal_5 ]]></Label>
  124. <Label Key="105" Red="0.0784314" Green="0.670588" Blue="0.423529" Alpha="1"><![CDATA[transversetemporal_1 ]]></Label>
  125. <Label Key="106" Red="0.835294" Green="0.94902" Blue="0.980392" Alpha="1"><![CDATA[insula_1 ]]></Label>
  126. <Label Key="107" Red="0.305882" Green="0.576471" Blue="0.0901961" Alpha="1"><![CDATA[insula_2 ]]></Label>
  127. <Label Key="108" Red="0" Green="0.937255" Blue="0.423529" Alpha="1"><![CDATA[insula_3 ]]></Label>
  128. </LabelTable>
  129. <DataArray Intent="NIFTI_INTENT_LABEL"
  130. DataType="NIFTI_TYPE_INT32"
  131. ArrayIndexingOrder="RowMajorOrder"
  132. Dimensionality="1"
  133. Dim0="163842"
  134. Encoding="GZipBase64Binary"
  135. Endian="LittleEndian"
  136. ExternalFileName=""
  137. ExternalFileOffset="">
  138. <MetaData>
  139. <MD>
  140. <Name><![CDATA[Name]]></Name>
  141. <Value><![CDATA[node label]]></Value>
  142. </MD>
  143. </MetaData>
  144. <Data>eJzsnXe33ETy94VtDJi0ZJYlXAfAYMOS1rDsLnsdyDmbYHxtk+H9//t7bj+rOi7XrdhdLWnmjs75nJ6RWi2NRqG76lulE8MwnNnl+V3+ssvDu7y9ywe7XNvlj11u2uX0Lt+Pyx/Y5fFdntzl2V1e3OW1XY7t8tIud+5y+y7P7XLfLgd2ObnL/43Thd3P/97l/V3O7fKfXc7u8vIuP431ft0tL+7yxS5Xdnlkl7/t8uguJ3Z5apfj47aPjzw6bveOXe7e5Z5dbh5/1727PDO2fXLc71O7vLXLm7tcGD+/Pu7Pf0fOjL+p/JZ/7PLKLn/u8svI/6Hp893vn437/fEun+zy0fibdsbjCcfvoZG7xuNdeHqXv47bfG0sX93l6C5/H3lhl8fGeVvjb/19POZP7HJo/L8O7nJkl/t3uWWXW8m+lunUOO80+j/e2eX8Lv/c5V+7fLjLG7tc3mV7/L9eGf+r8nt+G/lxbOvb3fLrXb4bv18cv386/pdfjW39sMulXcr/fHX8T/82lgD8rydQ+Zfxv/0L4Z7x/wUeHkv6/741/r//GY/vmfHz8+P/W/gDcdv4O8ox/Xzk9Hhcyn8L1wnw8Pi/lvLx8fPj4/9ceHL8n58c/2vg4fG/PTOWL46UeuXcODb+/8fQshfR+fD4uKxwdKT8/3eM3DmyNfzvPCllOVcOjpTr5uZxncIDiHLtHB45NOw9j+CaKseqnGenEPg8K1M5z94dKf/LeVSW41rO+3+OvD7y75FyHp4dy+3h+vkIlONTzs2Xxjovj2Xhd8Q/ED+O9co96s/h+r2nnMflvPxuLLnf/M3ufKBcO+Uc/wydJ3C+wzkPlPtCOf+/RPyMuIIo2740niN/Q8D9t9wHy3XxCDon4FqB8wGuo7LOo+O82xF3j9yHKPPvQv//PcwxgPso5q3xv8TX3avj//ra+H+W/wOuQbjPvoQo8+F+C8B9F67Lcu/9Vfhf3iP/w8XxmBc+RvyE2Bkp1+GDBLhXPzhcv47LPQfft58e/wsMXNflmv7ncP2+/ur4P72KKO08P/J3hheG6/eH8l89Nv6X8J9uDdefCc+Px+j3sXxi5E70+bmRcu3D86JQroObR+Ca+HM8D+5H3IK4deCfL9x02/hbT4+cQp+hTvn8wQjcK8p/Ws6rd9BneE7BvQLKf42U9eH5Ve7NZxHbw433j1LvFcTLBGgD7iHwzIN7yE9jeW08nvBbyvEv95Jyj4DnIn4+luki+QzPzMJHI+V8/XS4/hwt94yvxjr43vLDcP3ZCpR+G1wvhXKPuYooy08Y4OevhPT8pcAz9wzieQR9/t40XO+DAh8M8vMXeJxBe/7C8xSeu1AWjiFeJEDb0vO33EvvHG58BhfKffbQcP1+e/vAP3/L8nuH6/dmeg+GslCuR/r8xRM8f0tZ7s1wjwbg+Qv3avr8BbaHvc9ffP28QSj3Gu75C9fXgeH6/eZXBJyj0v0EP3+BzxHlGinXU7nm4dkL14/0/N0ZbnwGw/iDPoPhOQxjEuARwvGB78tyz2jMo6htfP7R5zYFzpPyzIa+MaxTnl3wPMfg8wpfxwU4t/BzHi+H5z7AnVdl/mvD3nsBjLcw/yXQvgEA59U/BKDPAPyCgPPLel7hc4mCx3mlhPv0x+g77mOU+9MOAfc3Hhr29j3+Nly/nz003NgXwf0RDNyPaf+EQvsqtMT3RswZBtyXwffGVxXeJuBnANcHKtcEjINeROULArBvcDweY8B9qGNjeRSVHPQZVe7xTxDuQGwNN/a9oP8F4zA8r3ynfTLcN8P9Mxiv4f4aBp/7ZT/L+YKfK/cT7kWfDw97+3nAIVSW/bKuIe9UnvUwhgTw+XFquLHvCP1HsOUApwnctmj/sgB9y1LSsSnuewJl3oXh+tgVwGNYyutk+b+GG/usmH8P1/vBBfw8PTvs7c/+F5XnhuvP57PDjc/pDxnKtVTO61cE4P5L+8W0r6yNu3HfGaBjcYlrDDchuP8YjxW/ZYA+9ncMNecv9N0x3ww39ucL74//J9gMAOjjf4b4fLje56d8RYCxwLXhxjEBtT0APzBcGq7bJi6N7UKJn5+ln/Qr4afheh+q9NnAfkH5ngHsu4A0BqH9KDoP4PpF0NehdkPOfojHMbi/Q/svF5h5tD8DY52Xhr32RsnuCOctd55x/ZCPGK4N1/sdeHz04HBjf+Jvw419C7BLY2AchPsPuI/L9RewPROexXTshO/vpX14vsJznj7rsd0TKPuHx3jHCPT5fQfhzoEfnz2BPhfgecfZTfHYDfMAAzxnsV31lkG3r0pT6ZfDs/KUAbc+tsfCM/BNAjz/oC8vPeNeJ+DnGB0/whgSnlmFcwJg16XjS/rcwXDPHTo+oM8YGIfCMwXswXjMAM8OsAuDjTjyfKB2YwCeA+BHwnZksPdw9mTu3g7jWmpnhueuNt7F9+ryHezPAB0D47Ew2FgAGF9w42J6L8C+vBeHvWNkbayM7TAwbqbrUbs39hVy94L7CHi8jNvA1zVwD/lO7TYwPTPstedwdnUOuH4LYG/nwLYdCh6HA9x4nBuX07E5BcboME7XxurSmJ0+D/HY3TN+x1Pps5frDPetpHH9JwwfM5Rr8yeBHQY6vtegY346/i/nnDb+p3YAjz2AXrcckl1Asg+8Rj4D2FbA+UQ0e8FbA283kGwHwDFlGfQn8DmM+y7YniDZ3rBNgd6PHkOftwjQN4Hv2BYOfhwA7AXl83MIri/D+XwAOq9s7yYG6OuUz9i+cDPDwUG3Q9DrmvaNSr/oJOKWgbdVcH4o8EVRv1TEP1U7ge0CA+fnBfIZ+lAFarvg7BecLUPyl3F2jXLPo3aLd4brWg/4/B7D58P1/h/WP4BPE0OfDbRviPuIpV94brjeR/xwuNFnh4GxC2f3oGDfBAXsIPh+fm64fi+H7Wl2EGoPwTYRzX8IUBsG10/FNhLoo2l917KcPns4mwm2lUg2kz/RfM5uAv1WbDv5euBtKVz71D6iXVO07tfkMwb8gYVPhxvHwfCchuf+p6jEPlUM9JepfeV7ckyh772DwBoPiVLnkgC2i1g2F/DnYu0I5z/DYxWwwcD/5PH/Ah7/L/QDqL0Entuc/0Dy/+LnEPX/AlH/L0D7MXgc8iQh4v8FmwPYADT/L9bbaP5fDL5G8LMSgOfIswPv/wUuMOD+2b8J0Jcv/frtIe7/lcYArf7fUuJxdLk/QD8egOcD+H/xdV5Kj/8XgPHuo8ONPlqv/5faNC3/L9ThxrCanRPbOrH/F6A+YM7+ic8ryf9Lr3PuvOJ0IJq91OP/BZ0YPa/weZjp/73IlNTfi585kv8X+4Gp/xeP78A2y/l/LXst1hVLYz5uTMfh8f+CD5jaeLP9v9jew9mCpfFaOR6S/xeQ/L0cEf8vXYbZYqB+Xwrn/y3lAVKWbePxFmeL5vy/peT8vtj/C2T6f+l4jfP/0vGRNXaStkVt3hTO/g1jpVLCOIobo2ENFecDxlpYzu9L7ebgB/b4fwHJlq75fwHveIdDs8P/xjCn/xfs+K3+XxjHcP5fOk4B/y+1+WOw/5fz+3L+X2hb8vt6/b8A9S1T/y83DsHPOs7va/l/Ae9YBPpaVv9KQmoT96U4Wx/nR7aQ+lecZpaD6zfV9K/ODLxvGsfC4DrUtkr77tRnTW31ED9TJnqt4pgasCtRcJ/qg4H3cWtw9mncb6L+K6tPxfnEqV8c9MWcb9zTv9L0bDg2iOqU3yYlBfoueCyB7/ucP46D7hccD268zfngPP0r6qO3fPZ4XG1xiAH3r/D4ivPpc5R94vpX1O+POSwA43zYt8iz6OQg2we4/pWlGcD26ch+4L7LuwySr5L6LCnQvwIkjR3WrmMNuwbtu1Cgb7U93Kiv82D1raRtcn0qS+egaR5wXwv3uXAfDmshqA8H/8dcHwD3rbQ+QORcohPWT3C8P+h9LM7na2nrNN2FpcHwwmkzpLhAjqvMPLApe/QbHiybauk/YbsC11+zgP2kuhBOJxLt21FbrmZ/s5DswI8ySFoWC6pXoXD2P+4Zefew93lJ7cqS1gX0LrSUwH0k+szjYk8AWk+ze3MT12/m6nE2c0tr84yjDmdvh2cP7o/j5xw3z/s85PQ8nLaHi7nBWPofqgPSYnUsNL0Q2Hc5Oy+O+eHQ/AsRXmFKTb8gjXso3LMyql+KTtSPT3XlNYBdg+qi6HdqC48g6amwHV2Kp7KI6K+i4Oekx2avabsod6EygmWXoDZ4j07MAj//OS0ZzMPPe01v5tGiWZo0D5Jf4zVlmaRro6U2no7EzHnR/ldJRyf5YiS/jKW10zR42P6gafI0OBvJS8551v9J/UcYTfsnzef8TVxfmtpOuL4k1RNukflbiKNMybHFQP976ZmH/WCcz4vqFDktItVkSzYeTd9Iodvg8K7HXQtUIynpJimwnOokMbjfy+ksLbS2NW0mtmlx/R6p/wN6ZA+cjvMk+Uz1n9q6VA/q0Ylq3OpYjqH/bc8+3VwT/B+czhVj+XA5ThnLsV6Wgsde1F7J+YYtfa2kufX4lPEk1aMaXarV1eD0uVTXS6E+bW4+xdoOpw3moGMH7tjCM1aKl7aAceXrw96xZsROrIF98ueGvdplDarLBn0zN1/z77eCx9DbDdB2qZ2bxslIuoOPB16HgMHPWkuPHcWyQ2gaB6z15mLgLX0EtunTeeC3xOdC+W7Z+anOQtJbcDbmiH1E02hgPTrVpP/IlJa+Q4P2tSSoz8IzSf2csgzbeCRNCdXKf8N853QhnA7FU6c2XwGesBY/otGPbiPCN8Ne7T933LhjxN1fsU2q+IGob4iLoefsU9iOxsUS0OUSmraHi0XASP4prAXC4Gvn8rD3erL8WjvD9dgGPI/6vDhtkUdvRJFiIzDe+pzeCN8vOXstvj9KtlsJfN+z/Hjgs+Pa0fynFtxv/k6YH4n/4PRV0TgRK35E00RpOicA65gkuPE8Z9PAYxt4pnD9WJwPmItL0fRIlh0IfKxPk9LSEnH2MSm+hYtzASw9kKb54WxNnHbGo+cBTQwXNyNpdSwdDrSDdTfaM4zzHWpaGuuZyOlkohoYGN9Q3YtH37JNkLQrXP4NDZzv0dKiQAyQpDnx3Bc9/Q+PVoTzjdHnK8QTXUYlfvZJz+xCja6jAH4SmieJA9uXQfMQ0WCAtoHqKTRdBdVUeKBaCUsf4dU/UDhtA2hyJS0D1TBImgUMd85Jel5Le8Ctg3UI3HPPox0An5SmDwA9gBaf5dEASP59zacf9eNzcV507Kb54T33DW6q9Z1z+UQ8PnLJD74z6H5wHF8mxZll+LI5f7XXJ13jd/b4gz3+Yo/P2OMj5Hywls83y5dr+WklQPuGfbF4Hy1fq6RRt/ynXBweBfcnaT4nzhe6hfDoy48Ocp/fE7tnadK1mD8a/8f5H59A/yX4lSR/IgX6T5xf8IgwX/MZSr5Ar+9P8tVxy0ADH/HXHRr2xiXeOuTHJ9ZOHl+Zxy/m8X9Z8ZCcb8szYZ+V5aPCfiTwOdE4SslHJfm1LjDr0d8i+Xk0aD5eyzfkidfkbI/UvxPx8dB+1baA5JORfDCaz0WKVfD6Uzx+E0/8aDTegfN1QKxDjS+D81VY/grOD+G5xrhnkdfHYOUzzvYXeCbLtq/5QiCnT8GKl6W2+s8YPh9uzKfsscF7bOxnB5/9XIsTidjHL5HPXw43xuuCzRvva619m7NjY7t1iy1ai/8FG8eJYa9tw7JHS3lXNNuF117hsYV77BE0jjgaT0ztF4AVX0zt6pKdIWJvx7YFj23eY0+QYpOxXZ/Wk/SqnL0gouHn7mu3CfMj+nmcI8YCj/ctYLyPx+zS+B1fVx5dukdvTv0J2hhei/3yxkpb43RpTOqJc5bG2/Db8GcYT5YS65ylcbc33voFVNLPNP5aisGGMTWMnTUbq3fsXODGwNK4mBsjSznXtdw4mEMKdExcbLo3D7yt1xvjHYn1tuK+pfjvW4Yb37UJJaZvr+36uzyx3jMSM25RthHxkeHJiisvcDl8OKTxqNfv5hlbRrSFXN4fb3w6jP3Ap2eNF7UxojRmxPcw73iQ075perjacR8e/2Vo2Og4r9jBvBozzd/A5R/CeYigz9x7vIa1VXQ8RqE5i2AcJo3HPHGGnMZJG2u1jq2wD5YbV3lj87X4fGAHIflzpbESXl7GRTh+/+Hhxhj+1lh+KZ4fa04wWhyed0zmjfe30MZpXH3YF6x90fpBET82t31uP7RjLcV4UZ+Htc+ar5yLsSpwY1PLv8Gh5RPAvvebB9uXbu1/wdPX0nIOSHW53AOe/AN4wvkHpDwE0hTJS9AK3Tbub1jaAo/2wKNJsPIYeHIawHJPnyuiZ4hqHrg+lyfvgZUPgeLRX2XkQ/BS+nxYsyX5CgHNBkNtlZrWNnJdZU24H1T8U5y9uTXPArUXlX4416/hsLQkVh3ok1l5GCR2Ruh3D9GcC62UZwZnS6K2L28+B6yx4bZViOZwiOZ08OR2oHoby1ZnAbGXtL/I2QKtnA6ees+iUrMTtuaEsPQ/9PkUqatB7X/Y7vfqINswsW5I0iVh8Da55fB8tc4h+jz26pQk3VJExyRRnpNc37ilTW1bmBeYeVweiox8FFpOCi80RwX06a24BJrTgstRIeW/kPRbGpo9mtbVzrPSz6C2oz+M+QWc04LWt3JNcGMvOq7yjLVa8l205L7g8mBosZcUSa+G60gaNIyWFwPatPJjUK2cBvRVpf7tEWWZ1gfGcBo6qhfXNHVcXIqE5a+wcmzU5Ne4dZDzZ1jrWcC5E9Gz7YcJfDfaMg54ntPnNx6za30ByXdymvnO2SSi/iRL4xhBO55SfW6+pAHEwBhS01NSuzvVRuJlxWYDekpOW0lzgEh1rBwg3H4AeOwq+deksS53HHG/55/kM9hivDlCNMr42uPXe33Y69/T/H7YrwfbodDcIuBvk3SmknbzA+Z7AetDLP2ppUu9bCwHcFzP9giNN9S0rBRtW9g2Qu0kYNPg/JnU7qHpYstxlPRF2blJij9UswlaGtqXA9vxcM1Zh55nnD6J619jir3vN6OON69JwbJ/Wv7iH4cbdcQU2I7XNmZpjT06L62PDc+qqPZYmqDvWj7/IbSFbbXg18Z921JH0i7jdjT/M9U2fz3w+VG8+VIsnzrYXa3jo2mcMf4j7p+82wbwcfHUsY5r8U9z/RqqX6S6AU3ryMVDgj26rM/Z2DntwafMMsrHg64BB98/l4flKzLvK2a5phv/eriuffboOjW9A9TZQVweePu6pDu/PLTla4E2AKx18ORwsXK9WPpxzX8EwPMB69+9fiaqi7c0IFeEz1KbV4V5GlQzJC2ncPlgLG07oPkbONs5tQeXz5xNU8rDgp9j0viK6p8BS9NC9xXb0an2BduPJV2HpsGw9BJUj4rtMZoOgbPvwBja8u9z43TsD6D6Q+jTl5Ibx0Df9KXhxv6/5Y8u/Udsb6vx8+JnDPdcw+MF7l7P6bfwPQzrlYq9GufZwO/34PROWBsUiT2Btul8fK5YcSVUM4N9iFr8yElUcloULU6EO68i8SBaHglaF59X5dyj4zFsf+Xu9dZ5xfniMbifosVu0H79zrA3XoPzJ3tjNDg/MfXxUqy8CFLMheWf8uY50PyDUtwE1fh5fGlwPLg8A/gajsQ+4GcU+G2wbwb7d6z4fwrEL3BxDNS3YcUpYL+DZefH+jfNJt8rHoGz7ePzg7P30jgCry0Xxw9w9k9PnMD5gbdZWjECEHPujSfn9P/4ebY9bN7/y/3H5T4P4wEthro1Pto75gboeFjTz3vik3HbEW28Npbjxq6/DdfHUVa8sDZukfJPPjLU56Cs6V9pYxzoS3H6Cq/+iuKJyY3E4db0r2gMLRdfK8XVcvZRzaddAP9jKen1WkrL/wN5NQucbcmym0iaLq5/hceJnnhXLc61zIN8fdGYVivHkjZO1Sj9Fk0P5Y29kOJPufE23s5RVFpw8QdWLMKWEy1OtEDH4l4icaBlHM/Ffx4e2t//K8H1ryzfOvbHR/bDitOsiRPwxmBaeVBr4iup71LrX3FI/Suvnr82LtKr3+f6ctgmU/5T8APBZMU2an2AyLkEkxajiLH6V1ocopX/JdK/smIKpRhDzaYcBccP4tjBzHhB/Iyx+mpWHKAUD6j146Avp/XpAGrLtdrVkOzAnL4Vts89fzW4uDfL/sc9G+nyYvvwxOpF4vGojbHgjcW7By2DMhp/x/WbuXqSzVzjGVJ64+mkPvmbqKx5Dnri5rjtcvFwb5ESbPwePNoqyZbrzQ9s5QzOjHfjbB9eDa/me5T8izXPQe8k6fKicWkXh732b6qxoiX16UewNDTUjh7Bigd7aJDjtyyiOZOtGDKO7Hgx6iOQfAUWTw2+2C4Mfu5H1rP8FlY8l0QkBgfiq7j7LufriOQ2sGK2PFjxWhZabFYrnO0B8yIpJSw7iUZLvBWNm6LxU48py3Cf0IqtwsdJi7HaUvD6s7h1uZgpDcvn9dwgxxlZWole8VDe+tz1gO2Z2H5Ev1Ng+YFBjkHC/V4rlkmDaxvDxTIBkVgmLn6pNb4I/I3WuodReYvRVgbUhkb/3559urkmLV4IY/lwOU6hz6fJMiteJxI3lBETZPmVrQnr1rS4H4n3UEmRfNRc7A/n8/bE/pw3toXxxvdY8TseyriVjjUjduJojj7Lbw+lJw4MsGJzWsBj5+0Gzg17Y284tLgbL/hZmx1jY9khrHiXaAyNpI+gXBPmW3Z+b3wMF7sSsY9oGg0ax+KNe5H0HRo3OaE+C88k9XPKslIWu42lKcG5+a2YFitWxYpjyc4P2St2JRqvYh0vDRqPQrUD2B9kxaNQpNgTTr+jxZ9ovqcvBz7mRIst4fRAAL52LjPfLXaUZVJMSW08iRULAnzpXAfH2nw/fqcxhxTsd/PGhXA6KMuPh32ikdgPC887F6j+ainU6qsy9FeAR3/lJWJr0uJipDw2lv4K4J6P1tjH6rPW6q+0GB0vlt4pqrvi9Fec3imiuZJiiDgiNmKsxfLaEDX9FV2uaco9NrqtQdZkWX5nqr/y6rCi+isvVr/m5FhH015JOizLZlHb1+L0TdiOUPzHkl/ZwvI7T6G/wnj0V9Z4sFZ/VWzDvw/X7cQt+iuqw7LstVofxOof1J5XMHn1VxyWvxn6sReZEtsePkEl7YdycdwWnpjeWui7rWqQ/D8tmisNj+aqBqq/atVhAZqPrEZ7ZemvWnMuUq0VLXHftVZ/BWBdVQ30Ochpq6z+NY0njeqvopR9svrm9Dno0V0BkD+1ZWxgxWssTX8lacM4n2kP/RWHprmaU38V0Vi16q8oS9VfQbyzpr/y6KC8+isu5qdFhwXzs3RYml+0RodFNVlR7RSnxbLG0XPor7AOy8OU2qsMHZZl92nRX0n9JysOLEt71aq/wnAx/V5AgyX1GantRKon6ai82iuJbP2VRiTeLtq2N/+BVe8Jcjw0jVUNeJxt6aqOOOp49FeWHiuivwKy9FdeIG4xU2NVOORkv+mvsP1Q0lxF9VdYI/U2KT36K8uOmaW/ap0i2qt3lPlWzhDA0khJ+itJh3WeKS+gEh+3845jC9ooSSNVo8MCIvorrJ+q0VxJeVNq9VccLforaTy+PVzP17I97LVbwzxNa2UR1V1R/ZUUu5ylv3p58GmuqP4qqr3y6K9q46y9+iuODM1VC1HtlUd/1XKPtvq5lu7KQ0R/5SHr+dRrimqvsvRXkg9I00VRNP2V9c69L8Yyor2K5APw6q88GqtaOP2VpMXKAPL2Yl0a5hIpOSxbbU/9VfF/Uu1VBlHNFYbzv2F7JvafaT7CE0zZSo1/sGV7Gb7A7H3C+4b30fLxSXGDHjR/XI3+jdsnjNa2x0dY46PzomnzWsjy2XH+wWy/YI1/MIpkg+WW/4cs07Ds2VaeOQ3JJhaFew5Z/Spsl4n2ySy/32lUnjbqFXDfTdO0t1L6/9QPmIXkG3pImef151m5lLFuMuorLEh+v8eVZRaSlrTVN1iw9D9Rv5/kC2zxCVJd7plB9iG1+JlqtLccUT+fpRmW6kjaXSnHAl7m8Q9mHQ9Lu0y11tIyDe26qwH8gzV6MY5WP6AXy4d3xFFH8vndKcyLsCVA/YBZeP1Hlj+JI6LHwxp1r5a9FfpfenMz1MDleCuAX5Cbl03k/62zoC1n8sQX3MYg+Qc9vrtecL8vMw4iOll5a6NY/sEaNH8i9gW2gP2DFOzD0/x7EV9hC5BvwfMOhRZqfUfYfyjFtVCfoMY5Zf4UeN8Z0eof9Prxevj7evoHo9ToqDP8hzg2SasHy/E4nuqaqH+Qap5uGm7UN2n3aEvTjfkWlRGKPZ/6+CS7P1dv1fyDZfpm3M9Sar7AVoo/zIoRq/UVFopNjPMFRrF8gZ5cDF7m9A964+Mw2B9Ys74F1kf8POh50aPsIGpi+She/6CnreIL5HJYSPY1sGdy87y0xiXWUmufKWg2M4hbwJ8jRP2hEZ9pBvQc6Gmjy/a9cts4wZQWUC+aY8Gil++5Bu4/iPx32vXjyT+rxdLimFooacyEhLdeFhFbnQZnI22J/621w8L7HGrtsJHcFxr3oPLmoT62mON2VPZEsmNqdk0vLb+/dbs1/2fPsUU0bjtrkmyk1nJPTHpP4Fj03EbkOGI7mKVPidozM9uKcAGVGE/8v5UDp4VWfRCXh6cHcD5kaY+4+Ijo+hk5Eiy2Ef9lSivHQgtnjOX0t2v1uPmZNlFvXojaXBHPN6w7B55cFjTGk5YaWnwop3XzauCovdVjd/WS+axfh6nE9BWbJ437w/ZMK/7BiolYKlwMimW7bAFyo9TkSJkSbHe2crP0ZMfAUyebaI6YdeWBscRaSykPjqaxteDq1eTWieTf0fLxSMeCwukDoX6tNjeTmniOKLW5aCyKljhbm5wNtu+fGq77Bzx+BIxUj/7uR4T1ASnXkob2mzJ4ltnHZ4d63TeQkRtqSryacQ5rbN/SdmQ7FJyTyqpHyyx9d01erldRSdeTcm6dIWUW1jGNtFXum9Ruk31f9tiKWtqPxHRFc5lF6y+BiE+Ki9FYMvRa/jspMR47VrS+tK7FGWX+VNT21+42gL6jtPwxRxs1eHPrYe4cfD7nFrT8zxGiOQS9bKGyN1kxRZFtPo/Wiz4Diu0R9K74M56nwdWBediXzq0L+Q9pzkFrm3g/tXfLet5DS4loEO5U5ku0xnJJtOSCrDlOrUT3r2U/8fkuzfdAtdSZeGLfNLS2qSY8C07LcHMj8Hta25HaxfQ6LgD2C0nzPeD4Qm0bGXjuvRaWTVAD61HwfNCGWOt7c6eeRKUHum6Emn321rvX+J2HA8ckwi3J3Oqso5G5LxEOklKC3pfn9nlups1EdXlc/DIF1+PalNa7dbgxHtpTD8pWm9wF8hlzKqF9uq1IrK+EVqdFf3hqIqzftwpkX2/SNjzb9az7QRIlhv59QkZc/ruoLdo+6G9oacHVg3lYP4vj9d8dYrnBObBeVWqLazOyjfcGOSf51GgaIuv3e4lql1qubct+LOVP0OqA/jMjpzvGq5GN1KVIvsmM/ed0zJHluF4kp4U3d/25IN52P2SozaMvtecFt+WtV7iG8OTaiNCyrsXlDm0WsM6bOwZSPpE3mHkUby6SLFqPBb0uqNZTW4bh9Jfa9UfP2Y9R6aXlWpKulYg9GXKucHp1DvAJZ+d86UmPWAxoW8s/E6HXb8/aP41rw/V8O7ikWPl6pLYt8H3PUx+gfsYMfhn+l68iq73fErFyY2C/VFbcC2zbqqflIJLq/UZKi5+Z78BPqMzkR2GexrVhb06la8ayn5h5mWT5GDmbQs06c0/FTyVRlmNfFHz3tl3uIRpW/qo/mHm4fWv9b4R5HKW9aP4naT6H9M4dbvnXZFkLNe8B6pnvC2KierVrUbNOr31ewgS/K3osWvkalRRr3W8C2+gBd63U2IU/csLZdjE4b5y3TQ0Y09HvFl8g8P7VxHpqufGs9TxtRIDfB9+/SOLLEWu5hVb3KwZPnQieawa/J6pn/65H7sHS7o4Brm/Vo/Mi8b4/oNKD1dYc4GN1iTneV0YuoTIDaX9ondbt0PeiacsssCb4F6ZswTumxrkOuHay8ih4wONPyw4QZWfYm08TL8fzf2WW02Pl5SqDVU9arwVPnmDge1Ri6LzomKPl/YOenIsRauJdaB4wGpcpva/tbfLdE5MjxSBQQAuEbRGcD5fro3LPWC7e1BPbwsUdazG3BS6e0op5PsYQzTNJ1z86XH8/UeHIsPedKFpMwdYIp/Om8RG0bU6/yrWD4cZ6lra26DU57ZE1huTeM+DRbHH+8Zr3F2wTOB8X51Ow/K9c/INl/y22fk5X7rnv14zfy1iYGxN6ctNg3yP0CaVxCP4uPTuvDHufnxiaA1jKqczlao3mJj7OYN3v8fXOrc9B95W792Dote6NV8R5SgH83OHirGh+Dk/OTk9uS+7ewWkjrXa456DnvuGJCafU5O2T8uBZbXnuG9z9iLPBe/rbNfeNMtXmteJsP5INCS/j/Eq0b7HDUPoBND+OlGcHg+8p0J+g63HQ9j15b6hu2ZtDhsth0pqrhMMb501zTkj5LKJYOu/aHAncPdmTx0OLtffEv9fGVR9NRurz34GQYkHvYKiJed1ioPMPVsLFHx4hJZ7PxfVBH4xC4+xqYuHuJdTGcx1SKMeh9h6fNXlit7jr2hPH0Br34P0N1rvtPNp0SaNONemF90idsq9WrEqtXphbz6urlfSyWDcLZVSnuj3cqMXEaJpEr1aRg3tO1OjranVk1riyViPl1Rt5dDk1OhnPNUafQx6dB2VOfUKZIj5sC8tfG/Fx1vgYPX67Wr9Ylk/J44PkxkEemzsdb5T6NbZxj/2Zs29wdgZpvkWrfcNr04i0SdvnbBeefFDUDlGbb4rjHlRG3uEh2fG963htE73sG2eE+bSOhLSOpcWXbKPenBf42VHg7tGeZ1NtjBunifHodWo1C9bYXbJbWO+j49bh7BePC/Mx1MfisW0UrPe+Zdg2CtFcenCOS/4l6meC79wYx/JHFfCYXbINc/3W2rylUfsHPR88WLZuzn9WA2en8KD546hfrhVt/A5jeA7Obk/9f62UY+HNGUSh9g3KYSfYN8kdn159eTqdRNvC/otbUSlRm7vhWWZej99Gx+2e/AGSfcPD+UF/vxSFs294bRzSu5vwO5wysMbuEtiusT3Y/ugWonYNsG3Qfaa2iqgdI2rfsIjGZEn2Dfo7uPkeGzF3jVmaN8u2ERlz9rhHcFMk7oXi1aVTvH7HWtsGJtO+4dVkR4nGOGqaRQ9XHXWodpXrm/8Nlb2p1ZgV2wTnZ31qiL0juxZ8vLi+ueSzpHV62W0ASTtHqbEjRfHq9Dw5qzWdTyZcX96i9M09+h/P+OZuZh7F0g1yeHRDlJpjwWmWrPEH4NknTzs1ukrPZNkKve1YGk5Ji+XhmYZ1MdZvwH13zpYpjTe89Sw8YxVunOLBa69tfW+tZdeNUJvjyiIzTwm333R+dJxSo++dCk0TKGlYvPZ0L974ldp74pRT0WJQyvhCiyWN6CNbAH9yJA4Qo8XwZlObP+QaKXc6wmlBlwY3vvH4fLLw7OMDwzTvlqz160ZzCYNPKuK/qgXGl3gcKo1Bn2KWc+NHbf0ssvxxWXh1y68F6krrc1AdMzc/6ovL1lZnE72uKG8F61t6AkkTHtWKt6CN+3tvu+DxbVvvlfO+h67lOpKw7uUeG0gB6+tr1pG0+V6fN+cD99igMJ44AcyWAPaRS/MjSNspWNdlVNvDxSlo8Qd/oBKg78Cy3l0l2d8ieoEIntgJa589ZG9D+585XbAHSf9AoetxfjoLarPjYkiygP2u2U+PDxJDdR2WbaDWZoD7/61IcTMAZ7/UlkO8TM22MqmJ8eG4NWF9Dusam9ses58nfD7f1kBtTJaHU5XrUb2PB8ufUKu7wnj3JZPa8yO6btEmU95FZSag7eDsqRqgrzqvYMXeafU0ovuqQW232u/BWDZgz/mEx1PeuMAWqD/ndWYeJVPfV4MV34h1dN6YyA+F+dx1R+Hea6DVicZXApG6rVA/XNnu9oRY+2fpJ7HvBPs2uLo0tpT6QzzxqBzc2Mqr5ZyKWl9tTcxsZL9q43IlXevLqJTqcnE73LWK59fqYDl+Q2UtnH4w02ddE4uMofsm+RJ/VOZrROOyvNTYQ0q/TZrfY/LYAbj1ig4AE43l5vLue3Pye+KrPXHiGW30jDeXJhpvLs3n6sw1eWPnI3w9XM/5/g2Z743Dj5xLnn4dp7mwtO9W/GhEu5GZO92Tj4BSk4uAw6ON9+r8MZ7/m7uXXxbm0zpRdhikelYMgiffQkZeBonW/NiXktu18jLQvhR9pklw/SWvJi4Kl6fCgxbbAXFEnu1H4pK8SHmkrf+rNh90TcyDJ6fF8U5tS2TmvogSzYmBy9Y8GC35LjI0ChEdSsTHzdnupXFBsfN57YHYnmD1VyLjmYg+q1Y3ISHlmqCaPViWnU/Cm0eiIOWOqCUSa5SdF8Kb98GzbxHNiSd3AeDVXWwFgHwEXKzPoeHG/A1a3JL1OzgifvRI7BLNt5AZxwSTJw6JUptLIWNciicuT4KUM6E2fkii3LetGCJP3oMp8htsO7Bs7ZRI3oJoPI8n3sdrb82wh1Jbslf3U85R77gh0h/Pvo7KlJUrAOONvYnkASh2Im68fVaYz8X8e+0VEt4xnTSua4XrC2nvYaiNz5c0tRBj7hkDZcXeAy2x9Hj8VzMetPpLNfvjhf4nEpG+p4dIzLdXxx0hEt9exr00VhzPi/yWghbrVBO3blHbr6vJg5kZe+7dprYejjeP2A96xI3j+CAaD14TI45jxaP2kKljwVtjuTVwH46L8+ZiuHvEc79CPntjtCV/q9cOvfT466nipCNx0+AnoxqfHjHS0ThoYGcEf66h2K28ccdcHLA3Htgby6zZ16aKXQZ6xyZ7ddFPJ5Md29szXrhHzHB2fCKO7/XEyNbaW1ctlpdSG6vbMw73OPqM62r/Q2usbS294mchhpaLdW2F8wNIMbP4f4Gx5dHBFxdb6m0N/pjXHtT6+O4Y9saxQlkLF6PKkRmPWsOWc54Wu0rjTg9OwAFUUqaIHdXswV5qYkGt2M+WWM/WOMxILOdhQkscZZRDBlAP+7zAj8gx9xhuVaYecZKR/s8pUtLPQCROUIp5rImBjGzXQ8//kmpUsmMVCyVmT4oDhJhCHFtIYw299IpDLG1fCO6L53+dIn5Qi/GLxAf2iAP0Qv3nHm24hsdPHYnFi2LZebcNzhnLYTvnBn88nkVtjJ0Vc4fHfEuKp2uNm8PLMuLjWsmIfasB4r7miGXDeGLTKJZG04ukM+XA+pOsKTKGro0ti8STfTu0xYBFyDyOS50y4ruk/8obA8jBPXtBX4Q/Fz9QJO7pI1R+PH6OxmfRuKvPh+uaJ5p7uGcMVm1slRVnVZ75cP+piZVqxYqZ6hUXBVxSPmOsODcp3kn7LyIxTj1im7g4JimeidOoRfSMGUTiiywsDRr2kZ4QPkfg3m3SgkdHF9Wfte5Ti/athuxjqv2mHro3C6+mLCOW7G5juWebUS1cjaatBU7z1nubPeLpCpq2rdc2e+vZIlg+WE/dyPY8+VYL/3As9+rXIr6gCFo/IzKeAJt9+XxTcF089dSdnR72atAKnMasN5bGrAdUi/Mg+Yx1Zlk6MNr3eQiVUt0MrRnQqiPz4IkRzdaRlT7dU0PsHYY9wedIhm6Mu0dLOpwsvU5WbC4H+BdrtV7SeWXVx985zQz+bOm1qE7LA+6jU32XR+9VwwuopJ+lOPBaTZjn/iBpsTCSdovOB31WdtwPpbdeS8LSTGUC+qpaXVZNPHtEi/WE0EYNVOdykHzGaPoYSQfDAXop0MPRz3Q5jsnPitXPhJ4ntXqrFrQ8AlRfRZdT3ZWFpKHilh8i69I8DF5qxw3rMuGYvNsGOV4vqpmK5G2Yg/Lbuc9afag3138l5aPg9EzSfAuqRaqJf7QA/VGNfgrQbFAesMaJy6shaY68WqQeWqXemqaWfCG1+UPOOutguPnbA69R8miVLFp1SZmaJmncM5UeyasJehmVLWRrjHrojmo0SpnxxtlaJNzWy4H1PJqiA8p8aRlojjzPSM6uzPmfvxXm4+U1fIdKiuRb3uiFrk9Fy1OjA2oB9CjvOwBNjbXci0f/U+t/8Gp7aL6iVq0P1ZosXduDgWOgaX++ZOZxfInqUg1PK+XYWrpWTkvTyg6B0+bUcHVo1/ZobXu1PEU3hf0KHNi/ZC33kplfq5XHme+1eHxVkCOAm1dDVGfziLPOI8y2MnKOefxdPX1FEr20Uycq90f7f3A97VzL9ltMrTurxfpfo/9Fyz2BwxP3D5wQ5mv/k1S/d347Dc7n0Ar4CvBnTIY2kG7L6/fqyX2duHmQY/ypprAHPc4RjYhviMtTCHh9SIUa/SbFk/fayz3D3vNAyqEtMcfYWdOCRur0mE4q7WfmimwB+3s89Z+ZcN80vP+BZbMHTe2bg665jfh6PBpeTxs9/FAXHMslrNzs2Xhye3qxtjMFcM710GdLMevA1NvT2HbWsSi+okhu1SmB4/QSKlvo6QvCensO6nPJyh/bIw/tEig+HRpLUMsfDn5h1smIYwBfEv6skREjubT8ves0cb6b94Yb3y2B/S8eP00vP06UKbaF/XHl2XN22PvO9J548i235m7WthvdH6kO9cdxcTpLoPjzdxik+ng5tx4H+Gs89TztSbmee/GAs140N7W0LYw1v7UdTwzN3xx1PDFUtH5rTJiHB8ln+n9Jy2r+K2pDwzzIzKvJRT5FLFpG7HeUSA7GLMB3lB1Tp3FK+OxdF8PNe3aI+WYxUt2nlWPl8duCr7PG5ysdi6eG2D544exw0jLLt6vVpXGO3pjIVaEmblLDY0vL3mZ0+73Q4hO5GEStHsQblvJV5ndG/cWvKvMl8Pa0eq1Ix5NbVrsNzg7LxeRG43Q1onZhb1taPStHRSuc9j1af8lgvX2WziASNz337+d4oaJOxJ7MxVrX2KVrYro1Sptw/3uJfJ+KjD773U5gXOGt3xvve0+KbujO4bqGiGpTsrVSHHhfPO/w1JZz2izvsaDHpZWad7W30ivXQGQf8DNMmh+l+C68cUqSH0Srz82/Q2kLKHW4XARe34z3N8F7ZDT/nhdLf3eHMK9GI0fr9dTWSfkiomQc40zm+E3Pk88YqX4EKVauJwcT8WzvwERYGtCbB14DygG/D38+OOzNU9ILbpvab7+543GlPnxtWYQjIwdQmdV2jRahVV9QKLZ/sIthHwHWaGq+BE7TSeeDpjKi842+m8vSc3K0rIuJ/C74bdE6sK/3Oo7F4YrjV8stCZxUluH8LlobUk4Yjox9bt2HFuA5hT8XcH6RubUum2kzLW2S8kndJlwv0nxvmy2U6xnbwTnbusce781N1Gr3z9gHKVcSRatPv7fGXVAf9hLQjs2qk33NQ5uZ+1PTzged4DSlQE0utgjatiWtq4amjcXg+KHzCLxv5wUgxxyXd46DxudI7Vp4tiWBjxH9HiXyf3jw6HZrj5lEq4444z7l8WNxOfi4ehCr8s+Bj/V5TWgri9Z4oijnRjRdSa/ch/SzJz9i6za9uRPpZ+v4eZFyL2r1P2Tw5nOEzx8o9bj2o8Az8ENURtctXHNC47bOVnI5qR3Pdii9tgXAPesNVFLgPC6ft0e4etsGUkyjtV4m+LfT77XAdfjJIMe30Gu2Nm4lch+h15DWrkTGdY+vYXotFywf1j8cyylSnlKsoVoXXh7+p/uhuVi53Kw10O29NLTnbJWY8phNDX42eeq/kbStyLPyGipriGgtvPxCPgO/ddjW70P9O8I9/OwE+/zhnkb304qrlurT3xiN1/7RWQfqSccC6uDPXrRjN0fsY3T/rznraLGWvcnWhRRbHJR08qz/J2mLWy/bHtk6/Tnw2gBch2oDuDqeCd8bOUrbUk5qXAfz7Vhq24U2pPmFb5ht0vrfKNvJyuMMfC3A5dL21OHqZRDN+63B2cmj9nyu/sVhb/5tq53WidumRs06c/yupU70t2cf1xq+clw/nna+CWyzxzUevQeUHNRZ/qiPHFh+olLnUwFP+x6wTUKab/EFAf8GyL+CP3uRfjvGs360zSj4WOD5cDw8x8zDlwRvPY2vhHVpO1+NfIlKq90avla+W9czzSc/RV8e8L4bwcs18pmyYwDr7qCyBisX0GVnHQy8owF//sHRjue9Dy1I++mpy3HFwaVkpP3l6mRsD7+7QXqng7QsgkfD7RmnWXXA/vXb+BlsH7QOtov8qtQDflXmT8VPw422HMnG47WlSZRt7aDvV4R60jUhtdnCVeFzTTu9oP3R6PrfO9r+ntmOF+natOrj7973gmgxzQ8zYH0ofOY0JjQmE8C2Lkmvhp+/eNtcTDDOzUP3FefgoHl8jiGk9z4cG+R3GXBxhTie6vZBzjlPY6/wuPTkoOcGp+NarE2zcjjTXNhY88P5X7n8tgBn3y+A/+YAgru+rfE6Httw41jsv+b65vg+uzPsfY8TfjeN9P4N+l4c4DiCXk/HFaBtOh+fJ1yMvvauBHy90vcFcDFR0nlFY6qw7ps7r7QcK1beaO95xfk9sQ2ae85b55WU3xOQxumA5cPA95+HGPA7p7jlAJeLDmvcn2bAubsiObQsXaE3lxHV4R8d9Bw1+BqQ8jNBjiYMHA8rH8PRAPgZxd3b70Bo8dNbDIcQBxlwXOsRhbJt8LEUrPjFexFaHNmhoc/74rlYMnx+cPEFOO4gsi38XLN01ecVOO0tpxOVdJeWVhFDtWeg6QK8GkxOq4SvM+4+iu/BloYDY+kMOB+65BvW/LXcf4zv89b7aSmRcylqP8d9Fct2qtkdubYt24fXbsPZAPH/Jo1jof9kjYco3vEHh9a/0vpY2hjn7kHO11Sb80l7z1ABP2O1/hXXz/L2r6xnN+1fWbpDy/ZDYwYpVtyDpIn+aPBpo7kxKUZ6pyfXn6JwuV6B8t3KTSr1r6wcaNo4VYOOT4G/D/y41psTE44HN97G24n0r6D/IoH7Wluo9GD1r/B4SetfUaycCbh/dVgBxvk1/Stu3AZw/SsrlhNiTCP7UCbcb+Fi82jcmgQXRxvpX1nv95L6V5beP6JLL3D9q4z391jaTq/GkevLYZsM9x9T++u3pNSInEugk/Jqnaifm/av8DNH619xfaBI/yri7y1YmlmP30ryYeHnTet7sDWbqtVXi7zzGT9zNDuZ1pej0Oeg1a6GZAfW7IPSM1iC2u8oUp5Oao/g6lC7MkWzI2rgPtK9DNy7Sjk0uzc34f6yVs+ybXLgtrV6dFtWfuna5yC11XPg7WjxnXSfIDaux3v+rNgb73bpc1DyL0SxbMgtvu4av0bLFI2Dl+DsGlb8Xq1mrWDFHkT0NpQHDbBN3apLwc9JzaZvoW3DMy6l/AWVFMtH4OWpCvCzvmZ9yW9hjfklIjnAtfsu5+uIvhcig5acSFzcKeeTqYHaHij4WGjt1OaQ53xEnnzvXB+qJf8315eWbCdaPvAtBY+tRVqXy5Wt4fV5FWieX0srgXmC+e7ZBoe3vpVrmLMjeTnAgPu9LXlvubYBLk4L27OkWC6uH1SeTZb9S/M9coC/0VoX285uMdqKcIiUALWh0f+zZ59ursmbF9Dy4XJge2M0zxEee1m2zGjb3hixyIR9GC25zbhcV5qfuoB92ZzPG9DyaVnb4Ph8kH3lUh6qmlxG/yVlxE7syX/kBduUI7FJeDx7Nhk8dt5uwGvv5nK3RPOn4Gdtdj4Myw7hzdsRzVPRy87vzefAaSuiuRAsavIFWH5cTfuhUfoq0Xs07eeUebivo2lJaAx4JB67JdY56/nE2Xp6tm3FqVrx6xJWzKc3ZpOzT1lxi964xkhMYSR2jzse+NrJjonLjgXzxjh9Odb/0qjHHQ+ab8eKI4rG8wCWHw/7RH8lZQvROK4W/VU2tfqqqfVXXiK2Ji0uhqNVf2WNfaw+a6v+yrKBaVh6pxrtFcQBYZ0VtR1GNFce/RUQsRFzfucW/RXdF2wHuh2VXhsd1mZRLL9zL/1VaRt80NY+RPzOmuYKA7YjXFo2i9q+lqRxAvsB50/2Yvmdp9BfYTzjUWs8WDsuwzbinvorzgbbEhNbe17BpGmy3jew/M1fDbLfGds0uFwEtfk2CpLuCtgZ4hosAOucWvRXVuxhVHOlkaW5omTpryiaj6xGe2XpryTtlRdJawXgvmut/sqrtfJosfD1DxorXHqQno0R/ZWXsl9W31x6xkmaKwz42VvGBla8xlL1V1ocbosOy9JfcWiaqzn1Vy2aK6/+StJQLVV/VcZXU+qvrPjqqP5Ki7f26LAs/VWrDiuiyZLGxN56kTF1tv7qVVR6mFp71arBsuw+Lforru8k6a8kLVaL9qpWf8UR1V9JWiwOznZC63BaKo/mykNP/RVFi7Wj8XbRtr35D7z1nh/LFs2VpcGydFVHSFmjv/Jqsrz6KyBLf4XzQmjLqf4qi0NO9pv+itNYaUyhv7LsmEvTX3k0VlgT9S4prZwhVv6QdwZZhxXVX+ExafTYWhqpGh0WENFfRTVWvfVXHC36K2tc7tVV1VD7/iouZrmH/iqqoWphbv0VR4bmqoao5iqiv2q5R1vxdV79lcZS9Ve9pqj2qlV/ZfmANF0Uh6S/4sC2sy+E9jTtVSQfgFd/la25kvRXHBmaLI4abRpg2Wp76q9atVVZmiuM5R/E/jPNP9hDjzW1fzDTJ5ixP9q+WT4+bKuK+gepL5D6BL3cTbYv1eP8jhEfYY2PzoumzWshy2fH+Qez/YI1/sEoEbtspF3Lnm3lmdOQbGJRuOeQ1a/C2spon8zy++FxetQ/qGnaW2kZN1hE/EVefx5g5VLGuslo25pfELcb9RlKWtIM/6Cl/4n6/TJ9gRyWH6nWv1So1d5Son6+Wi2xpN2l+RVgXoSsY6HB/ZfWcgnp2qnVlT828O9zqCXLH2hh+fCsnJqaz6+VrRnw+o/Ah8T5kiQieryIhj0L+l96czPUwOV4kzicyH2ojPzXdRa05UxWnAH4/W4b7NwMBY/vrhfc78uMg4hOVt5aLxH/YBTOB8j5AmuR/IOcL6/Fd+jNv9CSnyESf9Ian1LL9nCjL3DbAPv26PcpmMo/6PXj9fD39fQPRqnRUWf4EfFx9Na7NuyNXeL8g5bmSbtHW5puTK1/ENv1vxt89v/vyOdV8g+WCXx9F4e97wjXclnUYPkHW3yFxSZG/YA1ZPgCvczpH4zGyRV+IGU2WB9hxeVF2UF4YvcsvP5Bb3tcDgvJvvY3Yd4qUGufKVj2MSv2QaPWH3qClL2g/7dlazvuqKOtm+l75bbR4o+N5liw6OV7ziLy32nXj5WH1oqlBbJspD2J2Oo0OBtpxJ9/Bypb7bC43agtVst1ESGiDYiS9Z9Z1NoxPbT8/pbt1v6fPccW0bjtrMmbm6UmJr0ncCx6tAufI8cR28EsfUrUnpnZVoQWG6mVA6eFLJ1Qln2V8m9UFrK0R1xcRHT9jBwJHraHvXZbb46FFs4Yy/HvturREmixg/4HlTQvRJYdc1Xx5LLQYjwtrHV/GXidm6R98+bQaCHzWb8OkxT3h2MbrPgHKyZiqWh5TnrQkiNlKqjd2crN0pOdBRLNEbPugOZSyoFD9bM1Otq58B4DTqPE6QOhfk0unyz+gsre1OaioTyNSiBbm5wNZ+ev8SFY9WBb2F7PtSPlWvIg/Z4ssvXevfTgWTyIykJUO46xxvYtbUe2Q8E5qbz1ormzLJ13TduZubiykI5ThHL/pPaarPvz20L7bzHzW9qPxHRFc5nR5a05z6Yg4pOae1+9ROIwAI8dK1pfWtfijDJ/Krz9s7tR6QH3I7nlONedt00PLfn1WjQfFseEbUaxfpMndyDHVpCjpIyum0F0u7XPAMmm+buyzAv2pXPLpZyDkW20vFuWI6JBuJMp56YmF2T0GGUw9f7B+c7N88LpqbPwxr9ZaNs4kAzWMNyMyiVxEJWU7ONBwX4hab4HHF+obSOD1nt+wbIJWjzDzANtiLWuN7dqVJPSsm7tPtf8rqm4ZQasfKtTbYeC7ylaPXo/ntvnuZk2E45Tpt89WG1KcdBam9y1k2mfo5qyU4ge7XvifaNEtIenUDklLb9vKWRfb9I2PNvV1oU6Hwyx3MsSJZb+fUJLXD6GtouRdDi1YP3seQMud4AG1rRmtw1kH48WPkclxfr9XqLapZZr27IfS/kTtGX/UZa14NXHRupSrJwTLUiaZm251E6kfW/u+nMK3HJvux8yWOuU+y+XQ59rK4K3LbrdawhLh3w2SMu6c2FptrdXjJZjga8JTutpLQc4DaZ2TdJzllvfovV6otdMKSP2ZJx3herVOcA3nJ3zpSc9YjGgbS3/TIRevz1r/zx48/JYXEOlB7xd7zqF3zsAeSuy26vhZ+a7BvZLTR0fI+UX8tTx8jMqKVE9/I8N9az9jJzDU5HlY+RsCjXrzD1hfxUH9kVF2/5l0OOwavNa1UBzN3HzInytzOeIvIdHaqOGdX4fUJkujvvJxV1x0HUjzPML+07RY5ANd872bLvXNRWxB3+ESg/Ypvsp8x3jbdMCxnX4s8UXCLyPNbGenzG/DWhdPwr3+zL4MlCvlq8EPHW8eK8beE9Uz/5ddt7BHSfedehyT25DzA9B6Lo1bfTgMiopV8aSyyHYArcf2dvg3otmLdcA7XAprf50FGtM/SsqAa6d7HwKGnj8adkBolwR4JbjfaLHKMpVBm+9DLj+jLWO9/yNjjla3j/YkoMxm17xzzjH2MNMyeF9T9zbyrKW2KHauAkA3k0mYfmmrf641aewYm9b4n2s+G0ad0xLCSsm1dquxDGD2hhbKyaqBqz15uJQovEgW4j7DKTYlyMGlr7Z2q6EZQeI6rCBovG1tGu1tgnrXRY9c99lvF+D+rTL923EOabUsHxklp5Awor38fo+XkYlcEAA7MstfaTa80qbwI6r6eoKxb7E5XuSckBhsM//E1QCLTYFq4+7g5D6uxJSLm8uL/qjzHdvPmaO2jzjxw1q+3f4OWNtI4J2jI6j7WnPPbpcehYBLXHUVg5g3He19gOj5RtqyUkcyeF7kvmuYWnHI9vGWP32lueg1XYtrTlTNSxNS23u1shz8BWm1LD8rF6bDfds7PEchMmT77D2OWj5Ezw+CmmZpWeQxno7DvA4i8vd9pAAV4/O456leHtS261o91sLLX6nNZdazzxf0RxgHrLzruB8S3PlmaqN3arJmeTF6kdFcnrVUJM/B64XatPz5qLx5qfBHJ2Z51HpsfXdgYjm3rjDoCafh4etBg52xMrnwNmfrDoHSMkts/o6nLYMch148xrcH+ReAVgWiWmPcMjJweHGd3f37NPNNXGxyF6sZw2NlY3EzHrjb1vicDOPoxUTWhsfWXjT4LzBO446HC2xh5INNyPWDrf3OiohTs4buxYlancGX1ZWTNk2gzUut+zXtbTEEln9yJ7xOFPEp0ToGaNRGxfRiuW71eip18f9ml9Q2VP73qL1nlvvfXGI6bin0ABbPqAWTamlXc3WmgItms5sbSUmW/fopUX3WmOrrdG5cZq3XlqwFv2V5ocrdsy5NVmcH7GXfzDTJ5ixP9q+WT6+lvzOki9wadT4B6NwmrwMWn11S/QPnnHU0db1EG03ko8gGjds2UWj4OdQ0U9CPwt/hsnb/+XmWf7BlnG95f+LxFBRWsYNFrW+I4+fjvMPYrBucir/n4WlKW3xD+Jn+V+Zckm+wUKr30nyRZWyh+aX8+dmgf1EXk2v1z9Yq0NupfY/lK6dFm15VDtN/4c5/IWWD6+FqN5b0n5Pidd/hH1HXiwNnqVV780dqCx4fYM1SP5BjsOJYI1+5L/Otr9FppPj9k8a+xGNJWjxD3p8eLU8ayyf5qj7J8lHZPkNPVj+wQy08WgUzT+Y4SeUcmUCtXEkvaj1HXnAvsBtBm+cy5Rk+QQ5/1/NMcz092X7B1uYKs8axfKlanUOGGAtU7nvQumZIr6AWn9gtm+g3xMrb2rJ6RXF8g+2+AotuxrmC6bs4RO0mNM/2JIjpxecTsKKz/NyZeFwuVEsu5pl21wiLbYZyz5WfHVPoVIiww/ag78y3yUsuxr2V0bqLc33yhHNsXAclRhu3tKI2lO168eKfYjGG0dspVMTiZ2NUhP3K9lXI/ZW3F7UHlubB0OiNp74dmX+VEi+g4hNU6L2uAC12+2V56RlimgyoH7Gdmtzs3hi0lt4pnP7ErXHEdvlvDoVr82SrhNZdy5bqWUXbSFDI2TZVjOp1RplEM1/MAU93jUi5WrIyt+AybKJRvNCrCKvGMuiuSy0GM9MXVsrLfrsqfJvrOL03mC/+xDw5vL+bIjZROeCi0GxbJcteHKkLA0ptiEDSZNZlu0sFC6HzH7Gsrm2amjnIPsY9dTrttIzTqM2Fw2lRXM8F5ztH2zGmn+gFklbDfTYZi/m0ntPxYOoLHhjYOYkalNoyWGVrfNeQl6uucm6F89JJKZLQopB8NRZGpYfau79q6FHzI2Hl4R53HwupmdJePtnd6MyA5zr7m5URtuQ2qzJqdcakxOJ12nxcQPR36exFUSK89kiZSu0neh+YmqfA9m2Tkx2bkPctmbbhvqWDZzD8ltnxWZlk5ETsuZ41TLXfj2Pyig3dSQaB0fxbMPShkexdA03L5QD5PPURHxRBSvmMNpebz8YtvllxDlGiOZYxZx0zsPLKLcw9NznueB+57oQjeOsvUfP7fPcTPtzwver20bo9x60xEr3tKedQvTaxmlUQoxvCxHt4amOnFbmrxrl2uDmrdL0waC/NzQjnj4LS3OTwflK3nGANa21bdQwxXGzjinVENUe5/NCe15arndsK87Iuz4HVAP7OjPPy5w5J3pRk8f+HCmz+HDEqmfdw6fG0hufbaB1/TmwdNzbK4j3t59jSi8fDzfqQD82sNr70OBjR51sLBtyTZ6WVaZnHIaUA6UV6ze9jEq6Xq99srBy87wh1NPWLUjaZGCJeXssuBwX2URzY8wZS+PNS9TCz6ikRPXyXPueOh6s830OevgbwV6g1flzWKb948+h3m+ltWvFatXmtPJg5W3y1OH4uoHad/JEt0HLFqY6B3tPOBaLm+dlzt/Qa6o5Dr3hrj28vOU6zIC7viI2gI9Q6eH9wZ9DztumB2tMqWHFcn6KyiietnvwxYxoeeY0vupEy/Vj9dEuO+po6/ZiR6Gl3Ui87w9BMtvKhssR2JM596f2nWrSuFvrW3uxxtFZ+REykcaxURsBxxWDqwwZv4lrd06+c9SpOZe/I2U2vfIz9ub4AvZhzv3sGS++akRyzEXh4oa55dF2W/N8zQH2Mc4dW+eh7GdGrOocsUuWlrHF9tpTw4Z9kdk6gJ427p55BnrGPvbiSYGnR7RlTxv1WvJKzJF/woo7xnkLPDHO0rpPMt+XxrGOZOebyIb+d72uvcgxO6rM7wXdrhUfZnHHcOM76zA9Y1a3FKzlGlZcosWhEfwZsOKDNVr/pxp6xtp58mHjvNiZObNrmMtfxcUJToUWU9MzLmSuY1071b6bzhPngOMELgy5+bB7UMYR0TxXnFZc0oxbmu3a/6IXHj1bLdtJRHS4reA8Rdl60Z7Hugc4twTn87CWa8ypCQReRqWHAw1Yuq4sf8zVYTofxtzPtZrJ0pR56ki8n0zPXNtFM/DFYOsKsM7Hqke/lxgK8Knjz3jeWWFZxEf/BSpBZ5Gh1cgmwyda6ytdItw76XBOWzxv7vcKcjyKyscHX762x1Fdapvp6SvMfpdgb8AudrwDJ4TPeJ7kb/XUyyZiszvOfF8XyvmAr59MIsd4CbTY6iyycoVOSU/bGtUE3EPAy25nlt/T+f+itLwroPf7B3tRaxd9xlFHW7c3J1GZwbMd6XkcatuHfeP+v556FmoH1eyiVl1PGxngXPKc3VP6rVo9bb0lM8d7Bzlq851k0/udg73h7JueOly9mty8c9s6LSSb9T9IyWHZNmvgdGsZGnuNLBtsbX9iXads2+UqwcVTWjFFLXF+VtxgRixhNtEcCREkTebOCP2+BLA+8MFkHgqQve1arPcOet5DKBE5Hr14EJUZ/6+2vMU2kAm2mXDzvGTlsH0alavCUxPTopnO2q5Vj5aroAGfgrniZCK8OiFT6bpfReV+JOv+PBU9Y7r+voKAP/E4+iz5FzV/Fdd2y3UV/R3R2JmlMvc9GsiMsQWKH++xFcSKudF0ILQeLblrCbeDY2cy/eG43a2h7h1+eN11YSkxvFw8E0fkXXS98e5zBG88Ft0Xb71VZAuVW8JyaZkF937D54Ybt1t4HpX0HYUcB9cI0Hxz87zcvIYcQOVSgFjCHj4sj08rCrbltcY4tnD/Qui5P4cVbtln0FjhKLQNaBfiNWl9uG/S717m9nlupv05Wbl1biVlDVrccw097Wk0dlpbrrVzGpW9sXSOXEy4t57FaVRiuHlLA18H9Ps6TB8MN75rkJY9eSe5vfdQuxzvOZB0qedHtGW9kX5XhPcCxyKL86gELpCScnq4ntug9nhl3wuk/AjAa446q4iU90HKI0GPR80xibwncMp3Dc6BlOcC7tvcvDnJytVwdk1o0agXtlEZ5RxDtA3uN3HtnnPWmYKp3yOY8f7BvzPfMa+gcl1Z+rsGOazfpK035X5i5s7DEyWaiyeT3xbCj4iecTM/bliZdw1y3NSRue0VNVNPzULPdwxmIeV2osu+Jut9HaT1XYBzMPe5uZlyp4vjf8rFqC0J6ZrE1yKHtqw31rj//QpgvU8nBMcR4vnRGD/rHYFR8L5wcZe47hdo/qeobOGLhQE55r5aANFrpdg/rg11eQDXESs+uIUf1oRLjuUWWq7GyPmubeMrpmzhl478rJCVGyEbKe77Z2FehCuIq8Pe/JVX9xHae/6WSmsOSi33J83ReEJZnplz1Nuetj+rRK/8osc7cYJ8XgV6HYtVZO7/Yin//d0d4eL+uOU99yFKVp7Kv6ByVbD+vwie4xNpi5ZTU5OTcl0p+UVLrgnQv+LPvfODLpG5c1hmcSGJuX/Hkpgzp+gSycpL0No2rT/HseiRe+QfyetMmZP0T4We/uoeZNjpevoEbxv4mCNYvkR9w5z5PbHmvVe7F4fruUSlnKIY8Ll91IEPO7Xbk9ocoeuKlCPuQWUZLMc8xJCRq45rtycR+2u0bZzf5yGmDbxsqdyVxOOkXAWeTOJpBm3ZUulljy/0zNc5Nw8z3zW89ZaCNa5qyWH3QgNZ48ooLbkNl8rbqOR41Tkvk9b78tuozNju26SktOSds3JcHgtA67fkCG0B+5xeZJZL56K33qqD72XSfA+R7cwJ3D+z+3HeXJ01cPlAuXnWehKR63pVOIpKDDdvA88dHTnSuf1WuNyddLlUb6lsoTJKTY5QTxt0fs2+LYFDjRwc5Fx0rW1L7fbk9uF/uThvJ3DzOFrWPcIg1bPW22ATua/OmVN0iVjvQ7bQcolG2uHWn4pbGLj5nvXxfHzvs/bhPkTW/baFuX2em2l1p5r3doMf3qp3Kyq5+pJ/X6M1v6g39+WGdrjzTVree7uwDVxuJnmSctdxvBukZd0s3mFKDSm/6KpxHjFHLlTMBaZcOqcZXgvwzyGWV9Nqa4nU5vVcMv9GZc8codFcoqtEj/xyZzu268G7/jYqAU/uUPx9yZzbkJrnNOK3njv359T5RaW8mNk5NbnlPfN61i7bz8yZX3Qp/IaYIhamJz+uCHifX2b2HV+jU+2TpbW/yeAAwqqrrcu186eznT9RScm2cVixTb+ici48eUJ7Avk2uXleribRst1NftHNVDOVvJ01OUI9uUJXES5n4vtJfMoQXd9qbwqsfKFaflCpztz0yhHKzeNozVW4BMq1Mnc+z6XxyUR8yZQWdF3gBwPchlU3grSfP5By1flqLH9r5Oc1Y0fhygj+vGpcReWcZP8mDi5H6CVUXhLq4OWY1phQLc48q50pwbG8c+/LuvK44/sSyYqjf4qBLrfqL4ETHXmElNzyR5TlLdvloL+dzuuZU6Anf0VlFnPHmy6N42sOvn5aj1VLG9n3IG4bWc+AwrEVZu5zboNO1v1o7ntnYa7+3qOJbTw6Edx9zLtu1r0hus/eduiyue+BS+L2NQHHcUrzPcyda7+Glt+bmYMgwt2kXAXuW3PuId9vNrhnHzP3/W7JPGBwFykj4LxGrfHpAG4/q01M5B0gc9Pj908F/h019797hXn3CstamVtrtLQp690jrW1r9ac9In0m/Bu55ThmvnYbNXH+Gs/uQ04552WDz/e5j8HSKec6lDBJ9aaYIvGRbynzW3lTmT8lGb9F+40bfFxAvInKaBu0rRYicfT7gZ7XSk+030Tj6r319jP0eTD3+9Fa4eLdpfkelvJbeh6fdWTbyX9J6eHcyEsbbgC/FyK77cg5PvdxoLzBlOsM/T+eC/AP5rtGy7pzwe3z3Pu0YRkcQHBx6kvgD6bswS/OfcF463m3D2T/Lo4/SNkLLheAtmypTGVn20ybadWn9wc9vv09Al3+mQKO5dbqLYk54tyXyGekXDdo/gxuHuUcYqoY8iXzsQF+B7VVN3PdKZGOi/dYtazbut8fB9r/ApUeftowGdcQOxX8hMoI3nanAOci6NE2LrOh75Xf7zzcsW38Xve5f6eHBxD0+wPO9aLrZu1v6z5zPGyAcwFYdTPXxTzEfO+Ftc+47lL2eWrodV9zD/BsYyn3iSjRdwnj7d6FyiWD/6u592Vq/rJBJfLe+3Xn6UHPO/D0hv/PqeR6PffvFAHXe0qoAxpzqjXXzo1WIvmDnkRlLzzH2dpPKQeQBy1PTk172UTPSa2duX9LBlJ8ALfM28ZfhXnZaO1HtimNLzLW45a1jNM2TM+DqCycWVFe68Tcv2tVj1uUVx3LrTpTk5kX6QVCr3YtXkTlqwxnyGdM5vGIwu2rVM9arwbtGqPHbd2pufY9677KlEvgrSB43beZ9t4W8NRZKtFjlMEUvyOz7efXkL+jMsrRxH3YsNrQ93/OnaOvhp7HB+f5zG4b+kpznwOrANenzm5XqzdlvFxkXDF3bF/NPmdzJrk9+E3SuOMlUm6QmdvnaXE3KnuDfdV3ozKDxxBT/JYl89iElBzLdw5y3mZvvtW58ncvAem49gL3HbPb5vKYw2/E86Y8R/Ex7X1ss9lC3EnKDf8by68bW6icA87WQffPqj83EGv9u8AfjjqedVto2W50XS6vO26Pm+cFt/kEKr30yh9Qe6yeG9fDeTqkehT8uyJ5T+bk9iSk9wfg5bTMej9BxnsK7kRtRd6H0Ou9CUsjck3PzdzXVJRV3eel8xxTTsnzxjIP0e3h9ebqf9204QYOIQ6uIL2Oy4FkYH+z2+0JfVdELTcLaMuygeOvLbOYal+XRs112XLe4W3PfQ1k8ycqPXjaWxpHBGCfuXneYwftz/0bp8CyH0TqLoEHGbA2X4rXl8DvCGmJP5ba9OBdl3ufTNY+W9w/EyeZcg60/TvJfF8CU54b2vnS8zyMnK/3IrLP08OIua6VpXDLCnGSlC3cypC1n1zbveh5vA/N/H9PeRxbgXFQdruSvUJbVjiNmDvn62baTJtpM22mzbSfppPjs/dkxTP4tt11MmjZbnTdKX4PB+4vZbd7W6Bd3P96W0CLq5RiPGnZC+vdlZG6lFPjeqeU7a8TWe8LjXI6ieztanUy3418atibU6xHuxtinEblaWc9XH/DBkpm/2SJE/zGVT7OrdutWe+DNeRdxPtB/k3WXzfebzw+mPca6r077H1/VSvefalZD84NjfOo5HgXlRRpnQjvTMybTjJ+G/dbcWnVm+sYRZDOa0+dOYleb0ul1/vMepz/czH3u+E05u771dAzj8U/G4huA787nGvP+x54nOOvZf9Xkf9OyFzb9XKOIStXK3fsV/G8e72Cnm3XbIfb7hKOk8S/hHkanjrcNQDz6XUgXR9TYP2OCNo2tO1+GCRznyl4/PcvVALYLlG7De43fVBxHHoTsdFkb/dDoW1tH64ZvIHKN4x6bzD1Nc4uiMtjuUr73OsYXHYy9/5Ojbf/XvCc/xj8zNtG5RtjKRHZhtZODVb/1bNO9j6tOtx5Zy1fIt6+1CdBvO3WtK3xcQORfW6htu/Q8ttamLuvltXXq+3/FXrlsfiHo84rCK3+P4K80sDfBVra3LDavDwi5bCGetZyrc7S8BwXXP/lNeQVVO5H8DHY4IOzTVjrwPioZntvNK4/x/HohTTu5JZNuV8Sv+8TfmH4DZXA3PvZg9/2ET935DkDa0zwu3NeNr+TzxhtHev86bnPP6LyR2H5j6Re1nY5/qEcBw9Su3OTcV38tEFlzv+Xe+b3ajd6XObu+yyBm9YIiF/g5nmnnvv3J4LbpnefpP2M/tbNFJv+HHJzB+K2/xj0/IF4Ht2naY/C9Ykb02TxbRJ/jO1Jx5dC16V4jsu3TD1rP7k6nvUK3yCselDS/ePm0XW4Otb0Ddm/3nzdqc0Wvmskq21av/V3LY3W4zwHWINfrhdaShPV79Nl0es0Ml0ct3lx3M7F8TOeh+viOhY993vJk/f4ZLGEfcjY5820meaePOft3NfOKvDVWHLP9ovKMoue+4z7iVMco7n7WEsn2v+KasXm4COm7EVLHgaN0vanAfA+0e+rgqa7bFm3F18YWP/xZwsncv55yNwvun9T/5a50c5La13pfKXtfqFswzr3p+JLg97tZ/EVouc+fRXgS1Rm/r65gb6Ptx7lK1Jm8r3B3P7PpeGN+1sFtN8TPS47yUj7xS3P3nYtmbFUwOXk9n5A7Xr4QeAyKTmy91nazn6AO87Wf1S7De+5cWnEW/+Kk0vOdS6tCVn/n9U2931VgP4IN8+L1u5SsfQQWIfr1VAAvwyy9r2WP5Lb4zT5HLDc0qL+gkqKte6vCGsbEX4laPVoueE6ko6U0yG3aJh7xhBksoO4gkpYjp+lP5NlFt5n+RVhWx5+ReWSucogLf+VWZ6xXaueZ5/Xhe+YUmPOfeWe+bVt4N/0vTB/TjL7RZ5tWNv07N+JZP5SwcPD/95//bDCWwxvk++ePK1cbguu78jp27m8td58atxvetzBkwx/HZGO1YsMXDuYYwxcOxi6r1wbmNsZ7nRwHwPX1hH0+QEGrh0Mp605Odjv4T417H1vkKXZ4fLmW+9LKrzGYOXjf2ME5ybbHjmnwOUjeMMgGhcKMeoHCCWuwNM/qNVMcf5jj/7lLKHY7Tx+L0//leMRhr8hHhXg7s1cW5jjDNb9nlvHgu4rV+cY+sxd63c7uIcBnjlcm4W7GLh2MM8YSPeNZxmstrjnoOe+wa1nYeU3lHL+cblsrLa0+4aWH4WLa/LYImrvG58Pe/Pte+4bNRqcQm3cKO4PPDjykIO/MXjWo3DXEYV7B+LTDp5i+GsFWn+zUPu+Aa6v9GoF3PHBcH1ZKXcahrvfcvv8goF1HOj//ZgD7ll2tANcn7/0Ne9A5RMMdzBw9Sy2HBys5GaGIxWU30bvrfh4cX1szP0C9zLcUsEhg9p7fNZ063Dje4Y5uOv61HDjuy05TjGUbeL4LS1GyzuV8QN9R9c7DrLefyX9fgw3JvK8DwHqRt5hwOEdf2HoOALYRnB9K228JuHJY1qbb5Pr67XmUOOozesUyXETzfdBqc2JQH2WtfHnHhtlzT1AmnrFj3Bj81o9dI1G1aNdrNWkSfqfKB5dJudTrvUzZtn+KZwdItsmrdkqetg3ovvE2S6ojdxTpxeWTUICj6W863jsEj3tG3QMoy2T6nFIebWt3NpRzQtwG4P0fMLfOfuGpw9W+hDUdkFjyDg8z1WvP4XDY9+gfoyoHUOC87NYto1SB+6DNTaNiH3DGt9L1PiXaoCxuuZT4vqtlt/Ki3Uc6P/t8edxv+EoKrPg7BQePP64rSS0sbtm35B8f9lY9g0Jzr6BOewE+yZ72zc8fk6Kx77B2Sk8PMvMy/y9MHHjdWrv4ODsG1E8fpsW+wb33kbLVlGDNXaXAJvG9uDzR7cQsW1gW0btb4tSm9s6mt/X8sNrUB89+OkL2jVmjTc1m0Z0zNnjHkGn1nxutfYNrm/+BSprbRscmfaNXjG+tbnPI9reKDT+guuXc2OQXtRqzGptLJbGxII7XlzfvMYuk2WzwUjauez904jq9CTNkKYfsrR9tUg6HAuP/gf7cyW4dTDFJ23pBjkkrVDt79XgbA/WGOReZR81uHZqdJWeybIVetvxjGU4LZYHuk+17Vi/Afrvlk3zTVS+Seb3Hqtw4xQPHlstN5ahvEVKimWjjSBp31qpeU+cR1/nwTNOqXnvSyYenzSnCay1o9fEcHp8bLX3xCmn93b3k0LHH9jXyo1PWriISgluvEF1ltz8KXOeRd8Louk8dzrxYCUPDXu1pbVtWXDjG8vfk0nNPrf4jyxqfLmWptSjv23hKVRmw40je2ynVn/s9Vm2UM65Wt1yBK0/59E21/jjpPVqtNXZWNdVNpqeIKIF74nXX9uLWv92DT2uMe0+7rF/AFRjH6mr6fI9tkWvD9xjk6JsVZDhW/duy7o+a8cktTEIdNzGzaNw9iaPRqCGSPyEtd8WWW177sOc7orTNUjzI+D2OX+dBGe34+JIehHZV8kHycHpOrT6EtY1WfpdtXoRb9xMlGLXxPEyGdsCbcotwfVq4nt6IWlVrOtqbnvMfp7ATs/pWiPUxmR5wFql6LoejS2G8yHUaq2i266F/qctcWmtE9YmAx7dVy3vodLLeSdS7J1Wx0NkX7N+C8ayD3vOOTye8mjmsil+J8vnk6nvq6Em5tEbF0njI7nrrpVIfOVccP627Qk5p+ybV0PJ+Ta4ep540xq4sZXHHzgltf7bmpjZl5nt17bTGp8rcS1Yv1YHy+GJD6bQuF9OP5jpz66JRZb2UfMl1rbN+SAz4GwiNVja45bJYwfA9TnNQE0cN/debS+e+GpvPktaN7Juj3jz2smKSV/6/tVSe35EKf+z1j/T8ltpendtvRrtRu17zLLef1aTiwDj1cV7Nf4Uz3/N3csvC/Px8inhNEGefAutORk0Mt4RkdVu+a+1nAzlf+b6U7844PpLHj1cDVw/pzb+g8YRebYfjU1qwZNLo4bauId1Yqo8GrVk5N/w5uGoyaNRyxQ6JcDjp8300Xvzb1BqbetgI4nazmrHb7X6tFrNSA21eSd6593Q8m948k5k5NbwUBvTlZV/w8rNkaU9AiIaIKk+tFWTb+KOoV1DsxWgJq6tYMWj1fx2jlr9RE2MWg214/2T47o1OTeiuThqfcJ51g198uSX0PJveOLSWqmNa1t6/o3tIF4/EUfR49b4U2p/WxSq6/sdlRo9YtwkH8wBB5zNumZsXTtOneq+AVNW/g0PNTFsnJ2N2mm5+ZovGWxUlr2rxYbowWNr8dpfemG9P6UnXh17rd2iNdeGl+OVTGW/0fr0tfueSU1sg/W7sqjNORGJP2mF63vfQ0q6rMDZ0m5HZRbeeM2WvBtRrHGKJ39Grd0RiIxfavNmtO6jBj4WtTZOK5dGa84NDI5HfK1yf3uyyb9h59+w6nhiknrl3ijU5t/wwOlnonjHN1njj55TzXgjk4uolODGHR4txib/xo3QGH4vWXkqPHjyb3DMmYuDrjN3Po5oXNDTE1Ob/6Lg9Y/VtBNpf878G4XevuyMfBUZPri5c27MmYejVk8wZf4Lj20C7AB4Pe//v5TcG3Pk35CQ8mf0gPq2vbYly/ftbYf6vrcUIr71LJ5H5RLyb9TAbctDa36N3mwptLTD/c8HF4Tkt6vNm3GkYd2s/BtRf2SLbUCC9vuXkH8ji8MET46LKTmUhHXtzG2P2c+TJ5dGJMdG7/wbXI4LWr9Wa1tYh/wbc05Yg9yaW+MdUnrqe9B8M1yOjQjefQAieTas/BvUb3SeOVdw/ZZzjmri5sjBYeXN4LR7tfk3aA6MKfNtcPk3OLR4gBpq9HaavqkHNb7AbQZJ37hNPmt1e9Er7waXf4Oz+cyde8OTfyM7L0bPnBuYqXSwc+ff8DBnro2p4HyPmdxUyZR9xFr7XEvOjQyy8m9kMOX/tWpTr7wbwFT5Nwq4PxbRtNfksbCI5N/wwGlTvkCfp8i9ocFp/Gvw/M8982ZkIcUjWNDcFnNziXyO5lnh8m54sXRuEly8RUuODQ1NO+WJ/6iNMepNr1wbHJ74C053pcVDRGJUTpDSu42eTBGfMuXvqdm/KZnrfz6Bti/tW23MCKfN6BWfEo3NmCpvjHYsOKL7mRWr0jOGIwtO5zf3PmHmjOu44GTu+JMp41N6EdWwaev9h9TJoFYXydErhiWqLcnG04+vtWmADx6TaTPBU21cyWlUnibzou0Akg0mkkN0LqyYkyVQo4N/KFAvA22co61HdbRZ+2PhjSvB+9YzfqUQzRE2RUwKpTaPQWv8SAZTxaBogF4+qqWfUoefEZ/SQq+4kZo8fDXrevTxnA9fyxXRKz5l7v+6Bu0aiNavJXpvp8+5TLj4FO1cmoI5Yk4yicZ8AEca1rWgMSXS/N5sOYnEnczFoYk42EBmvhwu16c0f1WwrpuWeJSp4PKmakA8irZsbg4p87PpZWfZ71NGTlzOLkbxxqfUxnmsAp7/I6udJU/ePMRT0BKf0pvzQTi/kDS/F1p8ijcWZMq4Fi6GZErKuZ8VezIHU2nncWyLt+72iDf+xMO5ivqrBhefstSYFCk+pTX+Y8lxJL3IjE/pRc/8i3PGt9Dt4fOqpV3O33hAQYtP4er/OVx/VyyuizUANX1Ezm9fq6X9FpU9wTpXKWbkahCrnU18Stv0zXiccBzJRVR6Y0/mosQtRGJScGyKNL8H3tiTXmTEoHhjE3qw7vEpX6IyEy72hJK9zVa0+Fwt9mNKdhiuzET0marRsg+lhNgTGp/E4dW1UL2Vp04WVqzMKgJ+dfy5JzW6lKdG8OeenKjE0oVltTMnnmt0bs2Mh6XFQnn2+QQpueW14PU916SkhenF3P/XEtDO3R7XyBTPA0r03VUSx8bSm5fYIqudJZGptWlB07P0iqWk9NSuceBt99aw3bcQ7lkwt6NyFeF0VqDHBa0Up8PCy3uTGctrMdVvwu/Z6339zG0f9kyZscZz/xY8Uc2XNM+zrsWzawz+f+feFy89zidOP1IbT/4mKjOp3ZelcwGVEtb6Xjy6r7mpPe9qodufW3dWq1UD5szT4M0x3GOb2fs4FdsMWh2YV/vO1inBsa2R9bT/L9pOpO7cOi9M2Z/ad95O8U5c4PlxWz1zl6wzRR95YMh7Z5DGHw1ktoe1Y9H6rfTKC+mhR999My1vem/4n2brPYPPBll3RZdlMqW+a1WRNIaYcyO12qopKLmWaE5qbt6cfLKAfShIOsOf1pidSlrWXSr0fYrrBOTfmns/lgCXHwo0aFYeKU8doDWvm6e91u30RjoPtTq1cH5HzgepQdvsnXtuiXhzJy+BXjnLMoDcfU8yzJFDcKlwutdT6POzwjH0YOlrI+1Y/98jju1xUM1qDx1x5NjPybPOOnPlrFxqfstVoDxPz0yI5mfUmHIfpf1u2X+JVxlq23nNWL+HBphDyhPJ/VZK7TZfRaXVvmc/OOg5UdtOL7znmHbutVL6WJZ/f+4+IEeGbmGqfX1+Zjw5dXu0ud/I1PJb7U39215cwPGNID3T/o5Kb31Y3qLj0PIxZ2tGtG1FOVNRf9WZwuZydwPU1uRdD+fYbtl+L7hc4FGk2LI7yfc5YuEiaL9lKjL+D89/k8XWCnJ0Znr8pueZ7fTq2xZtE82jhnVPUq61Gs2Vpx2uDhdT6Nkerk/z0WNaNGnSPlu6yefIPnjqt+CNm+v93gKN1vWnRDufsuh9TuDzcMptrfpx4+6j3noZ3LQCHJyJmn09sFAisbA3TwB3vKfYbsZ+YjzHHtqa+xyQdPSRuq0cEajZ77lo7eO1UKMTqkGKG6f1uBjr1m3fn0TtO0ckpthG6zH0HJesdu5FRP6Xw4is/zqTWxbMrZXr1LKE39uDg0ntWP3B0yNzx/Bsps20mfbnhPsVtwn3Is+71ShWO559q9kuftdbzToYbvlUWhTgAiovkPkSpxBT76/0GzI4XUHtulPlODq1wtT8HxtitNzbe0xT/i5vO9ryD2YGv+fxfYG53jtJkfaPg8b3S/Nr8LRD63B53c4bvOuoU3gniTcZPNv37lPmvnJI/4W1PJOsc8xDTS6F2v8zi145IqZ85tXqAT3vWq1Zn8vNBVr/1ne/ZpKRoy2rHYtzQywOZ65j6slJWLuetC5tJ3t/C9H3/XLA/9iDjP3DfKhQ2ybX5+D6gP8aS2n72rIWpD5pVjvANYbaXIBnOzHltmq4jJh7XyS0XJXaf2rlAAXeIJ/fMOpzePOOrgpz/M/SPfkThWh9iY8d1DxPPPc5z7aj9LivZ9y7M3WC9B3onjygHmjsl3e9Dfz76JcAt48vj8tenpm5/yuJuY9LK9ca1oV+QM99a0Hr97S2jeFiP+bkFwS8F3jufdLeWTw1P1fC6fvnztsNwG+rXf9HB7Xt/IZKjGebLUT+26nynFr86KzTgnU/+5F89qzzk6POkqB6v6kpvlEopaml7c30v+nPIR4nUNaz9PyZ+4if1xG+reQPR52yX1DSqXa73ziWeyn7Eanv5euK+h6+C+Jdz7v9XkR/VwuZ11zGdHHYm4t/7n2iE7ePNfRse+nHcL9Ovf7fOYnc22q3Ac+GKfd1qff+KXR8HzUS0dZhPmVo3ZcMwL+hLWvhCwbu+PR8dxDA/QcSte23bLMH9P+gy7n/Zyq+ZIisK7Xh4Svn/kjrWmS0kUnGPfx7hrltMx4uLxBuP3eCaO1H27Hq1GgAJH5A5Q/C9xpq9mNd4c6JS8J84ArDJbQunT8HkWPArTfXfgPcPfT7QL0MOBsl9r/RZbU2xxYyfXG/Ejzbp+usIpw/qPYY9mIHwd1/rgjrSXWvjL89ek5kc9VBbTve9qdGGtfXtue9n1l1e9mYe96jKSfWhClyfUs8E+BhBVwv470YlB451qM5fr3gvAqWrzkSOxax6UXGgtr/Snm8A9Y72zB/deL9PZH3BUX208OxANnvW/L+N559O8og1T3i4PaROxPYItwX4HYHnt8DRPLZRfbTQ8RvdXLIy+cH+cwiuTey/XBcLJtERi4XymsBIIYxss8amoaXsu0kEpsS0YJH9tVDJB91ppYU9NcHHIBmKnscVci+jqyJansivsDPGS4K82GZhRULhu2eGf4Z+j065r8y3Djmx59reMTgbw143oUSGQNZ+xrleIDs8RzX7zlOPvfC8788KuxjC56+UqHXe5vuGf7Xz7nHgTUm9v4W4C4Hnv2qoYy3y703Mo63iPTvng2QuY9RO0OPfl0PO4cXLV49Qm2Ok0hcZNa+Aj37dJ5+akQLX+Pnsfp/U/fr6CT1ybxo/TpP/y6itfJqvbR16fdIPJJmd9uppNituPchcDxk4G0Ho/ULqX3N2n4U7+8qeJ7LXqBv4MkJ+3RHngrgtZX2IGJT9tDD/v8qgzQ/Ylvl1p+K7PzGER8JzWmRQWTsE/mPpHcHZ9F6btIxyV3MvIL0ntMWvGNIPI7kfACrQo2P745h77sxoayFtqnRsp1WtpxE6h+cmci70bBPB8+z1jsw+N77dUCpUxOPq53HuF8X8U9R7q/kXgVa95YZOZQAPt/mHsOtynTrwL+/ooVI/8fyVUb0G0DEF9q6LYsp/8uiS/Hma38HlVlwOcolzjvhtkPn09zbVpvYxpj1P2s+55rcwVEsvzeuW5uzNgOvX53TXHHzI/5qy18ZYXuQc4ZKRPz62fTID+kdY/bKbeexjffMTRfNQ5fF3PnNsvN29UKzDddi6U0xPZ7x3vFz8XPU5sFpwRt3vw75VaIT+Ffo92x65FKIaI16xJRHYuLnjC/vESs9d9zwqsS39ohxj/iVe8R6Wf5PvE2vbrEHPeKPPDo08It6tWPR+j1Zqr4usu1spjz+eLsRLZymbWvR17Xq6paEtP+cvm5OtDi73vTUr11wsA76ulpa/cct2474/Dla4ycifthafiGfMZExU48xdkRLl+0PKOOzufOv9bCLRMjWLkU1bp74C6hL4zUfQmUtXk0cbDNTZ+eNne2lr4vEmKyDrg6YSgMlzY/GYWvx2NI6b6M6lt+Xq5Md/12wtEmRGJwafV1WPHlvss/NyP0tm+zYK8rcejqJiL6tBxn5BKz8AkvlUDKWno4SiaeL5FRYIvica9HUZaDp67wcngAtd0XN+Vkz7lrSdLLiN0BMJjfPIlNfV6tvm4O8f2z+ydIsebV3NUT1dZlIGro3hz5xvxRLXzeF3u71AP8e/DlmvPUi2rlMsrVLEbYHXU+37WBOzV0rc2jqovmCPBq3qfVxrfR6x6iXzFxJPTV6Hu1jdN0DTort3xufU/A+47GfolazkaWlm0q7AfTsOy1ponm0lkBEX9dDb9eac0JjLk2dl1XS13H50VYZS2v+c2d2EFdm4GrHtq33QtT6yFry2q0iPXwUER9W0apF8pJgpHUjOrns3IG90c7diE/sOCkzWFctJSCdw60+t+PK/HWm9Xzz3o8iOUm8WOdK6zmxVCK+uEzAJ5ad+7OXPxhvA89r8Rdrfq5eUE3zFMx1jkkUPccDg673yPCVSvQ4xj32M/vcm9uWkqmH77mfXj9thEhu3h48s4B9iJD1X0p+tJo4hBp/aK92s+nhi434YXvQOy4l4uedkjliZLCvtXa9dSCSi3tuvP9RpD71j3LzsinbmOv9MvuJV5jv0RzsFn90JhKjn0FWbL9EVj9pM8Wn94a9+eQkim/zM1S20tMHuxS0vDURP2gPvPGTkfcjrAo/zcw1VHKfMTtrxoMbZsPrA+4Zj7wK9Dj2DwjzM+Odl8bceVkKkfzMWeAYcPAJ94oxXwKSHoPzjUvLIjoPb32PdqJWa7Lq9Mwn0Du/wBIp9/IznXhNmY/ptX1r36JY7x2qWS9LsxShdvvW79/Q9z1UmbyFyreY+b14fgK0mCypvnf9VaZFLzX3vk9JjzxAmUh+JWlZpO0zqFx1Msdjdwe5K1BXew9ddLtRtG1TvJrSHlr8CMeYfeLmZdLjOGpskc9RaF6iLfLZs67VZjY1v5Mju7/R23dq4dH5PlHBH6iknzks/z9uO6Ib0KjRXvfOhzUlNf+rl6z/qAer+jsz7jc3zczBTkT3Q8s90Auv5vvmNQT/V3A8bp7pf/CSpY/y5r3L1GQtQcfF+QOXSu37dzmkeAJpWU1bEreMzPXbV41bVoRbUXkrmX8rM7/3vrTS8pznnvdz6wo302bab5P0DLptBH+ek8h9yVt/Lt8bcAoxx/Zp3Bg3D3J7ZtMap3iK+b40ehy3VWfu+91c+/DBwL8vneNdVFp4681Bib94nxCJ3cgCxyCfT+CdIDTmt8c2WpjjP8nAimPJ+K81suJtetxnPf7xHjm4lwAXHxyd30JEU9jj988dB+/lX0mcU8B1srZH+XAksk6kP+DhQwZpWbRNq16JBb82+OPGzybTs+2lE8kNsL2PyT7u2j3Hixbn+rFBZDvcvYEibYdb5mmvJxFfeea7FjbMnzvl5ZnIOHZWO3P9Ng/WM92zfs02rgXx9kG0dfHn31eI34R5S+HnIHPn3YlQ+36WKfAe75qcED8653F1MojeH5ZOVAOXAbZT1663DtOfQ67OKrr9XwZ/fqtvFwD3jpxvyWdpHWl9i6878F0yq7CPQI/raFUmLr+VNl9br4Z5fvXqTVnHe27gWv5m/P4NWvZNRTvasqVA7zfZdu+PglB/dOHTEfxZIrq9Wiz7Xw2tuQ/hGNDvXmq2NQdfrBhfJvLVjPS4/8w9nrs8IzsBatvU6rbm+sT8UEHPtufGem/gZUedXmT+jl58Tz5n4bHTRsb5USK21pb810vEsjlG7c9RrjRydbj+rtGex+nqmgBjisg6Wde5ZlPhlmfeYzBzvD9yao4T5t6f7N805Xaz89RuyHu3WoSHEXieVrdle2/tAzjt3Bll/qqA93uK/IsA+ManzIUE3ObkJuY7hpsn0VvTz6Hp5IodMdveWpjDjvLwDLTkoFsqdxG4XOdS7ndvPQmo3yOHdw29zpsXArwYrK+140X7z5fKsRmYIzd3JtY5A/eAqe49Pf+rozNT9uFIMnc4uHNitgJE60uUfGqHBjnX2iGEVIfWkzg4Eskr6SH73Ghljvxc93YE/mP8+TADXqadKzXMrZOxppODnHPMU6cXtxrMkbtjzv9piol7PzsF8jh46nigeRA0Liho9aNtZVLG468l0jveG/5Dbt6SeGMGtjtxbkHQ915METs4x385JSXHszde67lgfYm5Y58kXnYs93IgESu2A56RU2oXrs7EnH2QKaaaGJMMOJ1xD+Z4NznVn06pEY3oH88y1OgoNe1gAetne+tze9FbG9VDL7UKcH6HR5T5ALzTGn/+6+B/F/aSwDZg7Z1GEVty0bI8iUr4XHhq6KOdeQSV60Y5tzgfAmiU8Oe58GipaP25NWM9fB1z/w9zgM9Jei/Q7ikZ9PgPl0S2r8ND7/caLoFs/4KHoke8h8DNg/kYrg4wxznCQfUrEvc6lnvRjsuc3Oess0S/1RyaWW27Pfxaz87AVMfS2oea/YK62nkzhy64xm8VWSfDJ9ZKeV/9a6jUkI5T1L819f8IPq7WOt56ntysSyY7L3YWc+SdnPN/sHxOuJ6nvuS3sgC/jbV83XjFsVwiklOshT8C9Iw/pvTyl03TS91/01Q+pHVFytlk+ZAwUv4ebz0gkl+oZ96hnlgx/z3Q4pR2CNqyJVPiWOi7f3vzkAOuLp439T5HsXxlOI5Imh/Fc1znwPrP5/qPvDbGpUDtuNL8KFO+i9IbQ7iKPLUAMuMme+wb93nu3zlX/OhSOLNmvMoAtkhuWS/mjgvlmPL3rwtTPh/nYMpcIQUaj7CuSJoej9ZH03Fo2/TeB6y6mcchI+/BKgLPI/x5ibSOH7zcPfLYmhPVuLZqZAHtnqFp3Y4K+5AJl0uBq7fVSGt+h1XhecdyDxF/UhaefBdPjEjznlg4WMvm+b21ZOT6eMJZ5wnyecONbCFq1pf87dKySDvaPeCgwU0Ib12r3tI4gLCWe8Hay5v3MXA8uHmrAM6nM5XOw6v/iGpCOIov5AFUanjqZHH/CDdvFZB+T08OO7llgxsufxjFW5drm87jciPhNvBziZsXZW4t0mbaTEuevDmme2LlTmtlDr/DKQSep9Wt2c7pGYnE9JxiiNZv4bSxbNUp17K2bD9PHwy+nPCRPICrxHuEdwRoPYsSz3UelfTzeTKfg6s7NdLx8GId15pjOwU1xwpi7TKP/xT3R28eykIkb+W6Y+XfjOT+jOYErd0nzL+C9SPtrhOeHKbwnKTfV4EeeTLPjuDP+43MWNvtDpxjaG1TOx7c9qL1l4T2bqZVI1PH1zvP8CoxZQz7yzMROR7e9ef6LRJz553ujTcX9RL4bQR/XhI/IubObfDjmkJjdvH8Ofbn2hpw0wz8SZjbHtpjmkNr+e0a8M0I/hzla9Lm1w1o74RfF+a+VtZxurg5rv9/knKnrBLRew/3mdZZGhHb4fsKWn34DnlpPp0YLmcON/9jsg7kpanJpfNZJz5FJeXz4fq7Qz5jPnveLyK1XcsXK8qXI1+tCF8z371w44PLzPcNue+ayeaHfcIl5TNGWz/Clw4i12p0+xqebVn3jQK2uf0yET87gByR9PuqYOWfw7/VU8fDlQBXFTx19ivfryGZ7yCycuMBJxi0Ot525wJi3LnftU5knisax2cGfq80v4Wsdrzb2tDOfrm+e55vkDPh7gn5i/CZ1pGWLRXv+4UymCqH0JTQ/97CcxymPp5TngMWz2xoJvrOqbLOwwvY76Vivf8nmzcn3pa0vQsdmPpYritTv3donemVM3GKbc597DDeXFIeqDbRmp+Jtr3e75YCqNZNYg69WE+wfZ9+r2UO/cptA5+jAdfB2sY59rFmmvudShIQnzrVtrjPFEsfxOk+OK1JJh9OsI05yHpn0wb9PRAPErz1gIcEMt9VIW1jDjw+H6tu5jahzuMjcx+fLO7a4AZyHj2ZzNOopNB668JTI1P4Mv+aSM+2l4DnORGtvwpEbAcvDPy7KKLQdmroZYNp4cUNNwDPDTzv1WHve5DoPK5Ob7Keab33R6tP5x01eB7hrVfQ8jMcSyL6PqDecLoCqa50PWj1rXXXCXov5+a9YKwTIbo/SwU/a6bq+z82At8f78RjQbLa4d4XlHUPW0WOKvM39OeODWnvK6pdb13YCoDfN1TzniG8vtR2azs9mHJbhUMGB4e972Gw6uH60vxecNubCu69QKD1leZzSO1o7WscET7XcGRDV0AXgefB8wE+Y/2E9jyZ6h1G6879u9zrxFP3foXDCO82AWmdwxNzywj+XIPVPlcff4dngmef7xs5rKzX87kVZW4dzWbaTFkT6P2l+RSsR5Pq1CBp3iJkvavo1LD3/UEbVody/uLP+Dudj6ee+wPtW9vKvbo3E50871h4d4TOo8u9cG0vHc87d6T3Ca0T5wffO5W4ZUumR3zWFJw2eM0BfReOtNyLd3urxusbZn3f0L+ddfYLU7yf4Cxh6u1ZtLaxPRJ5F1Dv9wNNzbkNi3x/Ua0e6xXmu5do/VVhjnf4aPc5rk7P9+j0RPo9G2Sy382z7vxGPmOmjCufkx/XEM/vhHtL73255qzj4aYAB0Yi62jtcGRti+ZMmMJG+ctQl6sA8v5qyyjfjvTIP4zb/nZh0PfRaMsiXE2kZT/w/mS0M8V5v5k2Ezd9M1x/J46VF8MD1843aw7k2sefMe935lOG3u3PReSdOp8Ln7X6nw/6e3SWxhTvypHme9DeUbHqwPU99/to1olPFop2jnvb+MEJtPsDKnvC/aZo/XWCXufURtTKz/sIOm7dcXBlhJu3ysDY01q+VLKPw1XmO+V7VLZySZhn5aCJ4skt1tJ+dFtTIuVImnu/Nuzl8UA9DU+dqcnOoUZ5iqF2PdqGVWdqTiwMuKf03s5Tg573LXIMtXaygGfClNvyEK1PKc/juXPprBNcjqV1h/vt9Hqf+3+R6HmP82yfPsNOMPOiHNsHzH3Ob5jnHpN9/5XWmfu+hJm7v8/x6ATtzwF3H69pJ/t+9ygqs/ZnCb9rv3H7PoTmmJHmR8Hb6PWu0N7tc9uixy7reNXmpNsPeeZauG8fQnOKRepq3LPBDdwXuOM49z1/lXlgBnC+4mgOLwttu7hO9nYLfxn6v28ZtjXFNdfjGC0J/DtLeR9TR7vXc21K871ttjK3Dnidpsx3TOM2e29L2sZ+mqRjgHOpcTnVWqfMfGvR97zvZ04RuHmnOm6fA67FZ1G56kx5PMv11GMdXCf7+vdMPfKunB95a+Q84a0OQF4t/Hlqevwu6/dO9VvmOqZzc4Ghd/uteHKabdCBHF5TXtNTUXs8vMcMf97gQ3ue/mef8F9UUqT5Ueb+jdJv7r2NVWN78Oedy9pWb84hXtqQxpkJt6VdZ1aduY9TC28k8p/k9uYE/tvnkuHyPlEy2lgi6/ibNqweBxA0r9eq88dEQD4x7z5xn3v8hl9mOAaYaP1srFxs3nqrxhw29s20mTZTv+n9wZ/3672R91FJ+czB56itz8d58N2z/lKZKsfXurE5nnu5aCzToO+hmDtX1irzsYOPRjx1Pe18JHxfMp+Qz1nHucf/1fo7vdv8wmgrknvxpw0p7Ey8vWuInUqyf39kG3h57f57uEI+Y3pul9se3e7/a+/cf7yogQD+hfNxPoKJCl40RIxRjHIggqKinAJyKofi63gIggp4cPf//yybbOMwTqcz7fSx+22TT77d7uy8trvpbr7b5vLhUCeJg4C1gnZfQ9TOg2UeQ1jo4PTUiMkyLmruQMwbQjmJHgoL3RS43+dCEoeTXQO/rcbTEtx9LPZ+prXrO771e1+IA0x7CJ9/kmNbxH1DCfvAAWK7w+evY8Nmx4x3AhztsGyOv+7bq6NoG7dTUN/ExeixhLLL+RmKhwJ+/xXqh5aE5nMNyVj54fJldf2F4hp4XSgXgpvT1UJ/LiyujXc99ZjzMVXeB78xcHo1WM2174OzG+MPlnfPr7C+FuGn5BifTK53DJjS9jppfDJzPi1I7Vhr5riVc2DNmZHafmg4acSHALwN23NA2eJwfQ22uXPn6lTf9LXniiuWMwSWumKJuV9Y2p86Vvcoqh5zn2uFS8z2JSUSe5seOHmpjtbR5jM3tWKl9lvZPb7knBBsSynha2e5OQ2A2/A78drz/OeiZJ7heih4+21jWycLx7asUM9npWxJjqk9v4T22RZT2/9ccU0NGLvvWdeXK7i/9vu7OWH5H5RWeKkwvv845bB12EhmmTkcQCpD6ZTYGtbsgmvV+Nb10q55U3v9uSngzgGs43OTG+cLfIbIbQvCtTuo3PhyVoMS56kER0Z81/SRTjRvLSk4dmq7Bu59IawfR+0On5+hd5ESmdLA+ZseBZDISLCco8rCN6grRc+LQBes76J23z4NvjUY31RiPWeY9Jylni9XX4/UsQ5ysA5+58ALxkjXVNUem2PtUSti1jst7eMU0N6PpkDt67ujo3Z/mWsfxGNJqVyIGD8s7OZkX8eMp0ZWZk6JXO4vwEohO6V5JQNPe6BkOPlUXB+E9RXUzh0nJZf/cyL1PrIf1VPAvtW+BkuxJ9gvJcb2FHiewcVCtcXkA+qpHXdrSN/DWelpiUOL/76HhPU11O7wzScE1wHH27A9FzHrlR/01H341srOGVcMrybC6YzRn2N98hQkfrbqO0ftfifphzltUXWtry97SL2mKJ5B5LAxd54NIJWhdGptaXkP1Sks7KwGsI5rVWg3N9ZxTQUcO8xH7XOSykolu+79X2g/xTFE7XV0eumll1566aWXXqZWnns8hspFij+ubhstbYvz2yoXqxnzbAUcZ28SSOc00czRcpHRY8lFBTHHcHo6aeejFPjZMgWo09qfkDxu5+bE/WDx//m1OTkoj9skelKg7HXKcizhuI7NPcV3vdf2byrkHFO2WkKx1z4nuc9X7RgotpaYyyNUWwxfPOa7jpeU3OZg8On7jGj9sdDh+qGGCyO4XXJOLxgy6PuWgLJLyVnyjRIXA95ujdx5ywl3rcUc0wqXwW/KvWJK/FKQ2tdcaXDsJXNtdb5c3Y1TsUxoXOuT1+qxouS8gZ8ZkGL/SwSlH8uE2Fj45/u3iHcuwHxtoHppnE+17FtxHpFrrRvqfOL9c+n7nzNoZFJtaaidM8sc5+Csh5A8tc9de2cX9DUJ2897ZKhrtya+/MQAdVr7c0WJZVwhqPcXWGYLtG8Z2dXmpGVC70WxTG1/JT4P/J2Rc0x7iK8ZOPnQsZA7I1I5LI/bJXGF4tP4PxdwHkNodWnP99Thngld/wvtl4KfNzcIPV8xaO1RcPpjkTzjQFnumBz+LROSPo/lY3S0im8senUktF+KTw+nP8Uex4+onoI2LiuueNo0cLGk5iWVHxChWCQyLeEby8f8b6LEfIEfj2iPO63QHcNpBqncwAmG0LGdTiqnRqj1vLCsb90vn264v/Y6bpzvof1SfDpOzYSPUF0aY+0+PkW4vNXuB3Mg9J5PouOckS++dwC1c2SRx1L4cqiVaY3dRdoaIVPjH4RGFvMQUDuumjzseHlQkPuL8Bz+w/ninjup88u150bTDzU6uHNWIi4N9whq27K4Nihb9xRytch9DXfsqN1XMNQYrIYti9zWHrtOhX1LBvwWldunKSX93wMMtuF2KA6LnPXSbtlb2K4hAPsZLu7ZfG/hX0tgl0Ciu2YJPVdr2SW2HTcN4exLGGLHOikZq+KLg5PX6IHcANwEv1K0cd1AaHODC9Y3d64ZMZyL3xOR2kq1o7U3R6xyKM1rTnsY+B3kcE1T30dy9wDNd5ap9xtJoexe97RRx18f92koEdfUS0xecyHxsTWfez/spZcni7TPp9wHOnZsI64RbdujLDce2w7sd5SMDT4n1Mxx7bHyXPGN1W8B3Jga12P+xz0F8P/yc1Jizjln6ydDSuaoFDHfbMTqKcWvQrR96ucRbl8rWPZ7jpJxtBR3i0iuDYke6lqJsYWvyZhrtCS/CSltLydwrJ7iszY+6llhO0ImRx58NkMypYDPTtrjJHq1uDGzREZC7f+rzAHt/BhTRhp7bC7vFoDyN0amNYa5CCy/8cfAXOS0g21J+INAIo/bc8d11ePrXJDmWaPjTqC9ZDwhbitk76L6wJ8K7ijlMbdnjnVfSLFVOxep3EJ1CHeMhpD9qSL5v94joZxEj/Sbwpj/PmKsbUi+f3T4ZPB3Llpbkm9ndkYegF8fqbHveOoxejpp3F88+f2U5ruqlO+zSn7bmZMhh3dH7oM6lvONWbT2UsZHKXa5e8bU+GtkB/z6ZDAlfLOIrfMk0v/B1vYTQ42/LHRSseP/L0wBqzEt1mntDyePt/8Fbef+eA==</Data>
  145. </DataArray>
  146. </GIFTI>