tpl-dhcpAsym_cohort-41_hemi-R_den-32k_roi.shape.gii 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <GIFTI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  3. xsi:noNamespaceSchemaLocation="http://brainvis.wustl.edu/caret6/xml_schemas/GIFTI_Caret.xsd"
  4. Version="1"
  5. NumberOfDataArrays="1">
  6. <MetaData>
  7. <MD>
  8. <Name><![CDATA[AnatomicalStructurePrimary]]></Name>
  9. <Value><![CDATA[CortexRight]]></Value>
  10. </MD>
  11. <MD>
  12. <Name><![CDATA[ParentProvenance]]></Name>
  13. <Value><![CDATA[/Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.R.roi.shape.gii:
  14. /Users/jelena/Downloads/workbench-mac64-dev_latest/bin_macosx64/../macosx64_apps/wb_command.app/Contents/MacOS/wb_command -metric-math ' Sum + Map' /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.R.roi.shape.gii -var Sum /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.R.roi.shape.gii -var Map /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/labels/41.R.prob_map29.shape.gii
  15. ]]></Value>
  16. </MD>
  17. <MD>
  18. <Name><![CDATA[ProgramProvenance]]></Name>
  19. <Value><![CDATA[Connectome Workbench
  20. Type: Command Line Application
  21. Version: 1.2.3
  22. Qt Compiled Version: 5.7.0
  23. Qt Runtime Version: 5.7.0
  24. Commit: 8951f7eccbad8cfed5bbd65323cd1c70fa536d0b
  25. Commit Date: 2017-05-30 10:34:41 -0500
  26. Compiled with OpenMP: YES
  27. Compiler: clang++ (/usr/local/clang/4.0.0/bin)
  28. Compiler Version: 4.0.0
  29. Compiled Debug: NO
  30. Operating System: Apple OSX
  31. ]]></Value>
  32. </MD>
  33. <MD>
  34. <Name><![CDATA[Provenance]]></Name>
  35. <Value><![CDATA[/Users/jelena/Downloads/workbench-mac64-dev_latest/bin_macosx64/../macosx64_apps/wb_command.app/Contents/MacOS/wb_command -metric-math ' Sum + Map' /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.R.roi.shape.gii -var Sum /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.R.roi.shape.gii -var Map /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/labels/41.R.prob_map31.shape.gii]]></Value>
  36. </MD>
  37. <MD>
  38. <Name><![CDATA[WorkingDirectory]]></Name>
  39. <Value><![CDATA[/Users/jelena/Downloads/jbozek_account_Imperial/HCP_standard_mesh_atlases/Conte69/MNINonLinear/fsaverage_LR32k]]></Value>
  40. </MD>
  41. </MetaData>
  42. <LabelTable>
  43. <Label Key="0" Red="1" Green="1" Blue="1" Alpha="0"><![CDATA[???]]></Label>
  44. </LabelTable>
  45. <DataArray Intent="NIFTI_INTENT_NORMAL"
  46. DataType="NIFTI_TYPE_FLOAT32"
  47. ArrayIndexingOrder="RowMajorOrder"
  48. Dimensionality="1"
  49. Dim0="32492"
  50. Encoding="GZipBase64Binary"
  51. Endian="LittleEndian"
  52. ExternalFileName=""
  53. ExternalFileOffset="0">
  54. <MetaData>
  55. <MD>
  56. <Name><![CDATA[Name]]></Name>
  57. <Value><![CDATA[R_prob_map2]]></Value>
  58. </MD>
  59. </MetaData>
  60. <Data>eJztfQd4VFXzN6FLRxAFQUCkKL0JJHvP0Huv0kOkE0pIbwRRaSKCIKCAgCBVAQUVRASxoCJFVF7BAooIiiItPWS/ezY7ZDI5d1t2k/D/dp9nnrt7996Z38yZM6ef0+XVYEg0x1koyXpFKqB/wlIy7t+23vt35kwLde+QQderBkFIySCYvy8QpiX0g8S5FWFU2FDx0rcrtdEwRnvs1C6T6fdGpkNFi5nmFf7Lr0A+/3TR7YEUNGYmFDoSZKG0U1Mh/At/uPbvYJj2fj/4uGpXmD+uBwx6pBu8+UgvmPtfH7h9sj9c/2woTBw9Br4YNBGG9xoPI78cBWde6Qupg9uBeXhbC234rA38/GVLKLy1hYVeK94CZpfUvxfNoMA5LeEv/d5k/bpszJOwpG5bOLujJ5RaMw78b0+FHQ2i4NCpWDis0yw9fSTN1inG+h1/x5FrlE7hKRlpml8/k07UaLOi+Sq/vz5fqyWEvyAmrm4HRW6GwLFhMTB6u5pGWa8BOh3R7SHTDX1U+mXRwBkwd8FUqPTDSEir2RzM5+eJGl2LiOe+CtVWlPfXjkdE3PXPvNbf3of6pdRrxpbJ8FKf0dDrTYCGZUtCCd/HRNLKZVrvDgHaB4fPWnSSdK7Wct+8xm7rI9NK6rRt9Qx4tnIgDF06ElJvdAatWgtIbLFZjHy4kBhQZJVW2JwRT+4FnTBuvF5wIiRUGAPv7+0Fz23uCH1P14P7V8wU3yWVFJ/tfUXzP/CAhv6Xn3WSuiTXmwTf/zYKnojpBzGJnWHkFoD639eAnw8uFt8t/VOTaTRw8hWLLlc+nG9adKuqqdz0EvkuXx1dPgk2DhoDNbf3gWtHu0BYvQ4QvsUPjrZ6HL6s/Y3497emYki5VdqmPxtpqIekL4ZUylf67F8zCm6ED4I9W3pCn9WdoF5LAW896gunYptDRLPy8I1phRifelU7XmSB9u72mqb2P9fLdzq8s2EIrN7eEwrf6gSldgMUbyog+Iof1OzRGl6PrwvhyxPE3FXPi4aPfK1NXNbQdPTQRtP+ZRvzDf4Di/pA5c+7wNJCHWHFkwLu1/GvSm4N/zRoBTEBTeDRtXVh731FYX3n7eK15M7ilWNLNb/zZtPRlqPyvC60ubpeh9Fx9/VvC2V13KV1av+vCQ4fbwULJ7aEn2o1gQcfqw1fTK8JpwZVhjJP3RCj3t4iqpUYIcoeWKjlFe45kR2h4ML2MP1ZgMWJAlrrmGcmtoEgnVbsaw3PnGkJAXubQKcfn4B6Sx+HRwMrwvy3CsJPPY6L6Tvnib2fHta+/OipXPWhXj27wPy+HWBNLYBaZ/zg8pHWFrpeug28eqw5xPs2g9L1n4DRNx6HCj61oM7RslDn+B/i6X82ilMfDhc1thUVD41/RsutekpPHW/NBh1hbqkOsOPfNrDrQkuYE9cEBu1pDCW21IeL4x+DKs9Vh7rDqsJy/xuix7CD4vaGYeLjgw+KyzHvaUPnbtDWNHxZL9MqetzP1/bsAfBPB7g4HeDBjk/CyeAmcHlQbfhvbA14s0lpSNNKwgNdk0ShSu+Ly590EjP2lBQdCw3VanywxGQa3sJv7cvf+77/7bcW8mQZ/MPbvWDTie7QtnJ7GH+iCdToVgOuLb4fQh4pCH5fXBZd9u0WJc80FIOi39fW7Wyi3djxl6l3wC++R/5YkYUutNndSl49gfGdYv2g6Nm+cOn1TrB1SVOYf6YktN6VIlJbnhE3VwwTqw/FazP+2KLNKwxak9IdlRgkPk9gk5/k34fD8C0D4bOaXeC31IZw8d+qUGHgLVG/ySLx96NlxdZnB2i3Ki00pZ5sn+vxtcpP/rC74iiY+ulQKFjwSXhzxHVRrcFu8cD+6aLg11u0LoU2+NV4tIjfFm2rR/2Mf55LCYD4hJHQJ3wgrOleGyKvXxLH0t4Skd07i/5rl2qvxK3z+3pRsIV+iXo8V+z27NujYEbDAdC2cW/4pkkdeLjoFTH56HLxeq2HxNmy0drgudfuYpLkaTzRoX3h+6E9YF4ZDb76rRGcafaveP7KLNFxREHRptYibWDbutq0+L0mSZ5Ou+qdOsG8R9vBrL4A3Yq2hmrr/xLnDk0WVbaWET+9sExre6K2trvYBlPygvss5CkcHXp2sPRXxC8QUKPokzB8dzF45svp4utbhcTFXSu0ev2STGHjmlpItt09gUHKjwsUsPN7X/ANbglVaqWL74IWiuMRF7U5c9doRXpMMsn8JElicDeO4BEavHqzFcx5owXcXNsM+m0pDWXf3SnKh1UTZT6eqx160UfDdHC3bNlHJOVKGpdWHx7vUgZa3fxUTD3dSiy4tFOr83JZbWGNASbU213yUea7fzaFV0o3heSHKkGtKSdFQOGOov7RAxa50/V8gDZ3h0zsC1vbqSnAsfqQ8EYV2NDgD3GpdnfR7uAR7avEmlry6c9NMz9faXKHriuKZ8iStE2vL7S+URl6tf1J3F9pjIiou1nrVbe3tu/wWdP64n45TteVuqyF6c0t1LhSE/D75CH41HRerN0SIa4PPKQ98XVpLWrWqbuyXJUn+xFLJDeH+3Rq82wT6LO3CsT+cVGMvvqMiF35sTb/hfqWfqGcyDAXaQEldf5SzsvzmkIdn4rwz/lz4uNCU8Vbz76oNWoA2qLwiS7LKFS0BZTVeV9PbQ41JzSCOjOqQ0KVePFy1U1iwIIftLCU7lqXyETTq33mWOKeM3Jk3+rPehrc1nlPerM+NImpBZXW3RCn4j4Q2x4/pU3YILQ7D7XRyl/6zHS95TGHfVv21UqSvHc93xS+v1oPnnq6LPw6eJ9oOqGa+LHpSK1Jg1pa77onLHyHdv3ZLuZNzZ6Ey1aer21sBHCxPiyrXB58fz4s+k3qLBZe2qJFVmqpfffsCRPMGWuq3XqDn+/v4y2k4r1R53fl0TZwuk5TWPJtA3i82BPw6JIK8FP7JHHy6Mui3N4qosyladrUR6+aqizZq8f0d+7yk0R5re+lwZt1W8OAqi2gxcTG0HVXAwj6shbU/LU0TN7xvShVoqlY0/q8tvq/70z/rQ0x9Ws71RRwa1c2Xus/7QxfftERzj/TAfyPmWBvf4DCX9eHgM3VYULTIrD373XC9FNPYbr1rDag9++mXmHPmdbV7WhCHSW9dX4I9AwYCAtv94PuO/tBm7e6wz9h7SCsdwfo3/Ix6L4oXZzsuVWUjOklHln4nna5zzemrzrPMdXoU8jio189GggV/pwCH2wcA3VrjYN1TZ6Gyd+MhDm/9ob7EjrBtHlPwIw0H6h19aB47Q8hvhi3XmvZqY62b9cY04lG4QCPhcGERTNh87hgOFYzFCbUCIYL0VNg2gfjYFfT0VDbvz3MqVUGNhz8SCQ8PVOEdlurTdoeA+N0GvxjlKX/+krrKLjwYRSkvhMJP50IhaZpU2DIJ6OgdfMBcK1LHZgU8JWQfdsB1v7uUawP/PvTUVC+ShQs0sKg8nPTIPLPATBRv+9v8DxSL/8Y2F8uBj7WeY9x4Fn53Ic6GfXFS5LjDAdsPCP/36f/76+QJf+T4037rf/j/Qj93sPfz8rS38/vyXfxncNWW0mb4ViAihI7htylUnXDLTT0r2hYe3YWvK6gGboNpus0Taev5sbC1zod0+kbndIs42WzLXTHOpaWwMbV8JpAxtiS7o61zTZ8LskOqcbuEhTP4HNmBbacUvS1DJq0KQ6Kn4iBKaUioNyPo2Cn6QmYWO+wVqHR26bEciYLORJT8eNI+mHaSaqUHJEt3dZa0y7ImnZfWtNOpluKjp2mXYoTaZd1rDR7+qlsS9PDEd0SiH4qfwwiek230jGrXqk6+ei40vVrCvMLrouRXglWHkb+pNJTjgs7k2bD9DzH0wpJ6kXT6o7V1qhTkg3s9kjy4fmLp18S0clIL64T+iCmDdcnwYqd+l6a9betfGlLTx5HVDpRQn1UOiUQvzv/doiFgoiv0Ti4xppuEruZ6YKykhV62EszfNfsgM/Jcd7kgUHw0IqgbOmSwPIQ1YWmidRD0nqdMBakE+xGvu8oJVnzkSq24zPbFk+GHWMnQ9c/Z8CMktNhzXNBsK/uNMtV6nA4efrd9JBE8SPJ3+t0HczmzLxvC7ujeYe+j76riiEVd/eDqJlDofhWfzjxw2gIvDUMbpwZAclbJkLHK9Mh5r0gC0n8V+LC7voSkvwt/elNnXxIWWovrjpLVAdKV06VhsYdS0LIb9WhbLW6sLaxLxR8qBsEFhgAYV3GwK/fjYcPq0+DW7eD4M4XwXdtPp3YX/p/QWZ7o1iZU/zU/pc/aSWufD5IJFRYI5Ivvi+67vxMND1WBHYceQSi+/nC9rUjoH/l8RbsaTr2Z7dEZvGbN4jNk81Z6xDuxJ5kzhq7p/XZp/WsfFYbn/qLduS309rB/gPFTxGLxG+/7BdvfVsMWs17HPY/OATKTX0aOrQIh0/Kh8GR8hm+I/PrFp0w5sRbeSa7ES/P/5L/h6kVtfJrimuHFnbUinf903T21d7a2iGrtVnjS4ttN14Ql/0vi9lf1oexP/SDnU9MhL7B4fCcbu+FOm3W8aZa+cR7wLc5ZmmLNRu/Md34+oxp4IIfTMMHTDZdWBJr6vjgbNPuFtW1f3amaF1+eVn8nX5R+C42weWO/rAkIAT2hYRD5RvR8EGNmLtYqW3diZX6tZwP8cnIqllI3ut/e5xJu77R9PvBndrmRS+JRVVLQtcrHWD3K6PB//NgGDs/FEp0ibUQx+lurJIfxSfrqnJ+W8LU6n54z8900bQy8k9thjgqzvRvCIsTR8L3rafB4h1h8PPxqGx1Kk/Y06hejXPxJM4pux7UztebITZAOVgV0wt6zgiAMtuD4HndV0vrtpTkKYyOtAEkVv/2K7Uh/T8U5462gL8KD4cWMB0KvZGBr4yH8DnaRhFtOprSRG+R/ld12BI4CEJ6TIc5fULhhXaZtsttm8mPHDtstOewNrVEvKjwVz9YP2g8PPF1MDR7OAb26Hk6LzDJT8egEto3m18Sr7zSEJYKf2gbEgyrCkdBVb09nxd4Fped57egb1PxY3A1mPbMAEhtHgpHu0RBYD334HEGi/yMajpKqzSpMHSu0gdWn5sJPZ50DxZncfy3HrS12gkx5G8BPx2eYrHJA8m5i+GHda1NI16ZJQLeaAjXN0yGr5pEwauXc0++zEMbB80U5yvVgIBOo+GXnyMs/Ry5IVt+lu7aoh1tWBZe/3wUXIiMsPSv5IbcSy+20F7bVwRmR3aEB8aGQO31cU7JdkXmupY/mP6I/FZMrtUWAkqFwH0bHZfpiryVU0aY/iq+WcDeLtBBBFnkzbpqPy66IkuOGTc+tUQsj20FC54YD0XPRtmV5YqcHSebmPYcmiuWnGoAV+uOB+1/GXKWtIx1mwz5aRbfWtR+vxGU/Hs0tFoYbZGBfYA55S/7CL/fc58o2qQWzH5tBDQbGWLhL32BynCV97jg+0TJoLow//Wh4P9PSBbsklzhK+dUblt6U2v3eHno9nBv6DtyJnz2S2SOeEqs87fv1bTrxeCIfx94ptg0S9+qtIOr/Fqu+Z9WqUlhSPyxH7RpEGTh5yqv6IKDtUNtK8JHcYPh12ohLvOZ+PwrWuV3y8Pi8yNd4iH7lq9sW6mJuXWdfl/KL9R2o6nhxbecns8o35WyXXnPk8//X/7Q9TmcXhkeAb9Xi7WQo+WU0biJ7E+QfSHYTudjMbb4OUr23sffKew/VbvWE21HTxDtn8W1Oph+zqadirDdn27O6Iu2lXZGfeOupqHRmEe/KaE50gv7nNA3sY+f9h15Sq8kA71k3/r8xOgc6YTpJa+q8Q/q60b5I9H6TDJ7x4jwGZU+fi3DIa52lFt0kt/TbaQD1Z3e53k72WqXVHNmn69KL9WYNo5lu6oL9bt0do8+k2pNP+53PE1SCKE+VAf8TzU2v9Y6NuhqmiQSHCqsON5zx6orjp2kmdXpQXnJ58zWd9OsJL9THSQtLxbrcnpQ/IiX9qGnW21KsSZY78lnzebseYyOP1LsSMlMh74PRuUYP165XVGeUT7AsWyzVdc75qzjaTTfUZK+k1MfUuVvtKUc58E4TGMMfqflDx3rpWlkFN/4nJScYsexfBzjQVzc1vaIj9/yNHMnZsTnoxir57E+ib2jirfc3sjzgeSIu3hzghmJ4jUqmxwpf42IYqV4VbrZ4iPtgfMgVP5rD6sj6cdxOuNrNGbIPQh4jLNVF3bGnpL4/BpncaIcPgdDZT9Xxydzii/BrMbkahq7Ex+m2R1F+rkLG87t435iSx6+jzGTxhF3YENb0XzDsan8WV5xLp878WCedTQv0Xs4X8fdmOTcHD7XxMhO+L/ZrLafUVo7ioWWf7x9SXlj+S/rCek2nnMVh5yDGk8w0O8cI8Yl1TzAnODg8uLNme1SjoG3E3i60JjoKAY5N5DqyN9DDDg/jfel5MQ/sf2SZDZul2E881HMy3NVbprVlrRNmMLupVn1TTOwsbMy0wnxdgJt82C9xxEb25KHc/BUhO0trEs7Is+ebthGwvpxQSsVsF5xDiyPec7IwfYitjFRrg8hjJ2uxih8jvYVpBA5PP+5mudpmyeVpEdO42s844/9sDnhqcJf0AZPR+1M0wn7R1T9Vc7gijdn5mXVu47wo/GYrkVQ+a8jVIDkaUfmjHOifQ6OzP1V5ZkkF95Xzb90NB1UNnJkzjK3v71nneVt71lH5DqLjd83Kr/t3bPFz977iJvGGFUfRG6TM371f5EcsYWqzncvpJsqjqMf0raFI+2c/KKTKn/JqyxvcK3DvaoP4rdXx7lX9KHrT/JDrHNWB5r/+RqgvNbF1ViXX3TwZBzPz7iTzMZ43amHu+3rqJ1deddTWN2FOy/pXsFJ8eY1Bi95yUte8pKXvOQlL3nJS17ykpe85DrhWLyr+1V5yUte8pKXvOQlL/3/RPfauMi9Mt5EseZ3vHS/1rzGYovo3qf5EWt+xiYJ5+nnJ3x0HUF+wJVkzmxH4pz//ICHrjUxWm+ZG1goHlyve9ucu21vrjfiSDZnnqec2xgQB6ZPfB7Jl/fTzZnz/XNTNubjNA/JthVbUW9PyVTNd0F7072UPSkPZd7xsCwqzx170jo6N8xoT3J3yMBnZEyPd0FGkuI7543p4+z6CEeew2ec2ZvfGfmIO9EOb2fslmTOXCvljniANuX7D7mCjfLzIXtNuANbTsqg/Fx/zK/kTP65V4nGGVzzi2sDC5K1lLiWk661xPWWWP+3tf+Eu+aTu0tvW2uqjNZIq9Zpq9ZxG63rpvriPbQtvsPjPteZ3sfxKVyjimlB0ymNYLptzqxT03JFpR/e42WSKg1U6XTLnFlvQ/1ciV90/Tuuy0efdJRwXbW9/VFUPqrS3xXfVKUjEq6ZNdIL8x7Nd3if6kbzoDN5SvVOotl5vSg/3DuJY6bxA32VrqsuSPSlehn10djTycgWtvSheYPmM64P7muFe3HR7/gb16hTndCvVXVgI4xG+qh8y4gXXSfG9fEpkHU/NdwvixL+h8/jHmr24r49fez5l0oPqssdKyZME9xzDNOB7kGEa7VxvwWax9LJM47qYvS/UdxWlQF4RdvyfRvoPhHUt1EPni64b4hRTDDaS8iRPY6oz/HyDfdXo/J5bOXlF+pA96vwYflfZXt7343yuarMRx2o/bmNaJlI+6W4T2E5jHu20X0dnClLaL6gtjbKByiTtonwyst3uucLTQv0N0wD9L1kgsEoRtnyH4oniWBBfzGb47LhjmeUoLhym+A5Tpge3IZGtlf5Oa/jUR+h+3JwG9+2QSrMGIf5GWy8H1aFmeOn/HHvNRoPVD5PsVGs1M9pHk82Z5bZPE/TNKZ+q0oDeo03Z93vhPZFcF9AbCq8/DmsL9K9N6nuqjKfY+a+jfEBcVK9+T5K1FepnXkcSTVnxh7ut6r0520QKhPrXbi/aLI5u8628hm1J5WJ+LBNocKn2gOF2xnTA2OjKg9SW1L70Svmcbo3D61D0zJP1XfM7YZxG2Mg9RejWEHx0DKQlsm8Ho/1phSGi6cNfk83wGVUr+XxCvVHPnz/Iv4b6+TcPvg9xZz1jFJef8A6B62v8PxF+xiM2myoMz6ninGJ5qz7SvE6Ky0XMM/SOlGSOXMPLN5GoZRO3uH7y9OyDHHQ+hqve6Ff8L2xaF1UZQsaG1XlEvpisjlreUIx0DohrafQdpmRb9DzdlVpQctpmhaq/dXoPsYFmWx65XscY3zh8mh5FU/S2qh+i3ssczujbF5vS2Ryud40ZvL2Bo8hWCbT/EbLE1X9LpHJvc3k3rZhb+7ndJ9smpa8TKYyaayjZS2mJbUzzXv0TFOs36n6mvh9WgbQMlMlj37HNE01q2O8EfF6BcZNug8GysaYQ/vWjHgiZpqG3IaJ1vRX6UXzMa9j0jJSVQekMhLMWfe4pfGA7m/N69vUfrSuRvnjc3R/HcSL5WCK4nlORnVSLJt5GVuAtHX487yNZrTnJvKl7Z8Us21sqhhA76UxnnTsmPIzSjcuF/0Cy11eB7FX/iPRNhHWl1TtHspT1f6ifUTYbrNVz1fZi8Z4Gi8S2PvJ5qx5hr+PPmDUh6Rqf2GdjNaNuU15WyPenNnmSyA6q+qs1F4FC2TuD6mKrzQmJJH0NfIR6if0TBFeN8XvWNakked4GqNMs0Iu1tfRbtzPUH4CuU/9H+udfH9OTHNuY5SP46b24rZR3EW5VA8jW6J+qvq9Ub7A53Fcw9Y79xrxeMLtxWNMXuN1hGQaz50QC83+FwYP/zsZ/ljWEs6N0aB/Ufvn4RiViapywllCPvxsDe5nRunB0wzLQ+rTtnSjsZnew71zVWWfKzqq6lIJRBaPeYnsOaxTO+pvKvkoi9cx3UEYGylPuo+rChu1sb10ou/xvluMQaq+p5wSb7/T+gzqheWKmdja0Xypkon96O7Ug9uZppcPadNieWfUL+VI7FTJTFfcdwfR/Mr3p8b0cJaM8gb+T/02p9ipzahMrLe4Mneb28ZIdrqdZ+xhp3UKVV8c5g1sq1CMHeZmPHPpvTgo1cX4nDl7vmyrL0iFU4XRqG7Eccz6PQ6u6Xj/ei8D/7TesyDgtWBY2yMIzjUKhjYTw7LJsoUL45aR/YzKPWf84c/3Mmw8fVUcDO0aY/l+dU0kfJg2CooVfgrefLEXLBunGdrByO6qejS3sSt5j9Js3d6hvWbB/loxUPejWaAVioHHfp0G1XsMB78yXQzto8KM7bbcqKs+o+OWmD+00ppW0XChQHA2e/E2oip/5sace78zsdB5aRws1OuHFbvHwshrWc8TVNnZVl50R9pz4mnsq2PutNSxd1V2TTC7Fye3DZ875ohOPDaonnGVaD6QV5xvpRrHMkr7RPJ+qgsYVHyxzFbFE0fXB/H2AtqP6mzLlrTOk+CgTGdx0fvYNqfEz0akPNyFh9vAVjnoSJvLHVhsyVNh8xTZK3s9bQtbODwpzxE/8ZKXvOQlL3nJS17KKzLqr6F1ZpxXRfvUVW1+W/WbLq8G26RTkZEWutYw87xRHM+jbT/VvEw+X1O+i3OgEsh9Or/hljn7OC4f081pXQ37oOg9Pj+Tz/lVtVPyW53RqH+IjjnT+YWqs2tUv/OaeHpheqD/4FygAtZxft4+zo9klEY0r2B7WdVWz0/6qfqDaJ5NNGef9077VvNjPqIxjMYk+T/OJ1TN+8sPZCst+Fx5Oo8wr/XgfSFG+Gm/Hl175Mh6ptzAj7GKY+f4fUgczg/Yab+nCjdecT4Y9Rt76/o8gZVitlVnoPOk89LXKWYjnLT+xNfE2cLsKX0cwYuxnK7xcDTt3N0H6Iht+fogLtOZ/lFX8RrhRIwYn1XrKF0lV/zEVj0c52MiT1vjuq7a1R5WI3yqNeSO2sbZNDfCaJRX7hA+9mxmK+a56p+quO6jiI283YOUwOS7ks/587esRP0/jchLMqvrwEnsGUfjr2qNNNeRjiFiG9venHYuR4UBr3wNgCovcSwF2Pw5Z+ev2MJDcSSas+JA3WnbJNGctbxS9QOo1gHQud0qf6K+x/2GzrVOIfwcIZqe/D1VuqqwoWycY+2o7NsGz6vsxP0H7+FaVGflch1VaSXv03XtSBjnqe1slVuq+iJ9h/JBP+JrzpLZc47Y02idCs0juL6QrjND+aq2hpEsHhswL9N9M+g+SXTdJM6DV7UtVf1mKAvXgxRghPVw7qOJCl5UBk+TJHNm3xz1P44/0Zw1fyIPGr+pvfA5XCNpVN7x+EfLKuTNdaBzUR0tC2lcNbIP2pvO0zYqd1Sx3ij2YLmvaus5U2YjvzRzdjxGPG3xwzxuqzy3RWjHRDfwoWWtKzwQg6vtaVrndpZcxeyqnkjYN+8IXRoeY+nPP9sj+u57v1eLzcYP+/0pyeeQ5HOqZ/izixaE3R1LkN/x9wv6Vf5vb/zB3eSKffl6d/QPuq6Z7jtG25Z8LYmqvmgvr7qbkth3o712UDcsF/heHbzu50p92J06cb1UMRXLYCz3qV5UJ15X5HUKT+vFeXMd6NgNltPoh7RvjvogPu9I28UTethKI14vwLoa3XOM1jts6cHbPe7SR6WHUT0D/8P6IF/3j3VcWzoksu/u8jcjrKp+xgRz5lppmmf43gxGuD2ZZxypR+I9uk8O9qvasz2P0TS/eVIH3g9Dyxi6l469vKzCbys/ugM/3z+B7v+DbS75n2qNJc+7Rn7jbvvzvdpw7wy61yZiNuq/UJXpFDe/l1PMNCZIO9O9NbGdRcuuePaOrXpITm2qIpRF/RljOy17bflybuJFv6Axj9Z9qA84Uv54sv6D81W4v6JNVfazVRZ7AmOiOes+ciiL+kWCOWs+VOUbT2NU7fOmSkcjDJ7Gx/OurXT0RLx0FKO9+lFu4kk0O2aj3MJC8RjVxfIKj8pGuYnDKH1yG0NepYOj6fP/g+z8YnsveclLXvKSl7ykJt5/RffDxTFkXKtC2/y0L0PVfua8c7teSPu1+JXqxvfhRmx0LJ6PiRvZLzd0U8nj/aaoF/Zdp5LnaBuUz1Wwl3a57Y9UP74XMu3Xob6Heqn6KFX8c0MfPj8McdP+Ydr/x/sKqD7UN3MjjXjblu9XjMTHGYz2wObzF3LL34z8io/J0b5vGvPwHVW68D5anuae1CGRfU8gaUHHHug+2UY6cDnuXtuQpLiq9JFyceyN76lO08pozpW7fclWOWZrz3S6Pz7tg+b9+0ZzCJ3BrvIJo/5sGpcobuozuH8w+g3Nx3yeGMdA09gRG6piuK3n8Mrn7PHzsFR8jcYpVJhd9Wuj+3TdL52bwdeKJJqzx0ieltzejmDj73O+ieQ77glOxy752RZUvtEYkFFep/hsrZOxNUaHNsV9onwITn6+BOUXb4Mfxh97/mrLv7nuOIcS91em6c7LFryq6pv0u6oMNsonPP05bo6PjlXzmKtKF6P6oyNrJHja8PexTYJ7+eN5E3RuCdWH+6EtH7IVH4zyDsYdHucpNpXP0XivmteTyORyf1LFxGSSdvxcUX7+oeq8IhUuVZnB20spCqLnpRidi0KJr2NXkapeRc9tSWOkwqA615L/j/O9Vb5iK33ofG4z+210RowKC33+jgKHvTzGbV2AfUeiso3ODOb1RV5nob5D6xBcFp/rTs/SKVgge7qo0gfnh9NxXZ7nad0F551xuRhv6flTtvyD4kB/4zGNxkbMF+h//DwcFalsrpJ/x5zZJ4M+zzHQsiSVUAq5R99PJxjQbtw/6Bk01G6q+ED9g8+BsoWTpgk9T5L6iSr/qfIE1kl5+c1jJ8pWxSrapuB9Pqr2hhFReaozjDivBPY+xcDnLnFcqBMth6gMXh7yObJ8rqxqHq2UgeUL1g+MYrWt+jVPO1x7gGtkkFTrgGzVbWnZT+3D7WKvzsvLXs4Xn5NpWpDwtKWvvTqtJJyvhHY1qgsY1Vf5uhrVuRpGPFT1FLQfzr+0x0MVCxIJL1V7wZaduF/FG7xj632eZvbIqN7h6LtG9Wtb/upo280RcuRZR9qLtvLb/3XiPkpjLO1Tw7o0rRfTfYxonjGKCzklztNWfVEVk519htuDnpnkbrvb8kFV7LallyO60rY3rk92Ju+p4r+9/gJH7GFPP1u2SiA8sG3v6Po4Wz5hlF4q7EbxTsVLhZ3X82l7FM/gzWm+cdYvHeGbxN5X2YD+h7Ejp/mIy3BVB0ff4TEOY6S7dLDlX478r/JBe7JwvNudaWAPv8onnIkXOKZD2ziewO5I+rgqy5U4mZeU1/t+5dTW8prf63mu5oe8wpnf8WLZSdd62TtbI7dtyPfUw36q/IKPEpYV7irz3IUP2yPYz5fXmLBsovue5FX+oLEP50ipzjTJTUK5dH87Z/sg3GUbtAu2YanNctNnsE+Q12U9vV8lbQ9i3zu1gadtgfylnkb743haf9XeRJ6SnVf6Yvqq5LlLJo1/iR6Wx+OaJ+XQPjGePxPdIAdlYB+Tqn2UU1LNDXGXbXg6u8OHVOeP5ZRvmkKOK7ykznx/Q1f58DmKrvKi4+jOvhtP9HHV1nlZn/CSl+4Fyo9tZEeJjxvkNR5360bj772uH69D3Mtxmffd3cu6YB3Mli73gu/RejAfq0Md8nvftmr/z3sVv1GeyK/4eT/HvYLdEZvnN+J70+c1HntE94vLayz26F7xAzrvI7/6QH63Y37Hlx8pP/pbfsPkxeIlL3nJS17ykpe85KW8ojq3oyDurWgILj0J4t/dKg737K3NK/yXXwEXPxfa7G5dtsVKU8mH/LQGbRdonc98o63eu0z7d2MLzXfFeVPYP/VNa18e6Cufo+SqPP5Je9bPNHToGlPvgee0pL//J1KaDIQnL0ZZdM1v7QBXqPOZWAirFguL+0yFBcM0CPq1OpyoMjDPcbmDei6Ng7RmEbA6rReMvVUTKneqCT90nwAng3W9l+Y9PldJniX0vzZTIGSbBgcWF4K35zwCHSNn5jkuVwjz0KO14uDSJn+YEV0J6u+9JNpvaQx1ikfcs+l0unwoHH3UD+aG/CbWN7smKpZtDydnxeY5Lleo4tkp8NyDFSBm86di2Y1b4sbPfaD3tLzH5QyVahcDHzzWGfZ1+k40eGCX2NqwOPR5cihEX8t7bI5S5fKToXDjsvDWzmfFnrVxIuTNeDG1sT/46TE8v5dDX8+NhQ1ft4OwXcvFO8nFxYcbGorjPa+JTo3GWPDnNT5bdLb2aPj+p0vi+qjHxInbc7QHqpi1pqUviIdHD85zbEa043QEzD/yCEw6OEGMKfy8Vmxoe23X2/VF9wGJIq+xGdGeun3h22NviAvLlmjpH9fQpvxdR/tscdN8iXfF4xMBqpcB3/mHtb8+qKkFfVBUK/HQJb+8xsUpJSEaVgY/CQMXVRaN5/ppVeqVNP0z7opvXuPiFPZNTyh6YreotXe5VuVEGZOse+c1Jkot4kZDyS++E28krtJ2fVM+X+ELnjMN2vcsAz/9fkH7/uEF+Qbb5xFB0GZKVTh1sKHYfOPHfIFLNAyHEuuaQPn1Q8Tg02dNsm2al3ge9o8Fn2LtILBPgLj8YgktL20U+nY01BtggrmrnhdN103MMyy/7YqB5m3bwv3vjRf3T3oqT3Ds/SAKHp8m4N9iz4hZESYtt/2kYf1waH9AwJbzy0Vs49a5aoMRvtEwZ2Zr2NZqumhw8Y9cy7cLx8TAhUMAX3WJEDd21skVnX9bGAkTZ3SD99KniOSCPrki85HmvcFnwhxx43gRj8v7KrQHNPpukZhysJ5HZT1Tdji8WvqAqOJ/1TTt86seySs3Jj4NRwp9JNodG6Z5QkbF84FQ1f+muG/ufLfzDyo2HRpWTRFV47/R/qg32+Q2XxoaCOVvl4Lv5pYUKWMnu4Wvz/MTIbpaZRi4rLno1i0hRzz/jo8D36ETYVNoHQitMUFcL/5OjvgNrx0Mi8xN4OW3F4qNvUM0V3jEDI6DU1+EwRu7u0Pdyr+KyanlXGpjPL8zHD58ui88VfQ+eHZkB6d4/FYtFkr1joaRr0yFz+ObwIFt4U69Py8xGiq+FQL3Xe8Pz3U95fC7Um5Mkwho+O04iPyxtMPvHPkqBho/MwqmbUx3SNawvyfD880egYkhvW0+f+jiCIADyWL74N7i7dh0TfYF8P6AHu2nwdXfikHxiCrileZLtcjjRbXxyTEgqfrNWbDx5jgIub8cHOteWZRY2luT4wWSEh8fC503A9z+84SourK4KJBSRPvh2RWWOp/M30cWg2haJ07zeW2I9sKopSY6TtGt55uW30juGEtQzQmmc+zpHoz0jFN+zmWi2bl1Bqr1jEbrHOl577h3oQ9b12UkMyxFT89TsfCpTvL6kU7+22NgtE6jCMnfeN8Z2n8qwzd8iY/Y23ea7jVP1y9yW9L9eOg6XqrfTF2/YJ1CrKTaTwzfo/svqNJ96HA9P70cCQ38IuH0nAg4vTsKxofEQPCsGMtV0jidZuq/3xwZB+XvxMH9d7LuMxlPMCeY47LtAcnTy9m9tvh93LPWx7qPFJ8PaisdHJFFrwnsOz3PBPdntsWbf6fpTJ9Fm+D+lCnmzD0hXdGL68YxULmIBfeeLGjdO9cWT5VeRs9J/j5MJ3uxwRG9jH6jLVEWPRdBhduI+BoKzLdoIx+2h6iz6WMrnah8ml9Sifw7Ch5GsYDbB/fdp3EI9zIz8jdH0smWLVVpRfNRikKOkS50T2LVOxiP08zZbWJLP1tli2ptHRKmCV1Lrdr/j/PEfZKRD93fh8u4YzbGp/ptlB4qe1G/xvhjpDPnw/ebUJWFdN9rR84/sKWDyja4DzWmQTqzu631aakKfvzcJ77vkqP5geujKhdV5y/x/fWNYmUBhf9QrCo70/PAk9l3W7hpmY9pSc92wDqLLVsjb7M5Lhtu1Xeal/HMBL4nsdG5VjwfImYav+l+KSq/o98x3ttLb5XvJJkz4y3HqzpvitoGz52h50Eksed4/lTFC6P8pbIftTHula3av4fal+7PjvnQTPDGs/cS2bv0fEKjGGfP5ogT92NS2YXu2c337adrtijR/dTTzep8bOQ/RveQH54dgWcP4HfMW3RveIoZ45DqDBAsh2gd0h4uW2UFnlWhOvfB6OwMei4AbRugf91hNua4VLGD+w/Fn26AkZ5JwM8fRL/H8oPW743OjTSKa0bPSJ1xH1+js1UKkPTkMQvthbGL20yVP4yw8PiCPCmOanr7rrpOD+v04J3smJAwHmA62jqP0hE8FBNNr3OlYi2YHrLiqXgnax2f7p+PeJIUfJ1Z94axCn1B4jhcNhYO6nRGx/OdTg/oOCrpVOFO9jiB8Yjum5dogEE+J3kY+Rfyw7ah5PmBjuOUjuGkTid0ut/aLq9oveJ5FOgP9Lwjmu8opopWXfBa4U72fEj3TdxbNkO2xCCxFNgTZyHEUu5O1nSh/ox7WvO+Ail7b2rmFfFgXEb5Uv/kS1GwR79WuBgF3+ryDx2JAR9dvvndjPewr0IV8/DcJdouQZlIe6wk72N6Sr336zITdNmJOknZUvePddlvfB4Dl97LmBd5P5GtKqfwnI9EInsPkZv0bezd3wv842CxTit0Wtg5ykJSbkWdUO6futwLulxJL0XHGMZ6jMPcD/cQuQuaxULnEXFQKDAG+s6IgRd0eTPHhsOCzlllSpI8Zd9Q0KysMmk8wvo1j/GoXzLKbB8F3XVq2CkKPvANhWBdZnqBCItMlCf1lP3AUqZR2cvbkXhdlZ4hT+ooScrrrdP8hyIg5MlQ+KJhKBQ7GwV/ro66m5byXdkXhv18tE/YVj0FZaG8brqcxbqc8Q1CLTRBp/jFmXpRObTvmfLneklfejU9gzDtyu2Phlato+7KGfh7CPj9EAmzzkbCCxcjlTKonDTGH3VBWqtTCV1GdL1YGEdkLH45FBYfDodyvpFZ+HMZlD+VK3mvs/J/angMNHo92mIjyb9cqXAL/0aHwi39ryr+WOejuLEsf0PnuVqnlTpVfH4W/PR9rIX/jqoR8Me7wRbekq8c70eSfE3W+Yy83o/lE+alFTrfSjpfScNIfyrtM0aeOEeSno+E+2XyeIw8Jcl+Wt4PjTyxrp9MeKl8Ul4f0HlJssWL1uFVZ3bR7yo++B89146Wvxwb52EiaYptH7q3Ki8j+fvU57BdyvvqVPhHbc+0Adowwayu79N39p2KtfTD0z3049m7kheONYy0jiF8qFMBgku+c8uc2b8wyvqsfEc+azZn1rn4+Xo4piFlRKVkPysYceO4hxwTma0/F5oSl80uI628jujPhFvHGPA5SQf0+x/rNIuMQeD/kq98L4yMUcj7n+j3Yti9I1a7yfEM+fws63d5L8L6bHBK9vTOTaJ58rY1fdAHMcbQepnq7Nowq30ooW5SX1vtWhUOWp/F7/RMOOwjSWbfaWx0pE7uDsqJbjQW0bOYVcT3Hs8PevF8xdtc9vTi/TJ5oRPepzEEYxX+5meI8jPLVX6YW/pwvbiuieassTSZ6ELHvnl62BuryCt/w3P58Pw3fj4jPxtY1Q/sSV2M/IvX12ndiJ7fxWMcj2lGfdie1EOlA41hNL/T8Yk08r+j6etO7ImMP7c9jcFYviB+GrNUNvckdhVuWh7iPcwD2H+DfaZ4LqxqzIDzzs08jffpmbT27J0btjbyHZWPYJ81PbdaZV9PnQXAyyle9iaYs/oz7aumcd3TeZD3pdL7KA/LIt5PbLQXvSd8l+Pk59fSPMbPgVbZ0hMYaR8i2qsAyTfol6rxCYqN+qQ70z3NnNkORVupzjnn4wN3GC5VrHYHRlq/w/KI5mXVmIXRXBp32Y36G21vYUzh5SnFpxojdoe9+DnJlDfGZhy7U43tqM7S5fHUWTz8rFxen6O46NnlHA/F4oqNeJzgtpf35Bxsai86j8lW3KX+6YhN0Gdkv/lCKyVa5SNRHXFsk/ahqeYSOGoL2e8/n8iWOGIHZ8z3ltd/4jNI4sC2FGJIIZhU9nDEDptGZsiXFDM4k2ZZScq+Gp+ZbjhOpBoXdUW2lBVN9EW58ntgqTg4uyOr7knmrOeFGNndlvwoA5lS3pRSGdcfiVxJGItdjWHjQjLnyMZa5U4plUkoD5+X/ZoddJJ2pv37qniskjeeyJug06AnMqlg84zxCnwX5ybLfVXaWucq+xr0y6tkU1koI6BFhpw5VWMtY1ymM5nzoIVVFhBZJoUc9CO0McoYqPMfo/OP2x8Fn70UARW3R1n28PEj/HytMjoSOfL/BGYz7j+St6T3n4+A4uPDIKxIOHxxM4O/ifDwJX2/nfTvmlWGyv+oj8zcFQUpw8OgWtdIWNs0Y98hPn6D79Kynfaj0BhOr3IcQZLkK8ctuHz0ZT4fg44332bYke/+RlGwf0SM0m7x5sx6C207JTK+yFs+LzEajY9hGvG5I/RsHDqGzvv5VXGQl/2cHy0LVDzwOTr3js4hwXKSn1WswoJla6o5a58l4sJ5ULwuR/sIVGcP0TEQ5M/jVBp7h/oQ/k/PKUbMvA7Hy3P6biJ5x5YteZ9HsuJ57uP4v70yl7fvVXnRkbLCVeIywsjYRGhK5u9QcsX7qjGAEPY9mI0LzCTP4Ps8jqYSP8PzEGk7BvMSzauq8f/cItQLx4HCFLpx3+NnT6LutP7L9csLvWYQ3cIUutF8QeM0PcOS6kKJj5Hkhk7hKVnTi/ouzWM4J4fPX6blE9eLt1tySx/pc0Ekb4Ww9EF9qN/xeXnc57g+uaFThNW3UBcaa0JTspYf6G/0TEwaB6guqAPPS7TO5k49oqyYZ1p1oX7Gyznsx+VtV94/xeMCb7e7O32irHh5zEYdaP3PSAfqP/EGxHVQ9R3mJA2o/VX5ItGcOY8V28q0rqWyu1E6cMzOtPGN/IeuiaR+Q/sk+PxfWzGX214Vr/hvR/MI+kwww66qr0usfE0er39TPVSxyKhspLZR6UCv4SyfBqdkj4lY18aYw9eycHwqO6vygC1/N7I3rVPJ72gfHsPls1iHovmS+y/Fy/1E5TsqvCr9bhOs6L9GdYAkhW2pb3J/4La7zeSqcNvS680GUXfnO6Ftkd8twhvzGl2nwPU3socRNkdpz/YQqB4amaU+rcrTSebMMU2sOyfawKQiV/D9b0YAtDgwE/5MicmCjdocMdCxAVqvdxSfCitNLyT874vPBsGPhSfDkW3T4VFzhCW/q2yXyLBhu9QVXNyOtxTYdv3RHb58cTA8OC0Afq0QDGuGRUCJLrEWUuHyIbiS3YCL20tStYCOEH6jK3T+qh+s7xsAw/fMhPntYrPxkLJx/InPEbNX5hthor8Rz/B3WoLwaQfD+3aE23uGwey10+GZd8Nh1u/ZedBxnDSGRxVD7OHhMSZwTkt46mBL6DakHYx9tDMUHBcACREzIGxQJPSsFp3l/WRz9vlzlBePvY6mmXzn7+It4EyHFvD5agET6nWC7XP7wYKPx4L/9akwoWWIxX9oGViAxSyOxVG7UH8uWrQF/BPUCuYm+cLBM37wZ8dOcKVif9hTajy0Hjwdbr4cAWV0HHxM2kdhDxXxdOBY5pZsAUVSW4JvZBvo+mkbuPVvW7ixoysEbhoBi2o8Dac3hcDvPaLvjsOkmjPbc0ZraVT9ONxOUvYcXbY5pSV0+r41/PeGHywzmeCdHzpBneKDYPzcp2H5+kD4aHkwfPtdzN36JG9/0bljqrEZXqbI66t6uldOagmT9reGhet8IQ7aQv8GHWDJ4v7Qbag/BCVPgS0dZ8CBlWF3+dAxMzpPRxIdV6Zrz3E8Xl6LbG0B68+1hE/Ot4FpW/1gze52MNWvM5RYMwSG3Xka6t83CQK/mQKfTYqw9J9THVBuOuFtNmeutaFj2ohtwvpWFroJGvTeAFA3oQOkNu4Bc/4bDg3+exoCBk6F2gNC4Lhf1N1yg8+VsjUmSW19+IvWMCVOgyGt28LgfR2ge98uUKN5X9iw0R/C906B131nQsdikZb1OHJdkKpOTGXw8h/p70gNAqt0gCZlOsHxb7tD7Yn9YdbzAfDKxBkWGcPHhsDQv6KzyFH1exr5oyTz8LYw8eFO0HlTF/i6Zx84Mtwf3hmXwf/YnhCY90uYhf+7Vv6q/MbrV7TsThrdCSqf7glnSg+Fk8+Ph0UrpsH27nqZdSgS1uok1w29a+VP8XJ+vA4m78cV7Q2DwkdC2OCJ0HnzFAvetVa+kr/k+Y6VVPY16q9oGToK7pQOgN6PToYTnaaD30cRFpxynZMcAzFKLyyveRkgn7/zzNPwTu0p8MnRqXDhlXBYreOTvNpYx1WMsN1S2ENeF04MhJNiMux8dhpUHBYFj300Cy7sirHw420gW2WGvDd52BSo8+kEeLHYVPjpqyCotz8abiZEZqt3qOpNlKYPGw0FKkwEU4NACHhqOvStFwLLC0fBq2dn2W1TIr0DAbBbpzd+ngSnL0yHHdHBcKRHFLym4KF6v1qzYfC7/0iYM3MsNHlhOvzddya8XTgWXi4WC1cbzspiD15mLP5psB4jR8LiL8fC0i8C4eaXM+ClvhEQPCACLg2PgWv6+3RdNvZXLv6kHwxuOwqeHTAJPuw/FXqPC4EQ/Z1TkZFwRqff9PKEz3/YvrEPnG0zAmaXGQeVXpkKPf1D4b+ZM+Fn/fkfdTqt03+6PMzLgx7rBw+0GQ5Xrk6ASv/q5aT+bIpOSxaEwbf6s1LWWV2OxFXnwgCo0+lpuH44EBL0ZyR1fzUYuuq0SH8en93z6wi4eW0ylDoSBNf1Z67pJJ/pYiX5XNBjE6CY/r/87x/2v+T1R+mpUNj6/786dSH/G90PGpP9Hv9tRLxdi31hvCzm5YnRHAJVWxnHhHFM1dk9sRwhXHsi17LI9SOHT2Ufg05X6MVjvD1dVHohyXU3OdWDruMZxXSTNGZ7TBYM8ebMeoqrehjpJNdbeSKd+D5po7fHZMFsa+wwJ7p4Qh8jQn0SPKRPbukh0ygnelj2gNTbH/LsE3ntWy3aY77lSJqoxrPtkcT95MkwqPmvHmu/mwmT1oSB/2MRcKd+KBypGAndvsyg3NCB7t3nKLWaHAPtRRBceXAGhM6YArtr6W2jz8bCzMNj4c9i46Bw2YlQ6u2p8CuEQPE+YdBqllqfIs9F5xg/n+9gi9bqdRTz8ghYMHcyLD86HNr36w3+JQEqRT4Jl4+0hod6maBvcnOot7wVbGvTHK5e6wbPbx4KIf0C4MVLwbBv/nRIidHT6+9wCK8XDV1aR1p02LM1Cj6Kirl7dRS79FmV7/By4NehkfDLx4GwXXsKKj43BNrsNkFEYANoPawi+A0qAB+VuS6ajTopKjX6Svz29VHRY90+8eWh4+LkhAJgGlcRHv6nNjSZ0hge2NYJ2u8yQfEBPeGlm12hTtun4MIDT0GHZQHQZv842JkWCDuu6375Yhj08s/AKK/4HanngVFQa1OE5XwSFWZZbn11LAhGPzEYygxpDzW/aAVtoyvCvH4FoUr5k2JT6AdiU+Iq0ePdeeLA2ThRsGCwqFC3oxh6oY34r2lDYS4zUIRtnyPerBcthsxbI275vyme8tsufn7wPTH24FFRu8UB4RP1oej+7FFxdMQ18c7WinA01RdmNesDpr9HwWstA+Gts9PhyPwoC9W8HAnfRJeDqPgO8F/KJCgzMjob3nUBwRB8cjC0L90M6viWhjWbfxEzd24Xq7+bLd4KbSh+uFZdNDxfRlw7fk0rfeWwNvD2Zq3y699o56I+1zr4f6rNalxGqzB/m3a8R6B2vUiIdnxBa8133xJt3+Fd2oEus7X03fO1Bdsf0qq3m6192uQ+ce1/A8TzzVeKywfPi83FHoLRYwVsqN4HXvpkNKw/GAiJD3YVQ1J3iPBajeHwgN7QoX/oXbyHHgwF/6RhcN/IJ+C/z86JM6WeE0/+N0IUaNlUXG+WrFU785H2nmm7djtxsTayVrhWfRVoqxY21LoWKqINu5pkKpYW5Xfly1cte5SPPDDcdKLxelPFGrNNL15vaVoz5HPT7McjTK+tesNPUuc+W/1OrXzb9Gv3Ktqq3y5pQy+PEVunxYjlgy6KHidLQMzkOrBxRjntrbE7tRGj4sS3G74Vi2u0gCcajIXOu4OhXaFJ0MPfDwoUfVcsS71fPBZ8Tpu7dJ7WdGgFbfG7oCU1aK8Ves1Pm9auhvbxh6tNfffPNInUSaaIuut8L8ZN8kuYWj3LPrKnfRuZJFmw/7LM8l+thsv8pn6Q0Mb/yga/Fc1X+env+XaOTPS7lPSk6ZtFS7XVbxcTa9d0EZVMc0039/9qMp9rr737XE3xXtxLYuK2otC+9ZNwrH8b2Pj1WTFqcQPRrMRIPS07mZKuXTYNG9zPlDz0sKl6ZH/TFm2rr6RztZZbsMmrpJzsbzvpRI02krbeWO+3oP0LJqlLl22bLPR7x3OmM4X/1Xr9FSjKb/9I/DJtpyiV8JQ4FzhKm3uls+lg0IO+J8qd9JW2koTYOLkDHxLaW5K0t6Ttp5doV0UBseFWcTFqwAqt3KtDLdhO7rnaxhZvd+Az+iBGST/Mvuz34KYiWkCjn/z6BIy0iys3PohNT782ktx5/qI7PvkNj/fj/Xg/3o/34/3cix93nrHsLl7uOPs5pzzoOdTOvruwVkGTK+8OnnvNz9l3nJXjqWfvtU9O+ie95H6S68i2twiFbhHDoXVwgLjk31G7l9Pubh+wXwS0+XgGrDnVFspObyEuJvXX/qj9nule1At1kjR6dSjsOg8QfbSpmFqxiXak4Qf3nE6oj7x+2ysCDlbuDu1SW4ufb92vJZYzmSTda/ogjSgyHu5rulKsLNRcW9ttlUmlT17jtUdLW8ZC60rBsOPVgtBsXZhWp/NjynTJDSyqcRRbYyvyLHKkSn/GQfjhfvBe+NEsaUH18BRuPl6KuPkYN1KsjjfmWuY1xqpDeo1wgLV7RGjJllrRCf9l08GT+FV25zqgjhRzlJUq6vavGzoVyv1+M5v9LeRmP6Hzkfg9vM9/x1ixxlqxz9KpwF8ZNG2gCR5/6bXs2D2Amc+DkPfp3lv0nBL5+7lrGTTfepW4U6/Ewfojs2BZqUdh9o3Xs+L2kG9Qm+PcRzrnj+77g76N/iG/J+mYu/4dCaUO1YTmHx/V9j9VVHMXXr5+ic7N4HvN8vkMEl8kwRptxZqs05Ejk+DvxCrw3zOfaYXabnSbbfmcMjqfVDXfDL9HkZiB9pU499wXAw0/HQ59R9WF+YWPu3TOIyW6Hprbkp5Zw+2P8YHG5iiCs3zDKOj+5WDoWqCu29KbnweimltA40GSOXv8RVqil4dzG4ZD+UOD3YKP4qJ73HBf5O9STNSWaZdi4Njn4TnCRfMHYsL12ap5WJw4JkmTNulx6WqMy7ioryEmnF+s2tuZE8dDcbkjHbmd+L5wqjlSRphy6u/Ul6iN7PFwNxbVnHBn+LgDB8eDMdRT+/apiK83oPs25oZs7qe4j3lu6o3+yNd/eUou1Rf3wXW3zqo5q/x8G3fL479pPnenPL6HIJWHdRB32o/XdTCf5DTNVHNvETs/zyOncvh+pvTMWldtk6C4h/V+d/kspfgc8qTxBvOeK7yMcNJ9e5zhRX/bOoOBE+qTrOCDPuoMHl4XxTVqjvgw1YWuMTPSg9flOJ80g3dUdSmK35Y/4VXV56Hiz31GpTPlae+5RIVsVd3L3v9GdrfHz97VS17ykpe85CUveclLXvKSl7zkJS95yUte8pKXvOQlL/3/SXI8x5nxY9V4BD/r3db4Ax0PSjMb72lnRPHmzHPf6f6lKr3o+eVUvj1s+J3O53Lkfc5LvquaQ2ekF5KPwVguH5OjeFTjq5S4Hglm23OsHNHPaI4g1wv3YFOdCSP/42eeGO3BZWusFnVKZ/876pccVyLhRedxcp34u3TfN9X54aoxTBVWOv5I9y3jzzqT15E3pjvfj5A+i3O7jGzOcdM5jUb5Dc9VMJpn4OxcnSTGF/f1xfu4Z28C42+En/PkutE5Iz4k79Axb2fzkSr96ZlDBUlaGdmWz4XGc7j5+af0/GrV/Cg+f8sVHfB5ep4jP6Od88c4i5gQM57/ROeq0v2zjfb5NcpTjuLnZ4ryueX8jF56nhDOjeLlGt87VBVXbM1jtocffeUO4039k55pgueU4T7uFCPfs5nHvkSzWkc+98ORs9ExXhrFA/xOz/+hdlalva2yyAivo2WFUR7he0cmW/0C5wMWJPPYHMVrC6sjZ23aK0P5uzi3D8sHZ7AZ4bQnU1VOqHyf4qHnZqco5LuCEeU4c4apEY8kc2acw/R3xZbOpp8j6a/ay5quUXAFn630cxYbP2MGbelIXlbhsudbjuYZajeUo6r78jjPcRnFE0d9TGUr6lspBnyd9T0jbI76Ib6LcVCFR4XPCKuqru1oOtH0kHHYqO6uShsj2zhqE1VZKe9R33FUri0M9uKS6l163pyzPmLPdqq4nUDu02fs8XZFtqquz8loHntO9FXVeXjZkO4Ab1u4uX2x7qGyO/72sfq9PRvb8ydb/k5xF1DIU/mCI/nIXj3yDuHLn+F2pjyNZPL38Yrn1Maz+1QXZ8tpVRmRbs4aL+IJb3t7lNsqw7E8pf1nt82Z+cWRfhce4zlGHtdsxURbdkk0Z/axYD8TLe943wrlaZR/qT9i+1gVp1TpalQ+Yf2pIOtrjGfv8zzN0xz7MAqQtKHP2arvIG96Tir1BY6F5hOaDmhneq48xUjPuef1EHrWC645wz2d6W+sD+N3ek4zrjlHPvT8J94ex+f5PUp3iHxcy25m8u8QnNz/cc0E1VnVf8H9kPs933PBKLbZusfzi70YbOu3pP8Hgzp7Jg==</Data>
  61. </DataArray>
  62. </GIFTI>