tpl-dhcpAsym_cohort-41_hemi-L_den-32k_roi.shape.gii 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <GIFTI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  3. xsi:noNamespaceSchemaLocation="http://brainvis.wustl.edu/caret6/xml_schemas/GIFTI_Caret.xsd"
  4. Version="1"
  5. NumberOfDataArrays="1">
  6. <MetaData>
  7. <MD>
  8. <Name><![CDATA[AnatomicalStructurePrimary]]></Name>
  9. <Value><![CDATA[CortexLeft]]></Value>
  10. </MD>
  11. <MD>
  12. <Name><![CDATA[ParentProvenance]]></Name>
  13. <Value><![CDATA[/Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.L.roi.shape.gii:
  14. /Users/jelena/Downloads/workbench-mac64-dev_latest/bin_macosx64/../macosx64_apps/wb_command.app/Contents/MacOS/wb_command -metric-math ' Sum + Map' /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.L.roi.shape.gii -var Sum /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.L.roi.shape.gii -var Map /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/labels/41.L.prob_map30.shape.gii
  15. ]]></Value>
  16. </MD>
  17. <MD>
  18. <Name><![CDATA[ProgramProvenance]]></Name>
  19. <Value><![CDATA[Connectome Workbench
  20. Type: Command Line Application
  21. Version: 1.2.3
  22. Qt Compiled Version: 5.7.0
  23. Qt Runtime Version: 5.7.0
  24. Commit: 8951f7eccbad8cfed5bbd65323cd1c70fa536d0b
  25. Commit Date: 2017-05-30 10:34:41 -0500
  26. Compiled with OpenMP: YES
  27. Compiler: clang++ (/usr/local/clang/4.0.0/bin)
  28. Compiler Version: 4.0.0
  29. Compiled Debug: NO
  30. Operating System: Apple OSX
  31. ]]></Value>
  32. </MD>
  33. <MD>
  34. <Name><![CDATA[Provenance]]></Name>
  35. <Value><![CDATA[/Users/jelena/Downloads/workbench-mac64-dev_latest/bin_macosx64/../macosx64_apps/wb_command.app/Contents/MacOS/wb_command -metric-math ' Sum + Map' /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.L.roi.shape.gii -var Sum /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/roi/41.L.roi.shape.gii -var Map /Users/jelena/Downloads/jbozek_account_Imperial/MSMtemplate/adaptive_subjectsToDataConteALL/labels/41.L.prob_map32.shape.gii]]></Value>
  36. </MD>
  37. <MD>
  38. <Name><![CDATA[WorkingDirectory]]></Name>
  39. <Value><![CDATA[/Users/jelena/Downloads/jbozek_account_Imperial/HCP_standard_mesh_atlases/Conte69/MNINonLinear/fsaverage_LR32k]]></Value>
  40. </MD>
  41. </MetaData>
  42. <LabelTable>
  43. <Label Key="0" Red="1" Green="1" Blue="1" Alpha="0"><![CDATA[???]]></Label>
  44. </LabelTable>
  45. <DataArray Intent="NIFTI_INTENT_NORMAL"
  46. DataType="NIFTI_TYPE_FLOAT32"
  47. ArrayIndexingOrder="RowMajorOrder"
  48. Dimensionality="1"
  49. Dim0="32492"
  50. Encoding="GZipBase64Binary"
  51. Endian="LittleEndian"
  52. ExternalFileName=""
  53. ExternalFileOffset="0">
  54. <MetaData>
  55. <MD>
  56. <Name><![CDATA[Name]]></Name>
  57. <Value><![CDATA[L_prob_map1]]></Value>
  58. </MD>
  59. </MetaData>
  60. <Data>eJztfQd4FVXzNwm9iIhIVUEsdEE65O4ZFARBRJo0pSOCgVBDelCKBRAsNBERRQHFV/EVUQEBxYrSFPiLvAJSVIqgGJKQkNxvT9gxk8nZcltu8Lt5nnnuzd7dmd+UM6fuOWcbJUOae6qSiuh/C/fF53xPN66d1e93SvdmJ0H7homwPj0ayo6PhBcX1YLtXbqIVY2XaeWq/sf1ZLGTEUhFCsmfJ/qdM2yXqlO2TpeM7+kGnWP3qkj+VjQ6IQ+V65T0D1F5xfTfkMrqFG58X6D7aKEFLTBIfg+2fSuMK+Oi1OV8OVeZIzNcDZOfcA0a84f2crVIMdJ1Qqwa2RH6rImCEntic2hIWtw/NFinFnvjQejU3CDU0dPYfCI8HiBuNMypUBuuKt9HvHV3nPbT379e0bEp9Tr+fRx02zEBXvvkLthWbrq4u+dT2l2dwrT/He3puhL1kv5afikBhnw0AebFPgjRNy8U7d/eo3WMukM79/DaK1KnM68nwMEisfDCWyOh2tJL4qbzZUTRY6O1iIWHr0h9ZMwV3z0WojrdCT8fbC0+LTpba/Pil1ekLm33RsPiL4bDsmr7xa8iTbv+QGvNdfR215Wkh4yvfZ0mQuT2TvBRg6fEkpVvaB1qH3VJPVLH1owYOlu0Lew69NoZA01bjYX7GjeGqg+1FkmfD9YqDC2pDXxuTg5+SbIeKYz46zWNz4mjq/uOgYq3l4Eap2qLp+bO0M5vb+tq30y4vuxbOU9dWFiwn3gwMYcWN4qF9DWjYPvAGjBn5nmtzsluWszjHwYdO7an6CfilvX5gFmT4c8HHoVn328Dbaq1F6fX3aNt+bC7q/jYmUHFzNuBv+p4Jck4mdp/CrzfMQqO3dgZNp04I7qvKiteqHTM9fuGp1x3Ltvpmnrk/woUbzpp6/9p0G8E7xcPx8KSpdFQKWEwbOou4Pp3TogRyRPFc51Wa9fe96p2eOaHroYpWwskV6YZbW+k84Z9JeamxRJBNE2A1VExcOjjSAg/8QAk9uoEYRcioOyB2vDkALf49ppVYtmWT7Qmj2x1PV+6TetA4Qwv8pje/n4M3DrGFB1bqk4Z5HNAWCIsnRkP352MhQ0NxsOOZVHw+kuPwO5Oo6HM0u5w/FQdqPTcb2LrS+1FuUuBiV/Zf0nR6YysP3Q6rdMfxncZC6UaJMOq3gmwfFocPBcTDeUnRsMzfSfD2KxI2HVNXzifUA+SNx4RH1e/X7j2vqyFt5/lV5wS3x8GJlV/TPafMl6Lg36T4mDNhBg41mESrK8TBeWn9Ya1rvqwOqwIZM2bKaq/9Ld2dHgn7dnXi2m99j3klzilOQljr5lBJWbHQViHBGiQMQW2z5oCD9wVB0srPwpjvhsIb9WuD42fOCQaH5smOjyzS6v4ZU1t+01u14E7PnX9dPN8n+tonneq90iCWodjYMUX0XAqciKcaRcFFz6NhGoDH4XIV0bC6G87w1tvVYWT5T4XZzMGia2zDmg90ppovw3MwRMh6bPjC9seabO2lT8wddXb9nOTY6HIPZNz6I9SkXDN7AHw80094NN9HWCvux7UuviXaPHxbDEz6ZLWJXKG1mZQDa36gd6uiIWDc/BILL7gofZ5dm8C/PeTiXD70jHwSd8H4N6LAJvLNoUSVWvChjLlYdCTe8RT/9dOPLNqgfZK64pax68b5eD4qsWgHLqMpYnXeYRiibkpCd4eOAlSmvSHimktofgtN8HNX5WAzfFbRYvIV0TJG+8UMGGMVqPlY67NUU1cH1zd0JUXh/d24ThKH3gYBve/G7o/VBOyOoZBxNRdYtFVs0SvmAixf/Pb2phl12hn3hv3jx38jSHt0QRo+ZuOYWorOLakCnxz8Jw4tWelODvoUeG+7oj2S/Xl2u4aA10bm0Xnk++NbCofx11eSoiEMYMFDBlUEx6cdVBMLb1U3JFeUzRxv65F7p+gfd9ntyv1ofYuK72dtj+o3Ew9p/2+IgrG9u4GRRJvgt2PHxU1azwpGs4JF19nLNR6JV+t1V6wydXoqzI5ZCXXTj6VK3PpJnc0NH6kP6xOaQGun4+Kzze+IEpvaC/GlnhO+yn1Oq3siHUuztuKVDJRHo6BSZn9ej0Mjfd3hOUDz4ufOr8pyszqLg66TmuLFnfVNjy7ySeZfMztxqIxUOHQWGga0QXKV64IR79ZK36qNUisbFNUHPlfV61Oiw2uaxfu90oelyVp5iOTYchrg6DWwubQc/z3Yum6JaLUVYNEyr6ftdo/lNI8kYXyVHJO/hALXfsOhZ1z6gM0LAHlbnlVRA18WGxqfI0o2mO+Fjb+Fq33X8k+yZDjbvW+GgYdrusAW+reCF0afSmuP7BALF3aSfw3qaTounyoNmrkC45kqHiffyMeSo8aD3ev6w4/jb4efr1zt9h+6Q3Rqtgk0XfnNWLE659qK1cv/YcH75tY8Za07JnxkLytHwzYfjOUm3lObL3/HTGn4izxcufmYs6rbi190Qval5tScvhSQr5ynFbFd/C4yfDAwH7g+qA5wOF0sXbnB+Lxh2eL9uk9xJq2FcTxU29r28q7tK6dX8vHV8VPUvgzsZDw0iB467rm8P7kMFjaa5Po2+1Jcfyq0eLr0UI0vPFXbcIXy7SoWf9zIV8rfgfWxMLSi+OgZ537YOHGylCs1w69j7pcbB4yXWz8vKPoMreNiHl8s9ZwdRutw9Q3XUUOVnXRMWvK6yedV53KY2H63f1g2nc1oP/PZ0WlbVtEv2VPiydPJIiHfxwi6m+7WmyMGqWN3jovHyYcr972XBzEvxgJS54eBMk7usG0cjdBs/CLYu7Kd8V/Dy0UU4aNFT9e31SMbzJHozxk/sDx7hd06nZdDGTOj4RXlvaFYve2hrtOVICo2vtFxwe3iPS+C0SbMfcIHhOSh3y2zV497g7EwbuDJ0P3T0fBtNVdoPecdrDjRDVYfuaQGN9lncB8FW7QfP251sa49Gn92Xnvx0LV3dFwR+IoqFFxCGy6qSscvrMyXKXfW9Kgpfozyw2i49tjoydD31snwOiNj0LRKQ/l8C+u0xLj3na6DJcx9i3vL74nFqb1jYHpOv3UcGLO/VKP+YZNX9EpYu9lGUMNKm6MraPd5xsE+n2tDN6ICe9bZNh3vsFP3tdUp6HGffweaYuWOg00fl9Efl+wL3cMv9ney9fpfEU741l6Xd4rr9O5jZZ78/5Of7MbXzKb+0JKJ99Tjc8L7PeLBsm+Z5jev5NzQRnGtXRG8p4sxo/LSVM8Z4fTDHu6Cb90dh9ikf1TT2Wq7BpTQe/XlkmGqPVToMPOR+G5kl1g1J73RO0VOzS7dg/9czJW69R3qe78Npd+yjTm74oQ36FfKR+c23OTezyxsxO7+aJXqjuvXlmGTpIuOYyrDEJm+iBdVDzvdI7YKla5Xnj9kmF7HEPJYP5MY89TW6W7c2NbZUeqk0ovJzpxvcx0wt8uEf/g/LGTZ2mZdRPMqnKdTn7zRR/KO5Vhorq4jbjLUMjkOY/zlr/J/HmRXedli/vHWz0QzwWCC3M4LeOe5EKqSxETXczKoFOfWJUVqgPNZWa2t/IHfs828YPKP059wXmp8F/y0gccY6o7bxmw8oUT/OeYDyj2DMPvl9z56w9v4ijN4JPKbKEq505xq+yeQWzObWUVK3bYpS3QLmYx5AQ3xYLtL7R1lgVep5h5mcA8RPOnN3FCbYI5EsulJzZ1ghnrN1qHIV65JsQKJy+bGTZYVe0pT2IbyzmvuyT9XjwBGnWJy1nzgUSx/sGwUpyq9pAvduZ+p3G8blQUNOs3HjanRUOfw7Ew+L14+GZGYh6MeC+2Wy6Z4PM1FqgN6ffvJ7ogu+f9sKHuCBjRchxk3jARRk/PGwtyrgLx0TYVr+d9jVWJJ5PZs6MYKtJe3Syi614HvT/TYEe3MXBVpfEwSsf4tW5Lac8pTyQrsfmr7FAbYr6S2G6pM04bOe0PLWlIjNj7wWei7hd14OuHBkPRZx6Fd4vGQa9X42DKukSIfyI5Ty4NBMZMgm1B7RTXivYVtciWtbQxFSqK17cvEd+XqAlvruoDf78xBi6ungI1ZibDD32SlZg8rUut/CltJv2yb/pC19D/e9Plbv6eK+rr9a7nqi/QRj82S4TXvh4qjnkQpjUcB9f0ToasUblrJgPhR4wxun5P0rAX33fVFrO1XlXXie3DNbj96Ag4mzIFMlrlxYM8/ImHY9lXVbian/7QlfzGfu1Exk/i0pYISD49BBrMjYH4H5L8Kp/jkH1qjueBhuddpSo9JMLfrgHfFbkfEmuMh5hhsfns4g8y6+dLHM03N9CiDm0VlS62gtWnH4S3S0RD3PlY+CosAY7ekBRQ+fJPjoMvieshNvWtCPsO3w9fuCPhYIvYHNn+kG831jH4rre1WUu/FPPvbAr1/zMCfntrEhy4NyHgcmv+cMo17mxjcWlVNWh9pDfccnqsz/rayZR/f6f8qNWq8af49QcBGRkjYffzk+D9q72T60RelZZ/utqtfFn8N6wBzOowAq7/ZRz0P+m5fZ3IavpIKdfxWweL1L+uhhnb+0GRJuPh/ckxfpfTbdjPbbcPflerPOKouGdqTzj89ni4Y5xzOU5kyL+/Bo/XlnX7SKx4sxUM/j0SFnWIzcPHrL/tlP/GC+O1pkUTxKeta8PO6Q+DeNJ+7NYp76zn1rpWlGouni9ZBTp0ehDqPWfN2ylfWW4+qHabeHZDaVglesF/x0TD43UScsY+JXnDc+TM1q4X76kodnRyi6Lh90GPQVOUPJ3yk3+/1/xc+3zntyIstiN8smpMPn6e8Ppo2hrt+E0bRKcVLljUZQQc2RAPv9S9zM8TPmsrPqJtyP5UnOjXGobGjoFn9kzJ4eMJj+6l6mlz568Q9+1uAXOufxh2TJ/k0fP3TSmmxa54UYyY4oKuVYZ79OzigTdpf936ssj+CTx6rv61XbSPxevCk2eyfn7NozHzf/Of2fixJ6Qah8D+Lh9HcDLupeJrJtObth22wXDeiI9/qrAWVvKH/yhh/0P2/2W7/4JbPV7jxP5m/rQaP/W3bipfhpO+r5VeTn3Px/7s+vf+1IvGL51rNBvT9FQf9FMgdVJhxTFUHCvjMaiKJ6f8KZnp5K+cSO2Y7VZj5n1lM7+pfOvEz776hZZX9Es2w4DX5Xhcpjvv2CHndVEhQxXbXLYvPlGNtcrygtdxrAp1w3UFdP6Nz+Fy/lR/zKOZ5Flf6xI61pRqyML/URceVzhXI3XC+Qjuz3TjeVxPTynLkEPHrX3FjzbHdQJWbQP6Hcf7L7nzjv3T2KJrDVQ5w9cynWbYMdOtjm0e5xQXxhTagOLk9vEXbuQhMV9Q8LbCbPa7XS7yBTPKoOPGZthUvjHDpvqNzkf5gjWMlD0n+FR4nfjQW9vic3yuwBN+6W57rP7CaWdLX8kXnjTHBgqfp/GB9Lc7b50WSDLDpIrzCwauC37G4Ivvsf7E9Sqe2NlX2aqciblIYkpx519v5W+yWqeC9gkzcvAF8kxBxBaPJWyT8fZkIGzC63RaN7vd+ctloPxD6yba7gxja+4CZXMel+iHS4p7/K031Rn/5+08f8rNIHL4vL/ZGJGvhG1Yuq5Zygr3Yr2wEwpj7fksd24s+VsW9iUkhRnkb/uhnDBC2QGQgeuYURd/zvdjXGFfC/OuP3mHkfYAbVf5wle2I+m6mzQ/8MR2C29fpXnJn9pSVed6wov73Nv8ZzbO4wkf1boKX/tbnt7vD7n+xhaIewOtX2EgXoaxPgo2rhDZ+wwp0523bx9sfP7QqaD6sQWhT5o773hWsLF5qw9+Yr+woPuD/tbnSo0xPm4f6LGCQBFdI3ClYUfyd5s9RCEKkf/pSqirCjtGzNGFHWeIQhSiEIUoRCEKUYhCFKIQ/RtJNY94pY6leaKz3TpVT6gw6MP9VxhwBVK/YGPyp27/Nr0Kaznxt07BxuRP31yJul1JOfrfqsOVVlf6gr2w4L/S2ilXavsqmLg9mR/xFacveD2Zy/EXTk+wOnn3OJgY8V6nGAsSn3xfAd/5s8PmT1x2+ORv+B6BHbaCxCQpi1yze0cmkLjSySd994VjChQeM0zou4K0DceC1+h7QcHEwd87KEj5+M4K30O/IOOBx2tByMX3JgpSV9Ue9YGSl0Z8m1UAstCmqve7/CkH9Up3598fyJ8yeJ7wtnza1bH4bprZe8G+8EbsRch6W3/xxftoLveFJ48ju7LilB8+r9rL31teGOe+7rOA/qF6esoDn3O7vV9TddHHZ715LkTe+5r/n+7O38+R1+Q7HfhuI56fwPdwQB6YU/GcEn7GQKDX66W78+vkbXlQ8Tbjr7IFl8ttqyK6NwrWuZh36XkWZjKoHzFf4T5CKnw0T6IcpzHjD8K2Be9XWNmR7pOA+wmFG+/d8j3yzWIC3yF3m9wXyNg0k0PLHD0TR8ZAJuNj9v4v+jPTeD6QvrOLDVrmcV8qesYPfc8d7+PlBP+n7+Pzvpa/y7mZThQnzXFhxn5daHuuB/cv9zX2IfgeIGb5xp9685hDXfg5Z6pnrHJXOHuPnOYaM91Uex9Y6Y9Ex5ZQDyw3PL5UPuA+kvxSjE+s/1AXM4w8n3Kya89SG6a5c+Ocnjmner+K16fIAymF6ML7CFZkdlaTWRxy22F5D7c570f1Hjn3KfL925373p8dfjNbc19zW1L82H6xKwtm5VFVNiRhnWxle7s4McstKIfWh3TPQFVeov7mWPn/eJ6QE8zpTBbXBz9pfBYx9rSj9YNdm5HGvAo/lmEsT1RnuzJA90ehY8UYJ/J/fqaYyi88bjhW+hzmGVq/cPtRGyIhRrpnIspCG+MekqqczMsFj+ML7D56D/YJcI8Sq343x4k25rLM9pHln/jdql1N78sk8rFfQ3VFjBgzuPcm7qdJYy7dnXf8iOdDHqv4G8ar6n66RyNixH1f6J6eND5wPx26bwLKSHer20w8F6h0oP7DuMT8Re3H99lBn+LepaozzjD28V5aTsxsaNa2ssKF7Wgs/3SfHroXKcd2wZ17lpXZ3mN2dQ624+n+QPRsSIwrmvMQF54ByXNpqjs3T5q1ZTCGsxVUhOCg/UPahkV51B84DoD+5PkNz0VU+QhjMJzECu7zijwxDrjvVXUgzeHYzqBxT8flVe0+xJJN5GYy+WZtLVUe4kT3rOP7ENOcz9tIqraZqrya1alYFtAP1Cb07EKqE9bp2e687T6zthJvq/L6g9ettM7LVvBJdefdg5fWT7w+5zGHsnifX1VHYduR8sF8i3su87g1q0esyr+qHsU2GY8hzI+p7vx25uM9drJV9TjmVyoX62nVPtIpJjLN8puqnKBNaTzSc/z4s97qZ6Yj7U9zm/KyrCJVv43HNj6fzf5XxZ8THTk2GjcYJ6q2sBM7qojmH4wJq7ELsxxsphP/PVvxvCqPWfGn99B9Ka36+Ga6m13HOOX75Fi1k6x8IMtwuNE+4+da8zzjxK/Ij7dZue4q/6n0DVPoacVTVfZ4XrWytRUvX/aBxDaRKkc4IW4Hp8T3B7e7P93wH41hO/50HtPqfvSB3R5PMldiv8AMwwXymaW4h7aHsZ1q5nN+VjUS30vXaZ3rLdE+kFNf8XtxD1GzXEyfQfxX+p5bVD9P/eFvH3pCEfuTcsiszaLS76khl7/LMz5iKyTDnGNxUKaHBhsfqw+7Do+G3rvVz6rOvfDWxvKTroExs5+qfyApXBFvqrY4jh/we1U+dFv87inx8s3bovSTllfMOWbjv5T3JQc48P5swtvfpNI1y50/16UQn1N/yd/kuDe2z8zGoblMb8qqt7HK9Ux35x3vCC+Sd/92HEewizsup6DyJ68j0Jb4P86TYZ9ZXu81+vL5ptufsD/nN92df8wwWIT9a6nLE0enQt9qSfD1svgcqrc8HkbPTIK9UxPhrouJcOKD/M/jmFUwz1SgOaCXnp+vWjQVSnydDFEDYmDJB2Mh4uQoqLZnBMzcNQgmvhkJPw4amY8HnRcoaPvz8Yw+ug4pO6fC9DnJUGthNKTPGQt9Rw+Gll91hA/bt4R7BjRS6s/HrgJpa5XtOT2g6/FgchwcqhIP2/pMgD6jB8DYUT0teft6tpOKpx1OM8Lnjt2QBFNqRtvK4v07b23qLV5O52zOKUN7e9tG8wdG6iMnawAxd1q1ifyJj2PlMuwIx74CgccOJ875OfWjv9d3mxHmOt5fdxqDeB5oIOxGz8gzi1OnMfq3H/yOa7n4GCP3tVNKJTqqdEpXyOCxj+MRqvFBM1z0utmYkPxOz6Xj99DvOPcubRNeRD0/bofJqjzzsWOcS0tx562rU92551tkkv+9xeI0xyAGnMfCNUq8PJn505P4cYrXrMxIUvXDze71BxZV3KW5c8cEnODxBYdV+Ul35x+bcFqu7X6zsquKEEca++6JbKeyOC7qCyu5djp6IpOSU5meyveUZ4hCFKIQhejfSYWlbuDtEFwnQef37NacIMn5EafnoKvaI6q+DP2dz+tzwnFHel7bBQVff9qP9lP4+k1cR8btHGx/O7WD2dwr9m3QZ6q2bDBi2xOZ1Geol9mZL8Fuz3niL4x5jENcp0zXxnjavwqWTqryi2WK9rcLu3+oHogb15qb9ZHSbHgGSg8ruTwP0PJi5o9gxRXK5vN2tIyku/PWdapyX9D4uVw+xkXnhjGGrN4nCwZ+K9x0Llj1jkSwcVMciB3LbhEyt6vKn8HEjThofOP7vlbv3QQTa7o77/so9J1Zbs9gl0W0qSx3/D29YMYqx4kY6XsTgdxHw9P2JOYuXGOTFmB8nmCk+Ary7D+7MonlGmMP530Cjc0JLow1J2tRCwIXXivItRt2eAoqllQ5nv9O34sJJAaVbej1gtrbpyDrO6t49BcOVRvVrO/gS5vQDLdVO4K278zapFyO3V4IZrI5H6s5Vh77nshU2QbXUFBdub1V+z2YyVSt31SNT3D9zWQ42YcincnB9o38nknoooey6HWuC/LBNcb0nVMrm3FZ/H8qA9+dpO/24v4yKnvb6YM+SHfnfTeU7ofC3xVWyUHKJNdxDTXvw6kw8DJH+9/0neoirF/lJNbS3Xn78viurCrmOC/6G13PbJcH+PoynkfM9hKzswvlz9eE8/xmpheSmV+tcoMVLl/rEqfP+VqPhcie+DyHk7pE5VM+N4Hl2Sx/BENXT/Qxe1Z+xz0p0tz5388uTLrx63bP4p4NPMem2TxfULpZXVO914C5T/UueDDJiT/MnsG1epxPsHSziy8+XkrrU3xXP1XBo6B14bGkwk1/w2foXos8zgL9jpIVcR1ouxgxSvtnuXPbsJizVe2lYGOn7WLaHqbE91ny9n3pQODHXMT3g6H5ieMOVq7i/V9sj+NeL7zd60ldE0ii+RHjga9353OYwcBJ8WJM0L34eH/Eyk8FiRf7uGhT1b5XaYr/g0F8P6Bgx6aVD2lsFkaMhcmvdjYsbPgKM65gYwhRiEIUohCFKEQhClGIKDkZIy0MY6De6EVx4rysHGfBcQCrcXxP5y4KWi+Kme7RTeeH7fxVWHXD/+k76rje02y+20qnYI+XqcaqcQ8r/t69GfbC4ieOgY8Zm50TdaXok+bOfS9MdSarUx5W1wMVX9TmtOxY7THqBGOg9LDLs/gd507sYseuLvOnHk7qCowdel4Lxhf1lSfy/Infic3wfAH6Ho+n6zH9hd2qPcLtTtdGYH7luO0w+SNPOWlHoG1VawM8XYPrC2YznHztFeLFthT3hSd7MvmKldrPSh/+Pg7FSW1shVdVtp3cb6YfX89DcfLz7fh8pd2afrM6V3Wfk7lQ/B3PelDN+5nV+b6WFzsbUlvgXB+2g+l9HKMdFqe+NYt7Pn+LZ+3gWSE0hjypm/mcsAqTKnb4nCyuR8XzZfg+3FSGE9+qfqNzwSrb8HKE53jgvq/cj1Y+sPIVX7usmlfPcOddq0ux0LOArPS3Ww9B5eF5MbgmF7/z83bo+md6lhM9e8gqLs2wuN256w6wzNBPTvTcHY5Fdd66Xe5BomcI4boNPDuPEmINN8FH107Q+HOS32hZwWdw/Tme5cXX8XAbZLnzxo9d2bAq63x9CD7Pz6jivjDbf9AqP/P8xed6+TV6rhmNC36GnSoG6O9od9XaVYqF2oKevYb5IZ3dy3lY1ZncLhfd+fMT5m6UeYnxxjhRlX1V/jQrFzRH0bOuVHWtWUyb+Zvama+zo+fuUXn4/gH9zDKRR/GYrS3j5/Zh+9FNCH3qtF6jetC9FWmM8HJCz0JW5W9uW/zEs1AxDmnuyXbnntPltK6iccnPPA0nfC95yZfixbYHXwflhCfyw/evcayHnkfHzwhV5TWKj+4tm+Wemq9Os2qH8LinevL6gWNS5T0aQ6mGvakPVGcBcFtTHheZfazOPqDy6XmGtDxaPasqY4jbTh7KTHdbn99OsdG2nFk5Mmvb2d1rdp/KR3b3WPFx+pvV/cEgszqdxrGMPd52omdHqWzopE4ys4k/bGTVTlCVV1Xc8zN7VdfT3Hnf+bOzr798ZfebmU2t9FHpRffZCkb8OfGfWdtA5S9+lqe/yqNTvJ7ERir7TvVBnXj7wF8xZhdvTsufilR64Xd6/pY/y4u3vDx5jvb/zeo9T+wfDB1QD9y/x9O6zx95zokv7eKLlnWnseSUvyc6WuVkM+zYdnK6p4mTus1b33iaz2gfoKByq1Wd6CRu6V5FwcZsxov3Ifk+YAWB1ykPOl4l/6fv2PmTPMGn0ofv4YDjhJ7ORfqqgx1WPmen6oMGGqMVqcbbsv0o35tYVeHDZ/2BTZVXvcFFP30ty97icGK3YONA2zg9Q9HfGDgOSVZtvEDI5zhkWwHHkAtSPie+LiLQetNPzIWq+YVAycZxLb7mxl+EPuR7Aqn2ufO3XKqravwu0HGUGkA51I5Sht18kj/0ofux+9uOduffemsjGnvUPr7wp/Mq9JxVM/6e+FPen+nOn589tQl9HueV0r3kyeca8Rx0u7XGnB+1TarhczP8ZrwoTxxjwTxGsdrpir9jHuLrwZ1goTlM9ayVnVXz0N60STxtz4QoRAVF/hr7LEz0byt3/yZd/i30b/FJSI/CQ1d63rqSsV+pOtB2ptXcWWGiKzHOrwS7Ik6r+dPCaPvCiovi4zgLA9Z09r0w4cN8xHEGmwqbnVSYgo2HYwrhyMUSbPnBxBBs/f9/ooK0dcivIQpRiEIUosJO254aA6ufuEeceXK5q4jDv9SxNSNuqXbG9e3gz7Um91YQCSc/EZHV7oMuu0ZDxXK9oegdLri0ojQUyfhW7LhtidjXvIPo2L+EaH3HTq3C7De0BxJe1Yb83V9L/LGSlnFjSe37tu+4dn6f4nrndHVt8bpLru+e7q3V+mWwNrVGf2395Cjtj2q9tO3JHV0dX2rsOvf87a7hfzd2HWmztpWkN/a1bJO8+l1XvVIVtabPfaa9vekn4fq6O9QoGQOzdiQE3b6UIvYn5SG7fgpee37IVJil0x+NkuHTdQnw8c/94Zb4hrCrdCuIKxcTdL2c6Gamn5yDflbX7YyuW/3vxkLE2rbwy+mKULlBD3h+THKB62GlF2J22r98am4SDPkxGq5v+AD8x3UbbPnoJkirOBAeOxp8XTyJRTpeI/1105Zx0DJbwG39KsIdf9wB86KmFCp9VNhVhLrO3j4UVsbdAKeSroYNd3TLdzZTsH3j5HmpR52UeCjyyZ1wtkOGaNPmBoha81Ch0cGJHuiPDfvHQ8zc62H50jBoubQR7Pl9SoHmcl/9cPSGJPjkwe5wod1v4sfft4tufZrBF3sKJk/7I46enzEZbl52DawvN1S4vlwvdi1uf0XgvqpTErzepRUM+8glxKaK4qV274hg2dzpsxL3lu0PQtTU10Wlft9qz1Y5rAXL1k7x1v5sFFQYdUD8nbJdW9+va6HHW/WWatB06EXt0bpXBxSrLzE88mIi1K/fDupsaSUeiP3ZVdgw4j1a32HQ6485ImJvm4Bg9LYOwd8rdx0Pjb88Jo40uMbvvrbDpsJIr5fqHQ+3icrwZttmfsXmFBfFRq/ddToOtjePgM2zDvgNlyeYVLRkdQxsPNYVXlzcxG853Bc8t+ptqz++6Q1hUXP9gsdXLEfnDYWGC9cFFYvE0af0QOgx/7DPOLzF8Mu7ibBm1xj49JGvgoKhzw9JULNDJKQV+cgn+d7qP23JcHj5l40FLrt65UegrnuV13K9kZmUMhDWDl1TYDK/W/YwXD1gkVfyPJW1zD0MIp/3TjdP5PTuNRzuarPaYzmeyFiiy5hQdEfAZEws9TB0nrfbI/5OeWe9/jBsmfSN33nHlIqCH+MOOubrhOfNwyLh7PoTfuF5m57Lv08YA7MeL+8XfG9kRsLazRV85vVD0kg4W6+qTzyaLpoAYffe7DWP4m9HQewbzbx6vlPXKbDoz54ePyfr1uFRIzx+7pXSkz26/9sdcY7vrX5AzZve0zMlBp64rrPyd1lXN7knHjL3PQSvHsits+Rvi1cmQdUROv77B8H9U9eJTZ/Xz/l92zeJcHr/FNBiekHdM++IZn0qiG4t2mvzV/SCEbXLwcq3+4g5H2zUGr0/XOvV/jHXK5PWazP+c87VuesbLjlPgeRkXoPrpdrzEfdWwf3g+P7RdmOo/JrqfrPrUq7c047vB4h7rvE9HLm8hfvi/6GWe+OhhU7NdXLpFKFTK+N/SUPS4mCwD7RjYfw/dPvi+JyxmdaPJuahVsZnG+OznH4P3+MabW71binXb4FOy1Yl5tAsY+6E2oY+E26846ny37VZOs/helu7WDTsHTkZDrWeAod/SIC2GYmQcvNUGLZtKpy6MBXO6HT2wmW/VGqQDBV1wvOcVftYmcWDk9hQ3UN9TvcFxn3jqVwz/k5imNuP3kffqy5C3ulWyTYrE2by8Tvun4jvbqv4O9VLZbs0JhP3TkS5bnLdzJ52fuTlWf5P99rG6xcc8HHiM5q7kHC/4DCSv+x85cTGqYQ/7nNJ9eHnoNPnuA9Uv5vZg+7Dy+PObp25mR60PNE9PzEHW/G221NRZVe0He53i/uu456oTvTBckj1wBij+7yGG+WH7htI9/BMd+fFpdLFirDM0PpRpYcdP5prcN9K+n477oPLfeKUVD7juZSWkQuM7HTA3+g706o2BdZtNG7N9q60izkaZ3QPZ4ylFMKfl2tOmJeojBT2LM0pTvFTmWb709AYylL4mOusKmPhxK5mPsb8QetJp3Fjlu/p2fI8bszw0k/cd4L608xP8l6nsW+Vd2is0BxqFee07kc9eZ2tyrG456UnccJzArYHwll7I8WdN85VfsLcp9rbw6wuxT1zafyr8n2aO3/5wP130xslQ4ZOKTpdJPfSPM3tlk1+N4sXipv6k/YNuA1Qboo7rz1z9iw3cEqiezDSOONtJ9xzX9UeU9mW+wPPHcH2He5PjLnznN6+Pq9Tqo5J/r5jXUIOIc7z8lMRNxgLFwhGnmt5mVC1D9PZfVjOcY/6v3RsF3Q6dXMynNbpWx3bdwYhRokd97fH814o5ttuzq3PVHWaKs+r2i0YSxfcuXv0y/7JSR2XxLflrYQcfIjx9/cSoIreZ5FUMyv3/AZ6hofsn1Ef0/KjqtNUeYDGAz57+sJl+tXA9R3DVdXAVSsr7/7ViE3iontZq+pos7KtwolxflLHtF7Hs0GnzToNvC4X106dTr13GV+NrMtlG88hkSQxyf4u7r1E/alqC1N8qnMv5G+LsqfCoIQk6PNmAnQrexmPpJ3rculXHc9x6Usd0wU91q5tcLmsSCzldaJnMaYSTDxXqvK27EPXH3wZB2L55N4k6PF2IpT8NRF6Fo+HHjptfT0etutYThhYJB3TSfaJK+sk+/oSi+zr07MMaByp8gzikBiQFmdfpvt1DPfp1Eun80Xjc7Dc3SwW7tU/v3siCX6fngRHdQySrtExyD56a4KjguEreoYVz7nUN1KmlN9Ap3o6ZZ9IzMHQTach6xPhoePxsLxoLNypY5iYnJhDv02/jOOwjuEqXf7VOkm/SCqrUxkDC/ah8TwGioHGxrrMqTBmZhJk6bIlPajL7a7Lf0CnD0/Ew1qdUjbGwu5uibBTp5UDp0KlrMt0nU5/6PHdeHF8jsxyRL78THXnbVvT2LguK5fPMy/HQ83sOKhxLBFSZyZAT1328tJxsG9OAtzU4jLVK5kEZ+5NhKK3T4WSf18mOV5SNDohR96auy+T/I7XpD+wzZfO5MoxmbodkuC14zHQ/O4YuOF8NBQ5HAP3HIuBnb2ToKYht7ZOx+Pi4eKDSTBxRhIckblPl7tzYTysmJQArxkkZSJJX7iJXNRZypNUT6cWusz/3TgFbr52Mlx/WzS00+XW0mWh3HrdY+Hgqlj4aloC7Op9WbYcA9tp0AoiM1ynYjpV0eXyWKMyq30dnyPzxjsnwuAq42Fb32go2ysWVg+IhprJU2DHy5flfamTlEfH31DPcEOelHu1ThdYTJU3YlHKrK7L6+SeAiN1WRM6R8P6+6Lhw/tyP99bHgtrddrTOynfuJ+UJXUsZsgrK6lTUp4YRlnS11K32Ng4aLh1Ijzx7ETo2zVX1pObJ+fQd41j88lpboxfyvG++TpdZcijOQt1k7LuvTMJYpcnQl1dTgOdnnr2MkW+MBG+nT8xZ3zPSoYcU3xJJ2m/P0j7jba1Guq2a6/LabU9V8aThgxJZvwlSf5LDf7njPWn2AfFfoyM/fq6jMaD4+HFwZMgtfFlsuKN2F/USfpErm1NN3jS8o1lK4eGxcPLM2Jzxj3N8CLfhYZd/tL5hrP2VbqBGfNFdvWknLxlZQNJi+X4rU645xpvg1XKykuUXwvGbyHhx/tRGCeSB35X8WpO9F2uU+VOSXl4qdoUZpjmG35eSvRLteAxxCCJQY7Zv2A8+6KBh+4hyPHgs6hDs72Xn0VdXl6VCE8Pye3/8mfxuRbGc4v35ZY3ObaeZsQ+jvOkGc/hHELrvZdjYz4Zk3/FeA7Hi7MNPZsZ+kUYNppP5EiMNAbQpu0U975sjPmjLXB+Q+J+wcCh4tvWkN18b15+kp7S75P3tiO/0zkGvGcxsS3aF+UsIL9R3njvQnL/IjJPg/csZCSvqcYD/EVmbWU74meg0TPzMGfKeJM2wXjgtljA9LNrs6vuwb5kljt/3ySQdvOHfa36ztg+pLmW31MY9eL38OdQL6yT8B6r8clg66TyD83BeOZSOvv9SvAR9xOWJzpeUVjjjeNHrPiJ5wya1eGFQReVDpRw/QH6I5g+MPMFvaYaI6LjS2bj08HAz6/TcTW8hu0eOs9P+RQ0fo6dju/QsUT5G86XFoZ8RHGrxqTwGto7i9yb5g4Odh7TZvMkeCZvhjt4WFUxrJpbwXyCfQFafgsaJ8XI8Uo8OEd+iT1XkFjp2DcfC5c4MF55jihIu1rNG9DzSMONeSKzObeCsCH9pO13JHoGc0HYj9dXeA3bqRRbujtvDggkNtVcLz+TPoz0x83mOf2NScqQ7/DLsTE6l0zPAsf1G1brjPxBfxo45FhXtjvvubn8HOVA19VyDkbO/aEdsO2JY/x03oiO9/ub5PxL9azceWyMGTwvK4tgwljHZ/0VN6X+ngqVyVgbX+eZ6Va3TfzVLpdzDw/szl9/o744B+12+z/XjN9xWTa/TusFPL/Mn/Eo5fbS5fberZ7Hxrmei27/6Rt2+1T4tcll4r9hPqJrnnyV2TojMUfW7DLJ+douKYjJ4iwXpySfk+t/t+2/TFsbXl7XTm2JaxZUdamT+jWdyPm4WDw81DwePhyQkEcOrj/PYHx5X9GKv6T9YfGwT6f1hD+VYXV2sBP+p+6JyYOdj4HgOeaq/pPZeATSbRl553roM3TdGuerWm9m1mflbTXM4dTulC/HbDdGhGtdeD/erI1oNm6DfelMd+458ZnsOc5PxSPV4EPHbbFuUmFDP/Lz73BsUn7HcV/Ep/IzJ6wLqa1ovNB76bleqe7cta1cRqY7b7zRs/EuMsxUP7ouic/FW/kcefI5fJWfEUMWwYH30nOXLjLZ2A+ietB78Rpdw87PnaT8Mgw7Sb4Lh+T9bZYxBzLbmDN5ekhewvcsZrP/KdH3Mej/dB6FE51n5ETve8WYg1kwJH888XaGao2Np+RtXWVGfG4Hier4rIluVv8HWzfVvBX6U86DSZ/NHZK3LqM4VGeTBluvBRYxiXODc4bkXT9j57dg6qTSY9G+vPPEUp9sd/71QP6kQOnC3wtbsSrRtP3pb12c6sbvsdID40zmWrrGnbfv/e0fT/1nhX+R4Y+yxrpEGlvIy0lbwRNsVj72JJaw7MtYQrtj+8BJ383bsqCKLU/KAZ1rL9cptz8h6/tMt/nYsLfkTblGrHId1ALjk+Lm/Iuw+PcHbk+pmLGOr6jxKdebvcLsjHiljXH8JRBjPU7yaTjBWoytmeP3ok0xz5i94+ENFifxUYKsW7QrJxQrzSGqPOC07nF6n7RjaZ1U57rz2JTfcb4Fxwq8yQdOMeI1iVF+qvpkfH4F+w/Y9+F8nWKzw0evcx/zs2xVz+H7DbSPyvX2xXaelDvVNRwTojb0xJ9O9VCRWU6k/HE+I0PxuxU2PgfhzxyM5QNxmb0TkaaQzecOJdEc7KlPKeH7oLTMqnCkMRwUD663V8lxEl88LtBO+L4APV83VfGJ4xkch9NcaPY/6ofXcRwU51/ouzuIsaixHllla2/zjSrXYp7gYwC41vpco2SlfCf52NuyedaQ64tsbzCcI3I9lW1VNqzs4otMq1xolhecyLMr62Y68rFOMzl2OcXKjmlEFtI5Yz5TtTe1CrOdn1RyqAwnseaJzyTZ8XYSX2b8zfg68bUVb25vb8oEJ4pVtcZAVY6sYpJi4fUg79OZ9anTGA8sX1in0PxJ6xOzeh/vwXl2XAuLaydofYDEdaBtAP6bWVsv3Z07/5HtNtfTql9gVe/Y5QerMmPnO6flwZP96c1yhjf32d1j9bvZb6rrZ1muU32nz6h8K+ONz8/gO2fljL2oWpE9qOj/LY3P/aMS/3mPzpe9sPA9HvwcZLzv0kYnMN6Twfd7cGzJLP7ofL28Vo7oJKkV0YPq09LQh+rkD724jqgnvsvjInrhOx0qnXCsHPW206kV0Ynq42+dqF6DDL3aGu8e4XtOKl/JdQduct2pTgWhD41H9BXq1Vqhj2p8gvrJqS6B0MNMrxaGLrSeKGvYvqLxjjPPuypdhj6TkKNH+sdxUOqlKTm0JDMa4opFw4odMQHVgxKWE3xP+1rj8yrShzOLL6lD2JwEKNY4GqqXjYFm28fDS0PHwmNtxsO4/42DTW3GwM4/p0DfW2PBfSEuh/yty1Cd6LvmFQl+nsM4/n4b42Ddp5PhiUfGwqznRsG7dYZD6ekDYfhn/WBes/7wQZ8+MGx1L2j1bH84/dsQuLrFGGgzOAaG/DkZXpgZC0kromHuH9FQfE/+94g98cUttS7v63CtCWaOv7+Ou/vJmBzszbaNgIm3PQRVKnaHtaXuhsevBdjUoQ0UrdocIuc2hxJf3gI9z9wGmw81hEPn2sA9WQD/e6sXzKzeGwauGg0nu46HtJ8nwPgSE+HxiFi47z9xOeQU//tf94H1jUZBsWExtnafGBULPzWdBENbDYcBpe6DknvawLiOdSF7YHV4seeN8GPF62BKl+tgxt4wiHz0pHhv8ldi8QdviR0N3hafTJ0pdoV/KK6f8ZWIf/VPMapzphj98i0wJaMTJKQOgnuTxkHxmGhI3W7uC+knpPtLlIMfWlWCCvPuhHVnc2Oo+w0JeWj+37Ewr8EkmDGjP9y+qy189lEVuL1JSUip8af4esbv4lTir2L8PftF+/pfimrlnxFfdp8uLlapIl5bskfL7DVCq5pZVxte8XFteK1a2lNL52otm6/SPrn1be3Yzs6i7Vs/iZ3Hb4WRA7tD087j4UB6NOx5KT9WpFP764t1YaPEYxnp4qF6nWFavWiI0H3G8Xa6fyLM/Lw73Di4IWSPviDun/am+GH2PDFg+StiaOYccajHJDEhYoiYIDqJ6fPLiCp7ZmmfRhx3PdX9I9c3w153/X5/JddXO5q7upwv5xqydIlrb5/Fruwy+udrRbXmI2Zqr+2tJ9pt3C9aF6kLN34+BN6pMwGe/WAijI2enEPT+8ZA7T4x0Hzun66JK5/USt5aXww4mS2SWgyB8vui8+DdVj4WDt3eHQa0qwzbD7wq5u0cIO564QYxp1h5sfDz4mJq7AfaG+3maQ+Ev6c1PT1Uq9GyvHZ20kCXpPHHXRG73j/dRuKsMK6Ma26XpjmfIz64wfXdLc+7Gh3JcnU4FaZV+Ki1NlVbrJ0/2El0WXxevH+uDtxQ7z5onT4SHlk5Hm47Mg7eqtHaVfLz9a5jy+7RpiUKMapEKah9YABUjI+BnSviIHLNFKhYbRQMOFITstcuFOe+KSPm/fmiVrT4M9r2jztprd4a4Io7WCUioUd1bXJEda1ej60uiQ1J7gMrsVmRxH1+Uw3tjnr9tL2t1mi397moPVZ2nvhxb0l4PEaPu5SWIM+pk7xe7rzYNefv8to3JxuK6LtrQq2kSJg1Yzz0/DMK6qy5Gyq9uUuUu7+0uPqxpzXXqldcn9a8y/XZ8YVtd1bY1Xb9nj05n5IoRqdYv+xb2VXmyAzXn2fech15oa22Zvqb2icDj2ptdwwSq1e8Iujetzc3eiGiRs/a2sHOL4nrujaGDn16QqPB3aDJwyWhxJEuQqv1tFbm7IIIeQbffVvauX66eX5bSXwPXYoN/+wwFjlYNQdnt/pltUb9H9Hu+t+r2rbTVwnOu/rOua4zK5/Rvkj9XWwZXRoutCsOPRe+KrJ/fklruflxeSZgayf7/HJ8dlglvsURMa6DMfGuyZ3XuGBrE40/J+2XPX26q/YXxcWhIfOEOPms+OCGb7Uj/V521e47zNH+w07+/sFEvkts0n5zXTOVZzhKbC3uGu0acNVcbV510G6pk+VXTGY4ZXmXuKzu+77t7a5e+x4KKBaKCW1XGP4kFqm/pP/fcVAMwcIRTPlcdkHhoHILSn8zmYGSXZDy7GT5S54TOb7K80aGJ/I84e+pPn/1XhoQvvdX7uOS5E++308/5XLK1wnGwzeU1+T5B3b8nPDa/fRcbWHi3n/wUfKEV1LTMuLPyodc0x5Z4jWPTRvuFrG/xmnP113pkkSfd6JL74GrxV3p27UJXd9x9Y19w6Pnn/j4lHhxwNfa1jtLaVuabHAs85f4UtD912zt0wWXcuQ5eebeko+JZr+PyZHj5P64d+oIp2dc/LJ1qebk3huPH7W9x6nMgvpzOicSouDQ2F4jYWRMF+VZ88HG5gtFtB0J7qGNxdJfZv1r9DpQeSy0+O520SlxpWvobNH2StJJNZ9a4efxMGb+xCtGHzo/Qedd5Lzfz7VjoV6XjeIe0UQrzLqo1i7Qd9jeuTsJRn98G9z12/c5elBdgm17u3dcLhl0TackmNBvHNx26HERubOYFmwdeOzz9R70HVHci2Dgj4mwc1M9OLOyhvi1Wf1/ykew7I/vK9J3QHGNL90bHvVbvHo0bF54ULRuPlsLBna0Oe5fR/d4R7x8bQ2u40jJ6AO9L74nqj0To0nbFyRmXDuNa5Rx7wXEq1ozJDH/X584eHh8Z9DSF4jM758I+PnfFC99rxvLIn+nlmKXFCUSIT17LPQa3BnGVXw34GfC0zynmmem9/HfpH1/1O375LlIiO7bqUDsivnMam0TjwO5VnBM3WToOSkG5sU/WiAY3e7ctWh2a6hS3blrhYb3SYSo9VMCjg/fn1bh4p/oa0knHkzM8XkgbYjveVE/O1mD5nT9mC+2w3cQMtk1J9gCiQvzN8Ybj72CxMT3IqAxZ2Unf+PBnIZrQ+m+oNQ+gbbNRYKDYsEzNwoCB90Dnq6V5XHjZH2nt77A2KD9A9zbLSPA8qn+NB5RfqBkq3IrlY/7NwVSLl8Th34PlK1V/ZFLfuSPscPjit5TRPEeoD/il8qne4T7KsusnlPlc1/wU55cj0t+kMH5Un70XU1v7cL5Ymyr3mX1lC/PAZle8MTvvN3n7fuGZn17b3MGj2NPfW2Gx+mzPA9a9TnMcPN9V7z1uSf2cvqMqh3tFJM3/rSzVYhCFKIQhShEIQpRiEIUohCFKEQhClGIQhSiEIUoRCEKUTCJzhWb7ZtlNreB8394bkaaO//cjZO5FjovxdeZeUt4/kWaQicn+Oj8JO49Tu/je0g6tXWaO3fOF89Fc7pXKp63YiXTE3vjOlmui9l+cHb8OE56rqhKJ/k9jMSOt/pQfrgGlO9Xy3l6MpfL13HgGaN8Dz163UkcOI1jyZfvFeWNfcxwoF70/J1wE7/wuVazuW2VrzH28Qwhs3Loj3UdGAt2ZwpxfCrbqNYS0POV+TP+WluE5Yieqa3aR1FF9FxHahPUJ9udu7+42foGX/UwW6Njhpevc8A1U3iOEe4LiWeb2ZVrq7xvh52e/Yh2o+U9jX3HtZe4fyXuaWxVZzjxpac2p+9E4PM8B1PMeKaUxIprkzk+K1xO6i0ntlbx4nUjPacq20TWBUK83DuJQ1W88Gv0fFc8o/OSO/fdGVzniWWM7glOZXt6noY3dlatYcJ9t8OM93voOb/0zFoes57Uw07igvK7oLjG8xU9pxXxZhG+3tQjZjFuFgd264ykbbMI0f1sPW13eEOq9ncakU3resxZmLfcNhitYs5pHuDtBf48lY840Y60LrQqz3b4nJQXq2f5Wm56jrsqnjzBqYotFR6z3xETPb/XLL7NvpvZRBX7qjYgx0rzoVmu9zS+7eSb1VG0nLrd+bFaxY8THGb5gddpmO/w3RYrP5iVKysMKjy0bFFe6e68/UqruHVSdszyr6rNjYTy7Xib1ekq21vZAuXKtlEYO79UEl9LjHjN+jxmctIUMpEX11nlL85L5Xur5/g9qneUVLlUVY6sSHX+Dh0/sWuLcVl2dlbJkf/TOsys/rHLc07KN9afqrpIJcMsTqxsL8nuHQ4zHla/cd/wMmPlIxVGVdnB8TereLUrN7wc8j6fFU/V+bt2tlbxou8+2NnUKn6szik142HWrrUq8yqeqjqD50KreLeqj8zKCraRuP8y3fnfq6F5lfajsG2FZ0PgNX7mBO2P0b43thmLkGuUB7Z/kT+Sm/DkuqJs7CujniqbqN69pHUuj1FVzjXL5bStzO9X+UsV8/8PzCu2Sg==</Data>
  61. </DataArray>
  62. </GIFTI>