123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- # -*- coding: utf-8 -*-
- """
- Code for generating the second data figure in the manuscript.
- Authors: Julia Sprenger, Lyuba Zehl, Michael Denker
- Copyright (c) 2017, Institute of Neuroscience and Medicine (INM-6),
- Forschungszentrum Juelich, Germany
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the names of the copyright holders nor the names of the contributors
- may be used to endorse or promote products derived from this software without
- specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- """
- import os
- import matplotlib.pyplot as plt
- from matplotlib import gridspec, transforms
- from neo import SpikeTrain
- from neo.utils import *
- from reachgraspio import reachgraspio
- from neo_utils import load_segment
- # =============================================================================
- # Define data and metadata directories and general settings
- # =============================================================================
- def get_monkey_datafile(monkey):
- if monkey == "Lilou":
- return "l101210-001" # ns2 (behavior) and ns5 present
- elif monkey == "Nikos2":
- return "i140703-001" # ns2 and ns6 present
- else:
- return ""
- # Enter your dataset directory here
- datasetdir = os.path.join('..', 'datasets')
- chosen_els = {'Lilou': range(3, 97, 7), 'Nikos2': range(1, 97, 7)}
- chosen_el = {
- 'Lilou': chosen_els['Lilou'][0],
- 'Nikos2': chosen_els['Nikos2'][0]}
- chosen_unit = 1
- trial_indexes = range(14)
- trial_index = trial_indexes[0]
- chosen_events = ['TS-ON', 'WS-ON', 'CUE-ON', 'CUE-OFF', 'GO-ON', 'SR-ON',
- 'RW-ON', 'WS-OFF'] # , 'RW-OFF'
- # =============================================================================
- # Load data and metadata for a monkey
- # =============================================================================
- # CHANGE this parameter to load data of the different monkeys
- monkey = 'Nikos2'
- # monkey = 'Lilou'
- datafile = get_monkey_datafile(monkey)
- session = reachgraspio.ReachGraspIO(
- filename=os.path.join(datasetdir, datafile),
- odml_directory=datasetdir,
- verbose=False)
- bl = session.read_block(lazy=True)
- seg = bl.segments[0]
- # get start and stop events of trials
- start_events = get_events(
- seg, **{
- 'name': 'TrialEvents',
- 'trial_event_labels': 'TS-ON',
- 'performance_in_trial': session.performance_codes['correct_trial']})
- stop_events = get_events(
- seg, **{
- 'name': 'TrialEvents',
- 'trial_event_labels': 'RW-ON',
- 'performance_in_trial': session.performance_codes['correct_trial']})
- # there should only be one event object for these conditions
- assert len(start_events) == 1
- assert len(stop_events) == 1
- # insert epochs between 10ms before TS to 50ms after RW corresponding to trails
- ep = add_epoch(seg,
- start_events[0],
- stop_events[0],
- pre=-250 * pq.ms,
- post=500 * pq.ms,
- segment_type='complete_trials')
- ep.array_annotate(trialtype=start_events[0].array_annotations['belongs_to_trialtype'])
- # access single epoch of this data_segment
- epochs = get_epochs(seg, **{'segment_type': 'complete_trials'})
- assert len(epochs) == 1
- # remove spiketrains not belonging to chosen_electrode
- seg.spiketrains = seg.filter(targdict={'unit_id': chosen_unit},
- recursive=True, objects='SpikeTrainProxy')
- # remove all non-neural signals
- seg.analogsignals = seg.filter(targdict={'neural_signal': True},
- objects='AnalogSignalProxy')
- # use prefiltered data if multiple versions are present
- raw_signal = seg.analogsignals[0]
- for sig in seg.analogsignals:
- if sig.sampling_rate < raw_signal.sampling_rate:
- raw_signal = sig
- seg.analogsignals = [raw_signal]
- # replacing the segment with a new segment containing all data
- # to speed up cutting of segments
- seg = load_segment(seg, load_wavefroms=True)
- # only keep the chosen electrode signal in the AnalogSignal object
- mask = np.isin(seg.analogsignals[0].array_annotations['channel_ids'], chosen_els[monkey])
- seg.analogsignals[0] = seg.analogsignals[0][:, mask]
- # cut segments according to inserted 'complete_trials' epochs and reset trial
- # times
- cut_segments = cut_segment_by_epoch(seg, epochs[0], reset_time=True)
- # explicitly adding trial type annotations to cut segments
- for i, cut_seg in enumerate(cut_segments):
- cut_seg.annotate(trialtype=epochs[0].array_annotations['trialtype'][i])
- # =============================================================================
- # Define figure and subplot axis for first data overview
- # =============================================================================
- fig = plt.figure(facecolor='w')
- fig.set_size_inches(7.0, 9.9) # (w, h) in inches
- # #(7.0, 9.9) corresponds to A4 portrait ratio
- gs = gridspec.GridSpec(
- nrows=2,
- ncols=2,
- left=0.1,
- bottom=0.05,
- right=0.9,
- top=0.975,
- wspace=0.1,
- hspace=0.1,
- width_ratios=None,
- height_ratios=[2, 1])
- ax1 = plt.subplot(gs[0, 0]) # top left
- ax2 = plt.subplot(gs[0, 1], sharex=ax1) # top right
- ax3 = plt.subplot(gs[1, 0], sharex=ax1) # bottom left
- ax4 = plt.subplot(gs[1, 1], sharex=ax1) # bottom right
- fontdict_titles = {'fontsize': 9, 'fontweight': 'bold'}
- fontdict_axis = {'fontsize': 10, 'fontweight': 'bold'}
- # the x coords of the event labels are data, and the y coord are axes
- event_label_transform = transforms.blended_transform_factory(ax1.transData,
- ax1.transAxes)
- trialtype_colors = {
- 'SGHF': 'MediumBlue', 'SGLF': 'Turquoise',
- 'PGHF': 'DarkGreen', 'PGLF': 'YellowGreen',
- 'LFSG': 'Orange', 'LFPG': 'Yellow',
- 'HFSG': 'DarkRed', 'HFPG': 'OrangeRed',
- 'SGSG': 'SteelBlue', 'PGPG': 'LimeGreen',
- None: 'black'}
- event_colors = {
- 'TS-ON': 'indigo', 'TS-OFF': 'indigo',
- 'WS-ON': 'purple', 'WS-OFF': 'purple',
- 'CUE-ON': 'crimson', 'CUE-OFF': 'crimson',
- 'GO-ON': 'orangered', 'GO-OFF': 'orangered',
- 'SR-ON': 'darkorange',
- 'RW-ON': 'orange', 'RW-OFF': 'orange'}
- electrode_cmap = plt.get_cmap('bone')
- electrode_colors = [electrode_cmap(x) for x in
- np.tile(np.array([0.3, 0.7]), int(len(chosen_els[monkey]) / 2))]
- time_unit = 'ms'
- lfp_unit = 'uV'
- # define scaling factors for analogsignals
- anasig_std = np.mean(np.std(cut_segments[trial_index].analogsignals[0].rescale(lfp_unit), axis=0))
- anasig_offset = 3 * anasig_std
- # =============================================================================
- # SUPPLEMENTARY PLOTTING functions
- # =============================================================================
- def add_scalebar(ax, std):
- # the x coords of the scale bar are axis, and the y coord are data
- scalebar_transform = transforms.blended_transform_factory(ax.transAxes,
- ax.transData)
- # adding scalebar
- yscalebar = max(int(std.rescale(lfp_unit)), 1) * getattr(pq, lfp_unit) * 2
- scalebar_offset = -2 * std
- ax.vlines(x=0.4,
- ymin=(scalebar_offset - yscalebar).magnitude,
- ymax=scalebar_offset.magnitude,
- color='k',
- linewidth=4,
- transform=scalebar_transform)
- ax.text(0.4, (scalebar_offset - 0.5 * yscalebar).magnitude,
- ' %i %s' % (yscalebar.magnitude, lfp_unit),
- ha="left", va="center", rotation=0, color='k',
- size=8, transform=scalebar_transform)
- # =============================================================================
- # PLOT DATA OF SINGLE TRIAL (left plots)
- # =============================================================================
- # get data of selected trial
- selected_trial = cut_segments[trial_index]
- # PLOT DATA FOR EACH CHOSEN ELECTRODE
- for el_idx, electrode_id in enumerate(chosen_els[monkey]):
- # PLOT ANALOGSIGNALS in upper plot
- chosen_el_idx = np.where(cut_segments[0].analogsignals[0].array_annotations['channel_ids'] == electrode_id)[0][0]
- anasig = selected_trial.analogsignals[0][:, chosen_el_idx]
- ax1.plot(anasig.times.rescale(time_unit),
- np.asarray(anasig.rescale(lfp_unit))
- + anasig_offset.magnitude * el_idx,
- color=electrode_colors[el_idx])
- # PLOT SPIKETRAINS in lower plot
- spiketrains = selected_trial.filter(
- channel_id=electrode_id, objects=SpikeTrain)
- for spiketrain in spiketrains:
- ax3.plot(spiketrain.times.rescale(time_unit),
- np.zeros(len(spiketrain.times)) + el_idx, 'k|')
- # PLOT EVENTS in both plots
- for event_type in chosen_events:
- # get events of each chosen event type
- event_data = get_events(selected_trial,
- **{'trial_event_labels': event_type})
- for event in event_data:
- event_color = event_colors[event.array_annotations['trial_event_labels'][0]]
- # adding lines
- for ax in [ax1, ax3]:
- ax.axvline(event.times.rescale(time_unit),
- color=event_color,
- zorder=0.5)
- # adding labels
- ax1.text(event.times.rescale(time_unit), 0,
- event.array_annotations['trial_event_labels'][0],
- ha="center", va="top", rotation=45, color=event_color,
- size=8, transform=event_label_transform)
- # SUBPLOT ADJUSTMENTS
- ax1.set_title('single trial', fontdict=fontdict_titles)
- ax1.set_ylabel('electrode id', fontdict=fontdict_axis)
- ax1.set_yticks(np.arange(len(chosen_els[monkey])) * anasig_offset)
- ax1.set_yticklabels(chosen_els[monkey])
- ax1.autoscale(enable=True, axis='y')
- plt.setp(ax1.get_xticklabels(), visible=False) # show no xticklabels
- ax3.set_ylabel('electrode id', fontdict=fontdict_axis)
- ax3.set_yticks(range(0, len(chosen_els[monkey])))
- ax3.set_yticklabels(np.asarray(chosen_els[monkey]))
- ax3.set_ylim(-1, len(chosen_els[monkey]))
- ax3.set_xlabel('time [%s]' % time_unit, fontdict=fontdict_axis)
- # ax3.autoscale(axis='y')
- # =============================================================================
- # PLOT DATA OF SINGLE ELECTRODE
- # =============================================================================
- # plot data for each chosen trial
- chosen_el_idx = np.where(cut_segments[0].analogsignals[0].array_annotations['channel_ids'] == chosen_el[monkey])[0][0]
- for trial_idx, trial_id in enumerate(trial_indexes):
- trial_spikes = cut_segments[trial_id].filter(channel_id=chosen_el[monkey], objects='SpikeTrain')
- trial_type = cut_segments[trial_id].annotations['trialtype']
- trial_color = trialtype_colors[trial_type]
- t_signal = cut_segments[trial_id].analogsignals[0][:, chosen_el_idx]
- # PLOT ANALOGSIGNALS in upper plot
- ax2.plot(t_signal.times.rescale(time_unit),
- np.asarray(t_signal.rescale(lfp_unit))
- + anasig_offset.magnitude * trial_idx,
- color=trial_color, zorder=1)
- for t_data in trial_spikes:
- # PLOT SPIKETRAINS in lower plot
- ax4.plot(t_data.times.rescale(time_unit),
- np.ones(len(t_data.times)) + trial_idx, 'k|')
- # PLOT EVENTS in both plots
- for event_type in chosen_events:
- # get events of each chosen event type
- event_data = get_events(cut_segments[trial_id], **{'trial_event_labels': event_type})
- for event in event_data:
- color = event_colors[event.array_annotations['trial_event_labels'][0]]
- ax2.vlines(x=event.times.rescale(time_unit),
- ymin=(trial_idx - 0.5) * anasig_offset,
- ymax=(trial_idx + 0.5) * anasig_offset,
- color=color,
- zorder=2)
- ax4.vlines(x=event.times.rescale(time_unit),
- ymin=trial_idx + 1 - 0.4,
- ymax=trial_idx + 1 + 0.4,
- color=color,
- zorder=0.5)
- # SUBPLOT ADJUSTMENTS
- ax2.set_title('single electrode', fontdict=fontdict_titles)
- ax2.set_ylabel('trial id', fontdict=fontdict_axis)
- ax2.set_yticks(np.asarray(trial_indexes) * anasig_offset)
- ax2.set_yticklabels(
- [epochs[0].array_annotations['trial_id'][_] for _ in trial_indexes])
- ax2.yaxis.set_label_position("right")
- ax2.tick_params(direction='in', length=3, labelleft='off', labelright='on')
- ax2.autoscale(enable=True, axis='y')
- add_scalebar(ax2, anasig_std)
- plt.setp(ax2.get_xticklabels(), visible=False) # show no xticklabels
- ax4.set_ylabel('trial id', fontdict=fontdict_axis)
- ax4.set_xlabel('time [%s]' % time_unit, fontdict=fontdict_axis)
- start, end = ax4.get_xlim()
- ax4.xaxis.set_ticks(np.arange(start, end, 1000))
- ax4.xaxis.set_ticks(np.arange(start, end, 500), minor=True)
- ax4.set_yticks(range(1, len(trial_indexes) + 1))
- ax4.set_yticklabels(np.asarray(
- [epochs[0].array_annotations['trial_id'][_] for _ in trial_indexes]))
- ax4.yaxis.set_label_position("right")
- ax4.tick_params(direction='in', length=3, labelleft='off', labelright='on')
- ax4.autoscale(enable=True, axis='y')
- # GENERAL PLOT ADJUSTMENTS
- # adjust font sizes of ticks
- for ax in [ax4.yaxis, ax4.xaxis, ax3.xaxis, ax3.yaxis]:
- for tick in ax.get_major_ticks():
- tick.label.set_fontsize(10)
- # adjust time range on x axis
- t_min = np.min([cut_segments[tid].t_start.rescale(time_unit)
- for tid in trial_indexes])
- t_max = np.max([cut_segments[tid].t_stop.rescale(time_unit)
- for tid in trial_indexes])
- ax1.set_xlim(t_min, t_max)
- add_scalebar(ax1, anasig_std)
- # =============================================================================
- # SAVE FIGURE
- # =============================================================================
- fname = 'data_overview_2_%s' % monkey
- for file_format in ['eps', 'pdf', 'png']:
- fig.savefig(fname + '.%s' % file_format, dpi=400, format=file_format)
|