data_overview_1.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720
  1. # -*- coding: utf-8 -*-
  2. """
  3. Code for generating the first data figure in the manuscript.
  4. Authors: Julia Sprenger, Lyuba Zehl, Michael Denker
  5. Copyright (c) 2017, Institute of Neuroscience and Medicine (INM-6),
  6. Forschungszentrum Juelich, Germany
  7. All rights reserved.
  8. Redistribution and use in source and binary forms, with or without
  9. modification, are permitted provided that the following conditions are met:
  10. * Redistributions of source code must retain the above copyright notice, this
  11. list of conditions and the following disclaimer.
  12. * Redistributions in binary form must reproduce the above copyright notice,
  13. this list of conditions and the following disclaimer in the documentation
  14. and/or other materials provided with the distribution.
  15. * Neither the names of the copyright holders nor the names of the contributors
  16. may be used to endorse or promote products derived from this software without
  17. specific prior written permission.
  18. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  22. FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  23. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  24. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  25. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  26. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  27. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. """
  29. # This loads the Neo and odML libraries shipped with this code. For production
  30. # use, please use the newest releases of odML and Neo.
  31. import load_local_neo_odml_elephant
  32. import os
  33. import numpy as np
  34. from scipy import stats
  35. import quantities as pq
  36. import matplotlib.pyplot as plt
  37. from matplotlib import gridspec, ticker
  38. from reachgraspio import reachgraspio
  39. import odml.tools
  40. from neo import utils as neo_utils
  41. import odml_utils
  42. # =============================================================================
  43. # Define data and metadata directories
  44. # =============================================================================
  45. def get_monkey_datafile(monkey):
  46. if monkey == "Lilou":
  47. return "l101210-001" # ns2 (behavior) and ns5 present
  48. elif monkey == "Nikos2":
  49. return "i140703-001" # ns2 and ns6 present
  50. else:
  51. return ""
  52. # Enter your dataset directory here
  53. datasetdir = "../datasets/"
  54. trialtype_colors = {
  55. 'SGHF': 'MediumBlue', 'SGLF': 'Turquoise',
  56. 'PGHF': 'DarkGreen', 'PGLF': 'YellowGreen',
  57. 'LFSG': 'Orange', 'LFPG': 'Yellow',
  58. 'HFSG': 'DarkRed', 'HFPG': 'OrangeRed',
  59. 'SGSG': 'SteelBlue', 'PGPG': 'LimeGreen',
  60. 'NONE': 'k', 'PG': 'k', 'SG': 'k', 'LF': 'k', 'HF': 'k'}
  61. event_colors = {
  62. 'TS-ON': 'Gray', # 'TS-OFF': 'Gray',
  63. 'WS-ON': 'Gray', # 'WS-OFF': 'Gray',
  64. 'CUE-ON': 'Gray',
  65. 'CUE-OFF': 'Gray',
  66. 'GO-ON': 'Gray', # 'GO-OFF': 'Gray',
  67. # 'GO/RW-OFF': 'Gray',
  68. 'SR': 'Gray', # 'SR-REP': 'Gray',
  69. 'RW-ON': 'Gray', # 'RW-OFF': 'Gray',
  70. 'STOP': 'Gray'}
  71. # =============================================================================
  72. # Plot helper functions
  73. # =============================================================================
  74. def force_aspect(ax, aspect=1):
  75. ax.set_aspect(abs(
  76. (ax.get_xlim()[1] - ax.get_xlim()[0]) /
  77. (ax.get_ylim()[1] - ax.get_ylim()[0])) / aspect)
  78. def get_arraygrid(signals, chosen_el):
  79. array_grid = np.ones((10, 10)) * 0.7
  80. rejections = np.logical_or(signals.array_annotations['electrode_reject_HFC'],
  81. signals.array_annotations['electrode_reject_LFC'],
  82. signals.array_annotations['electrode_reject_IFC'])
  83. for sig_idx in range(signals.shape[-1]):
  84. connector_aligned_id = signals.array_annotations['connector_aligned_ids'][sig_idx]
  85. x, y = int((connector_aligned_id -1)// 10), int((connector_aligned_id - 1) % 10)
  86. if signals.array_annotations['channel_ids'][sig_idx] == chosen_el:
  87. array_grid[x, y] = -0.7
  88. elif rejections[sig_idx]:
  89. array_grid[x, y] = -0.35
  90. else:
  91. array_grid[x, y] = 0
  92. return np.ma.array(array_grid, mask=np.isnan(array_grid))
  93. # =============================================================================
  94. # Load data and metadata for a monkey
  95. # =============================================================================
  96. # CHANGE this parameter to load data of the different monkeys
  97. # monkey = 'Nikos2'
  98. monkey = 'Lilou'
  99. chosen_el = {'Lilou': 71, 'Nikos2': 63}
  100. chosen_units = {'Lilou': range(1, 5), 'Nikos2': range(1, 5)}
  101. datafile = get_monkey_datafile(monkey)
  102. session = reachgraspio.ReachGraspIO(
  103. filename=os.path.join(datasetdir, datafile),
  104. odml_directory=datasetdir,
  105. verbose=False)
  106. block = session.read_block(lazy=True)
  107. segment = block.segments[0]
  108. # Displaying loaded data structure as string output
  109. print("\nBlock")
  110. print('Attributes ', block.__dict__.keys())
  111. print('Annotations', block.annotations)
  112. print("\nSegment")
  113. print('Attributes ', segment.__dict__.keys())
  114. print('Annotations', segment.annotations)
  115. print("\nEvents")
  116. for x in segment.events:
  117. print('\tEvent with name', x.name)
  118. print('\t\tAttributes ', x.__dict__.keys())
  119. print('\t\tAnnotation keys', x.annotations.keys())
  120. print('\t\ttimes', x.times[:20])
  121. if x.name == 'TrialEvents':
  122. for anno_key in ['trial_id', 'trial_timestamp_id', 'trial_event_labels',
  123. 'trial_reject_IFC']:
  124. print('\t\t'+anno_key, x.array_annotations[anno_key][:20])
  125. print("\nGroups")
  126. for x in block.groups:
  127. print('\tGroup with name', x.name)
  128. print('\t\tAttributes ', x.__dict__.keys())
  129. print('\t\tAnnotations', x.annotations)
  130. print("\nSpikeTrains")
  131. for x in segment.spiketrains:
  132. print('\tSpiketrain with name', x.name)
  133. print('\t\tAttributes ', x.__dict__.keys())
  134. print('\t\tAnnotations', x.annotations)
  135. print('\t\tchannel_id', x.annotations['channel_id'])
  136. print('\t\tunit_id', x.annotations['unit_id'])
  137. print('\t\tis sua', x.annotations['sua'])
  138. print('\t\tis mua', x.annotations['mua'])
  139. print("\nAnalogSignals")
  140. for x in segment.analogsignals:
  141. print('\tAnalogSignal with name', x.name)
  142. print('\t\tAttributes ', x.__dict__.keys())
  143. print('\t\tAnnotations', x.annotations)
  144. print('\t\tchannel_ids', x.array_annotations['channel_ids'])
  145. # get start and stop events of trials
  146. start_events = neo_utils.get_events(
  147. segment,
  148. **{
  149. 'name': 'TrialEvents',
  150. 'trial_event_labels': 'TS-ON',
  151. 'performance_in_trial': 255})
  152. stop_events = neo_utils.get_events(
  153. segment,
  154. **{
  155. 'name': 'TrialEvents',
  156. 'trial_event_labels': 'STOP',
  157. 'performance_in_trial': 255})
  158. # there should only be one event object for these conditions
  159. assert len(start_events) == 1
  160. assert len(stop_events) == 1
  161. # insert epochs between 10ms before TS to 50ms after RW corresponding to trails
  162. ep = neo_utils.add_epoch(
  163. segment,
  164. start_events[0],
  165. stop_events[0],
  166. pre=-250 * pq.ms,
  167. post=500 * pq.ms,
  168. trial_status='complete_trials')
  169. ep.array_annotate(trial_type=start_events[0].array_annotations['belongs_to_trialtype'],
  170. trial_performance=start_events[0].array_annotations['performance_in_trial'])
  171. # access single epoch of this data_segment
  172. epochs = neo_utils.get_epochs(segment, **{'trial_status': 'complete_trials'})
  173. assert len(epochs) == 1
  174. # remove spiketrains not belonging to chosen_electrode
  175. segment.spiketrains = segment.filter(targdict={'channel_id': chosen_el[monkey]},
  176. recursive=True, objects='SpikeTrainProxy')
  177. segment.spiketrains = [st for st in segment.spiketrains if st.annotations['unit_id'] in range(1, 5)]
  178. # replacing the segment with a new segment containing all data
  179. # to speed up cutting of segments
  180. from neo_utils import load_segment
  181. segment = load_segment(segment, load_wavefroms=True, channel_indexes=[chosen_el[monkey]])
  182. # cut segments according to inserted 'complete_trials' epochs and reset trial times
  183. cut_segments = neo_utils.cut_segment_by_epoch(segment, epochs[0], reset_time=True)
  184. # =============================================================================
  185. # Define data for overview plots
  186. # =============================================================================
  187. trial_index = {'Lilou': 0, 'Nikos2': 6}
  188. trial_segment = cut_segments[trial_index[monkey]]
  189. blackrock_elid_list = block.annotations['avail_electrode_ids']
  190. # get 'TrialEvents'
  191. event = trial_segment.events[2]
  192. start = np.where(event.array_annotations['trial_event_labels'] == 'TS-ON')[0][0]
  193. trialx_trty = event.array_annotations['belongs_to_trialtype'][start]
  194. trialx_trtimeid = event.array_annotations['trial_timestamp_id'][start]
  195. trialx_color = trialtype_colors[trialx_trty]
  196. # find trial index for next trial with opposite force type (for ax5b plot)
  197. if 'LF' in trialx_trty:
  198. trialz_trty = trialx_trty.replace('LF', 'HF')
  199. else:
  200. trialz_trty = trialx_trty.replace('HF', 'LF')
  201. for i, tr in enumerate(cut_segments):
  202. eventz = tr.events[2]
  203. nextft = np.where(eventz.array_annotations['trial_event_labels'] == 'TS-ON')[0][0]
  204. if eventz.array_annotations['belongs_to_trialtype'][nextft] == trialz_trty:
  205. trialz_trtimeid = eventz.array_annotations['trial_timestamp_id'][nextft]
  206. trialz_color = trialtype_colors[trialz_trty]
  207. trialz_seg = tr
  208. break
  209. # =============================================================================
  210. # Define figure and subplot axis for first data overview
  211. # =============================================================================
  212. fig = plt.figure()
  213. fig.set_size_inches(6.5, 10.) # (w, h) in inches
  214. gs = gridspec.GridSpec(
  215. nrows=5,
  216. ncols=4,
  217. left=0.05,
  218. bottom=0.07,
  219. right=0.9,
  220. top=0.975,
  221. wspace=0.3,
  222. hspace=0.5,
  223. width_ratios=None,
  224. height_ratios=[1, 3, 3, 6, 3])
  225. ax1 = plt.subplot(gs[0, :]) # top row / odml data
  226. # second row
  227. ax2a = plt.subplot(gs[1, 0]) # electrode overview plot
  228. ax2b = plt.subplot(gs[1, 1]) # waveforms unit 1
  229. ax2c = plt.subplot(gs[1, 2]) # waveforms unit 2
  230. ax2d = plt.subplot(gs[1, 3]) # waveforms unit 3
  231. ax3 = plt.subplot(gs[2, :]) # third row / spiketrains
  232. ax4 = plt.subplot(gs[3, :], sharex=ax3) # fourth row / raw signal
  233. ax5a = plt.subplot(gs[4, 0:3]) # fifth row / behavioral signals
  234. ax5b = plt.subplot(gs[4, 3])
  235. fontdict_titles = {'fontsize': 'small', 'fontweight': 'bold'}
  236. fontdict_axis = {'fontsize': 'x-small'}
  237. wf_time_unit = pq.ms
  238. wf_signal_unit = pq.microvolt
  239. plotting_time_unit = pq.s
  240. raw_signal_unit = wf_signal_unit
  241. behav_signal_unit = pq.V
  242. # =============================================================================
  243. # PLOT TRIAL SEQUENCE OF SUBSESSION
  244. # =============================================================================
  245. # load complete metadata collection
  246. odmldoc = odml.load(datasetdir + datafile + '.odml')
  247. # get total trial number
  248. trno_tot = odml_utils.get_TrialCount(odmldoc)
  249. trno_ctr = odml_utils.get_TrialCount(odmldoc, performance_code=255)
  250. trno_ertr = trno_tot - trno_ctr
  251. # get trial id of chosen trial (and next trial with opposite force)
  252. trtimeids = odml_utils.get_TrialIDs(odmldoc, idtype='TrialTimestampID')
  253. trids = odml_utils.get_TrialIDs(odmldoc)
  254. trialx_trid = trids[trtimeids.index(trialx_trtimeid)]
  255. trialz_trid = trids[trtimeids.index(trialz_trtimeid)]
  256. # get all trial ids for grip error trials
  257. trids_pc191 = odml_utils.get_trialids_pc(odmldoc, 191)
  258. # get all trial ids for correct trials
  259. trids_pc255 = odml_utils.get_trialids_pc(odmldoc, 255)
  260. # get occurring trial types
  261. octrty = odml_utils.get_OccurringTrialTypes(odmldoc, code=False)
  262. # Subplot 1: Trial sequence
  263. boxes, labels = [], []
  264. for tt in octrty:
  265. # Plot trial ids of current trial type into trial sequence bar plot
  266. left = odml_utils.get_trialids_trty(odmldoc, tt)
  267. height = np.ones_like(left)
  268. width = 1.
  269. if tt in ['NONE', 'PG', 'SG', 'LF', 'HF']:
  270. color = 'w'
  271. else:
  272. color = trialtype_colors[tt]
  273. B = ax1.bar(
  274. x=left, height=height, width=width, color=color, linewidth=0.001, align='edge')
  275. # Mark trials of current trial type (left) if a grip error occurred
  276. x = [i for i in list(set(left) & set(trids_pc191))]
  277. y = np.ones_like(x) * 2.0
  278. ax1.scatter(x, y, s=5, color='k', marker='*')
  279. # Mark trials of current trial type (left) if any other error occurred
  280. x = [i for i in list(
  281. set(left) - set(trids_pc255) - set(trids_pc191))]
  282. y = np.ones_like(x) * 2.0
  283. ax1.scatter(x, y, s=5, color='gray', marker='*')
  284. # Collect information for trial type legend
  285. if tt not in ['PG', 'SG', 'LF', 'HF']:
  286. boxes.append(B[0])
  287. if tt == 'NONE':
  288. # use errors for providing total trial number
  289. labels.append('total: # %i' % trno_tot)
  290. # add another box and label for error numbers
  291. boxes.append(B[0])
  292. labels.append('* errors: # %i' % trno_ertr)
  293. else:
  294. # trial type trial numbers
  295. labels.append(tt + ': # %i' % len(left))
  296. # mark chosen trial
  297. x = [trialx_trid]
  298. y = np.ones_like(x) * 2.0
  299. ax1.scatter(x, y, s=5, marker='D', color='Red', edgecolors='Red')
  300. # mark next trial with opposite force
  301. x = [trialz_trid]
  302. y = np.ones_like(x) * 2.0
  303. ax1.scatter(x, y, s=5, marker='D', color='orange', edgecolors='orange')
  304. # Generate trial type legend; bbox: (left, bottom, width, height)
  305. leg = ax1.legend(
  306. boxes, labels, bbox_to_anchor=(0., 1., 0.5, 0.1), loc=3, handlelength=1.1,
  307. ncol=len(labels), borderaxespad=0., handletextpad=0.4,
  308. prop={'size': 'xx-small'})
  309. leg.draw_frame(False)
  310. # adjust x and y axis
  311. xticks = list(range(1, 101, 10)) + [100]
  312. ax1.set_xticks(xticks)
  313. ax1.set_xticklabels([str(int(t)) for t in xticks], size='xx-small')
  314. ax1.set_xlabel('trial ID', size='x-small')
  315. ax1.set_xlim(1.-width/2., 100.+width/2.)
  316. ax1.yaxis.set_visible(False)
  317. ax1.set_ylim(0, 3)
  318. ax1.spines['top'].set_visible(False)
  319. ax1.spines['left'].set_visible(False)
  320. ax1.spines['right'].set_visible(False)
  321. ax1.tick_params(direction='out', top=False, left=False, right=False)
  322. ax1.set_title('sequence of the first 100 trials', fontdict_titles, y=2)
  323. ax1.set_aspect('equal')
  324. # =============================================================================
  325. # PLOT ELECTRODE POSITION of chosen electrode
  326. # =============================================================================
  327. neural_signals = [sig for sig in trial_segment.analogsignals if sig.annotations['neural_signal']]
  328. assert len(neural_signals) == 1
  329. neural_signals = neural_signals[0]
  330. arraygrid = get_arraygrid(neural_signals, chosen_el[monkey])
  331. cmap = plt.cm.RdGy
  332. ax2a.pcolormesh(
  333. arraygrid, vmin=-1, vmax=1, lw=1, cmap=cmap, edgecolors='k',
  334. #shading='faceted'
  335. )
  336. force_aspect(ax2a, aspect=1)
  337. ax2a.tick_params(
  338. bottom=False, top=False, left=False, right=False,
  339. labelbottom=False, labeltop=False, labelleft=False, labelright=False)
  340. ax2a.set_title('electrode pos.', fontdict_titles)
  341. # =============================================================================
  342. # PLOT WAVEFORMS of units of the chosen electrode
  343. # =============================================================================
  344. unit_ax_translator = {1: ax2b, 2: ax2c, 3: ax2d}
  345. unit_type = {1: '', 2: '', 3: ''}
  346. wf_lim = []
  347. # plotting waveform for all spiketrains available
  348. for spiketrain in trial_segment.spiketrains:
  349. unit_id = spiketrain.annotations['unit_id']
  350. # get unit type
  351. if spiketrain.annotations['sua']:
  352. unit_type[unit_id] = 'SUA'
  353. elif spiketrain.annotations['mua']:
  354. unit_type[unit_id] = 'MUA'
  355. elif unit_id in [0, 255]:
  356. continue
  357. else:
  358. raise ValueError(f'Found unit with id {unit_id}, that is not SUA or MUA.')
  359. # get correct ax
  360. ax = unit_ax_translator[unit_id]
  361. # get wf sampling time before threshold crossing
  362. left_sweep = spiketrain.left_sweep
  363. # plot waveforms in subplots according to unit id
  364. for st_id, st in enumerate(spiketrain):
  365. wf = spiketrain.waveforms[st_id]
  366. wf_lim.append((np.min(wf), np.max(wf)))
  367. wf_color = str(
  368. (st / spiketrain.t_stop).rescale('dimensionless').magnitude)
  369. times = range(len(wf[0])) * spiketrain.units - left_sweep
  370. ax.plot(
  371. times.rescale(wf_time_unit), wf[0].rescale(wf_signal_unit),
  372. color=wf_color)
  373. ax.set_xlim(
  374. times.rescale(wf_time_unit)[0], times.rescale(wf_time_unit)[-1])
  375. # adding xlabels and titles
  376. for unit_id, ax in unit_ax_translator.items():
  377. ax.set_title('unit %i (%s)' % (unit_id, unit_type[unit_id]),
  378. fontdict_titles)
  379. ax.tick_params(direction='in', length=3, labelsize='xx-small',
  380. labelleft=False, labelright=False)
  381. ax.set_xlabel(wf_time_unit.dimensionality.latex, fontdict_axis)
  382. xticklocator = ticker.MaxNLocator(nbins=5)
  383. ax.xaxis.set_major_locator(xticklocator)
  384. ax.set_ylim(np.min(wf_lim), np.max(wf_lim))
  385. force_aspect(ax, aspect=1)
  386. # adding ylabel
  387. ax2d.tick_params(labelsize='xx-small', labelright=True)
  388. ax2d.set_ylabel(wf_signal_unit.dimensionality.latex, fontdict_axis)
  389. ax2d.yaxis.set_label_position("right")
  390. # =============================================================================
  391. # PLOT SPIKETRAINS of units of chosen electrode
  392. # =============================================================================
  393. plotted_unit_ids = []
  394. # plotting all available spiketrains
  395. for st in trial_segment.spiketrains:
  396. unit_id = st.annotations['unit_id']
  397. plotted_unit_ids.append(unit_id)
  398. ax3.plot(st.times.rescale(plotting_time_unit),
  399. np.zeros(len(st.times)) + unit_id,
  400. 'k|')
  401. # setting layout of spiketrain plot
  402. ax3.set_ylim(min(plotted_unit_ids) - 0.5, max(plotted_unit_ids) + 0.5)
  403. ax3.set_ylabel(r'unit ID', fontdict_axis)
  404. ax3.yaxis.set_major_locator(ticker.MultipleLocator(base=1))
  405. ax3.yaxis.set_label_position("right")
  406. ax3.tick_params(axis='y', direction='in', length=3, labelsize='xx-small',
  407. labelleft=False, labelright=True)
  408. ax3.invert_yaxis()
  409. ax3.set_title('spiketrains', fontdict_titles)
  410. # =============================================================================
  411. # PLOT "raw" SIGNAL of chosen trial of chosen electrode
  412. # =============================================================================
  413. # get "raw" data from chosen electrode
  414. el_raw_sig = [a for a in trial_segment.analogsignals if a.annotations['neural_signal']]
  415. assert len(el_raw_sig) == 1
  416. el_raw_sig = el_raw_sig[0]
  417. # plotting raw signal trace of chosen electrode
  418. chosen_el_idx = np.where(el_raw_sig.array_annotations['channel_ids'] == chosen_el[monkey])[0][0]
  419. ax4.plot(el_raw_sig.times.rescale(plotting_time_unit),
  420. el_raw_sig[:, chosen_el_idx].squeeze().rescale(raw_signal_unit),
  421. color='k')
  422. # setting layout of raw signal plot
  423. ax4.set_ylabel(raw_signal_unit.units.dimensionality.latex, fontdict_axis)
  424. ax4.yaxis.set_label_position("right")
  425. ax4.tick_params(axis='y', direction='in', length=3, labelsize='xx-small',
  426. labelleft=False, labelright=True)
  427. ax4.set_title('"raw" signal', fontdict_titles)
  428. ax4.set_xlim(trial_segment.t_start.rescale(plotting_time_unit),
  429. trial_segment.t_stop.rescale(plotting_time_unit))
  430. ax4.xaxis.set_major_locator(ticker.MultipleLocator(base=1))
  431. # =============================================================================
  432. # PLOT EVENTS across ax3 and ax4 and add time bar
  433. # =============================================================================
  434. # find trial relevant events
  435. startidx = np.where(event.array_annotations['trial_event_labels'] == 'TS-ON')[0][0]
  436. stopidx = np.where(event.array_annotations['trial_event_labels'][startidx:] == 'STOP')[0][0] + startidx + 1
  437. for ax in [ax3, ax4]:
  438. xticks = []
  439. xticklabels = []
  440. for ev_id, ev in enumerate(event[startidx:stopidx]):
  441. ev_labels = event.array_annotations['trial_event_labels'][startidx:stopidx]
  442. if ev_labels[ev_id] in event_colors.keys():
  443. ev_color = event_colors[ev_labels[ev_id]]
  444. ax.axvline(
  445. ev.rescale(plotting_time_unit), color=ev_color, zorder=0.5)
  446. xticks.append(ev.rescale(plotting_time_unit))
  447. if ev_labels[ev_id] == 'CUE-OFF':
  448. xticklabels.append('-OFF')
  449. elif ev_labels[ev_id] == 'GO-ON':
  450. xticklabels.append('GO')
  451. else:
  452. xticklabels.append(ev_labels[ev_id])
  453. ax.set_xticks(xticks)
  454. ax.set_xticklabels(xticklabels)
  455. ax.tick_params(axis='x', direction='out', length=3, labelsize='xx-small',
  456. labeltop=False, top=False)
  457. timebar_ypos = ax4.get_ylim()[0] + np.diff(ax4.get_ylim())[0] / 10
  458. timebar_labeloffset = np.diff(ax4.get_ylim())[0] * 0.01
  459. timebar_xmin = xticks[-2] + ((xticks[-1] - xticks[-2]) / 2 - 0.25 * pq.s)
  460. timebar_xmax = timebar_xmin + 0.5 * pq.s
  461. ax4.plot([timebar_xmin, timebar_xmax], [timebar_ypos, timebar_ypos], '-',
  462. linewidth=3, color='k')
  463. ax4.text(timebar_xmin + 0.25 * pq.s, timebar_ypos + timebar_labeloffset,
  464. '500 ms', ha='center', va='bottom', size='xx-small', color='k')
  465. # =============================================================================
  466. # PLOT BEHAVIORAL SIGNALS of chosen trial
  467. # =============================================================================
  468. # get behavioral signals
  469. ainp_signals = [nsig for nsig in trial_segment.analogsignals if
  470. not nsig.annotations['neural_signal']][0]
  471. force_channel_idx = np.where(ainp_signals.array_annotations['channel_ids'] == 141)[0][0]
  472. ainp_trialz_signals = [a for a in trialz_seg.analogsignals if not a.annotations['neural_signal']]
  473. assert len(ainp_trialz_signals)
  474. ainp_trialz = ainp_trialz_signals[0][:, force_channel_idx]
  475. # find out what signal to use
  476. trialx_sec = odmldoc['Recording']['TaskSettings']['Trial_%03i' % trialx_trid]
  477. # get correct channel id
  478. trialx_chids = [143]
  479. FSRi = trialx_sec['AnalogEvents'].properties['UsedForceSensor'].values[0]
  480. FSRinfosec = odmldoc['Setup']['Apparatus']['TargetObject']['FSRSensor']
  481. if 'SG' in trialx_trty:
  482. sgchids = FSRinfosec.properties['SGChannelIDs'].values
  483. trialx_chids.append(min(sgchids) if FSRi == 1 else max(sgchids))
  484. else:
  485. pgchids = FSRinfosec.properties['PGChannelIDs'].values
  486. trialx_chids.append(min(pgchids) if FSRi == 1 else max(pgchids))
  487. # define time epoch
  488. startidx = np.where(event.array_annotations['trial_event_labels'] == 'SR')[0][0]
  489. stopidx = np.where(event.array_annotations['trial_event_labels'] == 'OBB')[0][0]
  490. sr = event[startidx].rescale(plotting_time_unit)
  491. stop = event[stopidx].rescale(plotting_time_unit) + 0.050 * pq.s
  492. startidx = np.where(event.array_annotations['trial_event_labels'] == 'FSRplat-ON')[0][0]
  493. stopidx = np.where(event.array_annotations['trial_event_labels'] == 'FSRplat-OFF')[0][0]
  494. fplon = event[startidx].rescale(plotting_time_unit)
  495. fploff = event[stopidx].rescale(plotting_time_unit)
  496. # define time epoch trialz
  497. startidx = np.where(eventz.array_annotations['trial_event_labels'] == 'FSRplat-ON')[0][0]
  498. stopidx = np.where(eventz.array_annotations['trial_event_labels'] == 'FSRplat-OFF')[0][0]
  499. fplon_trz = eventz[startidx].rescale(plotting_time_unit)
  500. fploff_trz = eventz[stopidx].rescale(plotting_time_unit)
  501. # plotting grip force and object displacement
  502. ai_legend = []
  503. ai_legend_txt = []
  504. for chidx, chid in enumerate(ainp_signals.array_annotations['channel_ids']):
  505. ainp = ainp_signals[:, chidx]
  506. if ainp.array_annotations['channel_ids'][0] in trialx_chids:
  507. ainp_times = ainp.times.rescale(plotting_time_unit)
  508. mask = (ainp_times > sr) & (ainp_times < stop)
  509. ainp_ampli = stats.zscore(ainp.magnitude[mask])
  510. if ainp.array_annotations['channel_ids'][0] != 143:
  511. color = 'gray'
  512. ai_legend_txt.append('grip force')
  513. else:
  514. color = 'k'
  515. ai_legend_txt.append('object disp.')
  516. ai_legend.append(
  517. ax5a.plot(ainp_times[mask], ainp_ampli, color=color)[0])
  518. # get force load of this trial for next plot
  519. elif ainp.array_annotations['channel_ids'][0] == 141:
  520. ainp_times = ainp.times.rescale(plotting_time_unit)
  521. mask = (ainp_times > fplon) & (ainp_times < fploff)
  522. force_av_01 = np.mean(ainp.rescale(behav_signal_unit).magnitude[mask])
  523. # setting layout of grip force and object displacement plot
  524. ax5a.set_title('grip force and object displacement', fontdict_titles)
  525. ax5a.yaxis.set_label_position("left")
  526. ax5a.tick_params(direction='in', length=3, labelsize='xx-small',
  527. labelleft=False, labelright=True)
  528. ax5a.set_ylabel('zscore', fontdict_axis)
  529. ax5a.legend(
  530. ai_legend, ai_legend_txt,
  531. bbox_to_anchor=(0.65, .85, 0.25, 0.1), loc=2, handlelength=1.1,
  532. ncol=len(labels), borderaxespad=0., handletextpad=0.4,
  533. prop={'size': 'xx-small'})
  534. # plotting load/pull force of LF and HF trial
  535. force_times = ainp_trialz.times.rescale(plotting_time_unit)
  536. mask = (force_times > fplon_trz) & (force_times < fploff_trz)
  537. force_av_02 = np.mean(ainp_trialz.rescale(behav_signal_unit).magnitude[mask])
  538. bar_width = [0.4, 0.4]
  539. color = [trialx_color, trialz_color]
  540. ax5b.bar([0, 0.6], [force_av_01, force_av_02], bar_width, color=color)
  541. ax5b.set_title('load/pull force', fontdict_titles)
  542. ax5b.set_ylabel(behav_signal_unit.units.dimensionality.latex, fontdict_axis)
  543. ax5b.set_xticks([0, 0.6])
  544. ax5b.set_xticklabels([trialx_trty, trialz_trty], fontdict=fontdict_axis)
  545. ax5b.yaxis.set_label_position("right")
  546. ax5b.tick_params(direction='in', length=3, labelsize='xx-small',
  547. labelleft=False, labelright=True)
  548. # =============================================================================
  549. # PLOT EVENTS across ax5a and add time bar
  550. # =============================================================================
  551. # find trial relevant events
  552. startidx = np.where(event.array_annotations['trial_event_labels'] == 'SR')[0][0]
  553. stopidx = np.where(event.array_annotations['trial_event_labels'] == 'OBB')[0][0]
  554. xticks = []
  555. xticklabels = []
  556. for ev_id, ev in enumerate(event[startidx:stopidx]):
  557. ev_labels = event.array_annotations['trial_event_labels'][startidx:stopidx + 1]
  558. if ev_labels[ev_id] in ['RW-ON']:
  559. ax5a.axvline(ev.rescale(plotting_time_unit), color='k', zorder=0.5)
  560. xticks.append(ev.rescale(plotting_time_unit))
  561. xticklabels.append(ev_labels[ev_id])
  562. elif ev_labels[ev_id] in ['OT', 'OR', 'DO', 'OBB', 'FSRplat-ON',
  563. 'FSRplat-OFF', 'HEplat-ON']:
  564. ev_color = 'k'
  565. xticks.append(ev.rescale(plotting_time_unit))
  566. xticklabels.append(ev_labels[ev_id])
  567. ax5a.axvline(
  568. ev.rescale(plotting_time_unit), color='k', ls='-.', zorder=0.5)
  569. elif ev_labels[ev_id] == 'HEplat-OFF':
  570. ev_color = 'k'
  571. ax5a.axvline(
  572. ev.rescale(plotting_time_unit), color='k', ls='-.', zorder=0.5)
  573. ax5a.set_xticks(xticks)
  574. ax5a.set_xticklabels(xticklabels, fontdict=fontdict_axis, rotation=90)
  575. ax5a.tick_params(axis='x', direction='out', length=3, labelsize='xx-small',
  576. labeltop=False, top=False)
  577. ax5a.set_ylim([-2.0, 2.0])
  578. timebar_ypos = ax5a.get_ylim()[0] + np.diff(ax5a.get_ylim())[0] / 10
  579. timebar_labeloffset = np.diff(ax5a.get_ylim())[0] * 0.02
  580. timebar_xmax = xticks[xticklabels.index('RW-ON')] - 0.1 * pq.s
  581. timebar_xmin = timebar_xmax - 0.25 * pq.s
  582. ax5a.plot([timebar_xmin, timebar_xmax], [timebar_ypos, timebar_ypos], '-',
  583. linewidth=3, color='k')
  584. ax5a.text(timebar_xmin + 0.125 * pq.s, timebar_ypos + timebar_labeloffset,
  585. '250 ms', ha='center', va='bottom', size='xx-small', color='k')
  586. # add time window of ax5a to ax4
  587. ax4.axvspan(ax5a.get_xlim()[0], ax5a.get_xlim()[1], facecolor=[0.9, 0.9, 0.9],
  588. zorder=-0.1, ec=None)
  589. # =============================================================================
  590. # SAVE FIGURE
  591. # =============================================================================
  592. fname = 'data_overview_1_%s' % monkey
  593. for file_format in ['eps', 'png', 'pdf']:
  594. fig.savefig(fname + '.%s' % file_format, dpi=400, format=file_format)