123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- *********
- Neo RawIO
- *********
- .. currentmodule:: neo.rawio
- .. _neo_rawio_API:
- For performance and memory consumption reasons a new layer has been added to Neo.
- In brief:
- * **neo.io** is the user-oriented read/write layer. Reading consists of getting a tree
- of Neo objects from a data source (file, url, or directory).
- When reading, all Neo objects are correctly scaled to the correct units.
- Writing consists of making a set of Neo objects persistent in a file format.
- * **neo.rawio** is a low-level layer for reading data only. Reading consists of getting
- NumPy buffers (often int16/int64) of signals/spikes/events.
- Scaling to real values (microV, times, ...) is done in a second step.
- Here the underlying objects must be consistent across Blocks and Segments for a given
- data source.
-
- The neo.rawio API has been added for developers.
- The neo.rawio is close to what could be a C API for reading data but in Python/NumPy.
- Not all IOs are implemented in :mod:`neo.rawio` but all classes implemented in :mod:`neo.rawio` are
- also available in :mod:`neo.io`.
- Possible uses of the :mod:`neo.rawio` API are:
- * fast reading chunks of signals in int16 and do the scaling of units (uV)
- on a GPU while scaling the zoom. This should improve bandwith HD to RAM
- and RAM to GPU memory.
- * load only some small chunk of data for heavy computations. For instance
- the spike sorting module tridesclous_ does this.
- The :mod:`neo.rawio` API is less flexible than :mod:`neo.io` and has some limitations:
- * read-only
- * AnalogSignals must have the same characteristcs across all Blocks and Segments:
- ``sampling_rate``, ``shape[1]``, ``dtype``
- * AnalogSignals should all have the same value of ``sampling_rate``, otherwise they won't be read
- at the same time.
- * Units must have SpikeTrain event if empty across all Block and Segment
- * Epoch and Event are processed the same way (with ``durations=None`` for Event).
-
- For an intuitive comparison of :mod:`neo.io` and :mod:`neo.rawio` see:
- * :file:`example/read_file_neo_io.py`
- * :file:`example/read_file_neo_rawio.py`
-
- One speculative benefit of the :mod:`neo.rawio` API should be that a developer
- should be able to code a new RawIO class with little knowledge of the Neo tree of
- objects or of the :mod:`quantities` package.
- Basic usage
- ===========
- First create a reader from a class::
- >>> from neo.rawio import PlexonRawIO
- >>> reader = PlexonRawIO(filename='File_plexon_3.plx')
- Then browse the internal header and display information::
- >>> reader.parse_header()
- >>> print(reader)
- PlexonRawIO: File_plexon_3.plx
- nb_block: 1
- nb_segment: [1]
- signal_channels: [V1]
- unit_channels: [Wspk1u, Wspk2u, Wspk4u, Wspk5u ... Wspk29u Wspk30u Wspk31u Wspk32u]
- event_channels: []
- You get the number of blocks and segments per block. You have information
- about channels: **signal_channels**, **unit_channels**, **event_channels**.
- All this information is internally available in the *header* dict::
- >>> for k, v in reader.header.items():
- ... print(k, v)
- signal_channels [('V1', 0, 1000., 'int16', '', 2.44140625, 0., 0)]
- event_channels []
- nb_segment [1]
- nb_block 1
- unit_channels [('Wspk1u', 'ch1#0', '', 0.00146484, 0., 0, 30000.)
- ('Wspk2u', 'ch2#0', '', 0.00146484, 0., 0, 30000.)
- ...
- Read signal chunks of data and scale them::
- >>> channel_indexes = None #could be channel_indexes = [0]
- >>> raw_sigs = reader.get_analogsignal_chunk(block_index=0, seg_index=0,
- i_start=1024, i_stop=2048, channel_indexes=channel_indexes)
- >>> float_sigs = reader.rescale_signal_raw_to_float(raw_sigs, dtype='float64')
- >>> sampling_rate = reader.get_signal_sampling_rate()
- >>> t_start = reader.get_signal_t_start(block_index=0, seg_index=0)
- >>> units =reader.header['signal_channels'][0]['units']
- >>> print(raw_sigs.shape, raw_sigs.dtype)
- >>> print(float_sigs.shape, float_sigs.dtype)
- >>> print(sampling_rate, t_start, units)
- (1024, 1) int16
- (1024, 1) float64
- 1000.0 0.0 V
- There are 3 ways to select a subset of channels: by index (0 based), by id or by name.
- By index is not ambiguous 0 to n-1 (included), for some IOs channel_names (and sometimes channel_ids) have no guarantees to
- be unique, in such cases it would raise an error.
- Example with BlackrockRawIO for the file FileSpec2.3001::
- >>> raw_sigs = reader.get_analogsignal_chunk(channel_indexes=None) #Take all channels
- >>> raw_sigs1 = reader.get_analogsignal_chunk(channel_indexes=[0, 2, 4])) #Take 0 2 and 4
- >>> raw_sigs2 = reader.get_analogsignal_chunk(channel_ids=[1, 3, 5]) # Same but with there id (1 based)
- >>> raw_sigs3 = reader.get_analogsignal_chunk(channel_names=['chan1', 'chan3', 'chan5'])) # Same but with there name
- print(raw_sigs1.shape[1], raw_sigs2.shape[1], raw_sigs3.shape[1])
- 3, 3, 3
- Inspect units channel. Each channel gives a SpikeTrain for each Segment.
- Note that for many formats a physical channel can have several units after spike
- sorting. So the nb_unit could be more than physical channel or signal channels.
- >>> nb_unit = reader.unit_channels_count()
- >>> print('nb_unit', nb_unit)
- nb_unit 30
- >>> for unit_index in range(nb_unit):
- ... nb_spike = reader.spike_count(block_index=0, seg_index=0, unit_index=unit_index)
- ... print('unit_index', unit_index, 'nb_spike', nb_spike)
- unit_index 0 nb_spike 701
- unit_index 1 nb_spike 716
- unit_index 2 nb_spike 69
- unit_index 3 nb_spike 12
- unit_index 4 nb_spike 95
- unit_index 5 nb_spike 37
- unit_index 6 nb_spike 25
- unit_index 7 nb_spike 15
- unit_index 8 nb_spike 33
- ...
-
- Get spike timestamps only between 0 and 10 seconds and convert them to spike times::
- >>> spike_timestamps = reader.spike_timestamps(block_index=0, seg_index=0, unit_index=0,
- t_start=0., t_stop=10.)
- >>> print(spike_timestamps.shape, spike_timestamps.dtype, spike_timestamps[:5])
- (424,) int64 [ 90 420 708 1020 1310]
- >>> spike_times = reader.rescale_spike_timestamp( spike_timestamps, dtype='float64')
- >>> print(spike_times.shape, spike_times.dtype, spike_times[:5])
- (424,) float64 [ 0.003 0.014 0.0236 0.034 0.04366667]
- Get spike waveforms between 0 and 10 s::
- >>> raw_waveforms = reader.spike_raw_waveforms( block_index=0, seg_index=0, unit_index=0,
- t_start=0., t_stop=10.)
- >>> print(raw_waveforms.shape, raw_waveforms.dtype, raw_waveforms[0,0,:4])
- (424, 1, 64) int16 [-449 -206 34 40]
- >>> float_waveforms = reader.rescale_waveforms_to_float(raw_waveforms, dtype='float32', unit_index=0)
- >>> print(float_waveforms.shape, float_waveforms.dtype, float_waveforms[0,0,:4])
- (424, 1, 64) float32 [-0.65771484 -0.30175781 0.04980469 0.05859375]
- Count events per channel::
- >>> reader = PlexonRawIO(filename='File_plexon_2.plx')
- >>> reader.parse_header()
- >>> nb_event_channel = reader.event_channels_count()
- nb_event_channel 28
- >>> print('nb_event_channel', nb_event_channel)
- >>> for chan_index in range(nb_event_channel):
- ... nb_event = reader.event_count(block_index=0, seg_index=0, event_channel_index=chan_index)
- ... print('chan_index',chan_index, 'nb_event', nb_event)
- chan_index 0 nb_event 1
- chan_index 1 nb_event 0
- chan_index 2 nb_event 0
- chan_index 3 nb_event 0
- ...
-
- Read event timestamps and times for chanindex=0 and with time limits (t_start=None, t_stop=None)::
- >>> ev_timestamps, ev_durations, ev_labels = reader.event_timestamps(block_index=0, seg_index=0, event_channel_index=0,
- t_start=None, t_stop=None)
- >>> print(ev_timestamps, ev_durations, ev_labels)
- [1268] None ['0']
- >>> ev_times = reader.rescale_event_timestamp(ev_timestamps, dtype='float64')
- >>> print(ev_times)
- [ 0.0317]
- .. _tridesclous: https://github.com/tridesclous/tridesclous
|