123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- %% Import data from excel
- clear;
- [~,~,PAInstTrainingData] = xlsread('PAInstTrainingDataALL.xlsx');
- %% Assign data to corresponding variables within a structure
- VarNames = PAInstTrainingData(1,:);
- Data = PAInstTrainingData(2:end,:);
- PAInst = struct();
- for i=1:42
- PAInst.(VarNames{i}) = Data(1:end,(i));
- end
- PAInst.CSPlusOnset = Data(1:end,43:103);
- PAInst.CSMinOnset = Data(1:end,104:163);
- PAInst.PETimestamps = Data(1:end,225:942);
- %% Convert rat numbers from strings into numbers and append to a separate field
- for i = 1:length(PAInst.Rat)
- PAInst(:).RatNum(i,1) = str2num(PAInst.Rat{i}(3:5));
- end
- %% Sort matrix by rat
- [sortedRat,index] = sort([PAInst(:).Rat]);
- fields = fieldnames(PAInst);
- for i = 1:length(fields)
- PAInst.(fields{i}) = PAInst.(fields{i})(index,:);
- end
- %% Number the start dates for each rat and display any errors
- Rat = PAInst.Rat(1);
- k = 1;
- for i=1:length(PAInst.StartDate)
- if strcmp(PAInst.Rat(i), Rat)
- PAInst.Day(i,:) = k;
- k=k+1;
- if i < length(PAInst.StartDate)
- if PAInst.StartDate{i} == PAInst.StartDate{i+1}
- fprintf('repeated date %d with rat %s\n', PAInst.StartDate{i}, PAInst.Rat{i});
- end
- end
- else
- k = 1;
- Rat = PAInst.Rat(i);
- PAInst.Day(i,:) = k;
- k=k+1;
- end
- end
- %% Determine stages of training
- % look at durations
- % if duration = 60 ==> stage 1
- % if duration = 30 ==> stage 2
- % if duration = 20 ==> stage 3
- % if duration = 10 and numtrials <= 60 ==> stage 4
- % if duration = 10 and numtrials > 60 ==> stage 5
- % if duration = anything else ==> stage NaN, print rat and date in which this occurs
- for i=1:length(PAInst.Duration)
- if PAInst.Duration{i} >= 60
- PAInst.Stage{i,:} = 1;
- elseif (PAInst.Duration{i} == 30 || PAInst.Duration{i} == 40)
- PAInst.Stage{i,:} = 2;
- elseif PAInst.Duration{i} == 20
- PAInst.Stage{i,:} = 3;
- elseif PAInst.Duration{i} == 10 & PAInst.CSMinOnset{i,1}==0
- PAInst.Stage{i,:} = 4;
- elseif PAInst.Duration{i} == 10 & PAInst.CSMinOnset{i,1}>0
- PAInst.Stage{i,:} = 5;
- else
- PAInst.Stage{i,:} = NaN;
- fprintf('stage is NaN for rat %s on date %d\n', PAInst.Rat{i}, PAInst.StartDate{i});
- end
- end
- %% Setting NS values to 0
- for i=1:length(PAInst.CSMinRatio)
- if PAInst.Stage{i} < 5
- PAInst.CSMinRatio{i} = NaN;
- end
- end
- %% Calculate trial-by-trial PE latencies for CSPlus and CSMin
- % Convert necessary cells to matrices, setting all strings to NaN
- for y=1:length(PAInst.CSPlusOnset)
- for x=1:size(PAInst.CSPlusOnset,2)
- if ischar(PAInst.CSPlusOnset{y,x})
- PAInst.CSPlusOnset{y,x} = NaN;
- end
- end
- end
- for y=1:length(PAInst.CSMinOnset)
- for x=1:size(PAInst.CSMinOnset,2)
- if ischar(PAInst.CSMinOnset{y,x})
- PAInst.CSMinOnset{y,x} = NaN;
- end
- end
- end
- for y=1:size(PAInst.PETimestamps,1)
- for x=1:size(PAInst.PETimestamps,2)
- if ischar(PAInst.PETimestamps{y,x})
- PAInst.PETimestamps{y,x} = NaN;
- end
- end
- end
- PAInst.CSPlusOnset = cell2mat(PAInst.CSPlusOnset);
- PAInst.CSMinOnset = cell2mat(PAInst.CSMinOnset);
- PAInst.PETimestamps = cell2mat(PAInst.PETimestamps);
- % Calculate CSPlus absolute and cue period latencies
- % Conditions:
- % if next csplus > 0 but less than pe time, lat = nan
- % if next csmin > 0 but less than pe time, lat =nan
- for y=1:length(PAInst.CSPlusOnset)
- for x=1:size(PAInst.CSPlusOnset,2)
- nextPlus = find(PAInst.CSPlusOnset(y,:) > PAInst.CSPlusOnset(y,x), 1);
- nextMin = find(PAInst.CSMinOnset(y,:) > PAInst.CSPlusOnset(y,x), 1);
- firstPE = find(PAInst.PETimestamps(y,:) > PAInst.CSPlusOnset(y,x), 1);
- PAInst.CSPlusAbsLat{y,x} = PAInst.PETimestamps(y,firstPE) - PAInst.CSPlusOnset(y,x);
- if PAInst.CSPlusAbsLat{y,x} < PAInst.Duration{y,1}
- PAInst.CSPlusCPLat{y,x} = PAInst.CSPlusAbsLat{y,x};
- else
- PAInst.CSPlusCPLat{y,x} = NaN;
- end
- if PAInst.CSMinOnset(y,nextMin) > 0 & PAInst.CSMinOnset(y,nextMin) < PAInst.PETimestamps(y,firstPE)
- PAInst.CSPlusAbsLat{y,x} = NaN;
- PAInst.CSPlusCPLat{y,x} = NaN;
- elseif PAInst.CSPlusOnset(y,nextPlus) > 0 & PAInst.CSPlusOnset(y,nextPlus) < PAInst.PETimestamps(y,firstPE)
- PAInst.CSPlusAbsLat{y,x} = NaN;
- PAInst.CSPlusCPLat{y,x} = NaN;
- elseif isnan(PAInst.CSPlusOnset(y,x))
- PAInst.CSPlusAbsLat{y,x} = NaN;
- PAInst.CSPlusCPLat{y,x} = NaN;
- elseif PAInst.CSPlusOnset(y,x) == 0
- PAInst.CSPlusAbsLat{y,x} = NaN;
- PAInst.CSPlusCPLat{y,x} = NaN;
- elseif isempty(firstPE)
- PAInst.CSPlusAbsLat{y,x} = NaN;
- PAInst.CSPlusCPLat{y,x} = NaN;
- end
- end
- end
- % Calculate CSPlus absolute and cue period latency means
- PAInst.CSPlusAbsLat = cell2mat(PAInst.CSPlusAbsLat);
- PAInst.CSPlusCPLat = cell2mat(PAInst.CSPlusCPLat);
- PAInst.CSPlusAbsLatMean = nanmean(PAInst.CSPlusAbsLat,2);
- PAInst.CSPlusCPLatMean = nanmean(PAInst.CSPlusCPLat,2);
- % Calculate CSMin absolute and cue period latencies
- % Conditions:
- % if next csplus > 0 but less than pe time, lat = nan
- % if next csmin > 0 but less than pe time, lat =nan
- for y=1:length(PAInst.CSMinOnset)
- for x=1:size(PAInst.CSMinOnset,2)
- nextPlus = find(PAInst.CSPlusOnset(y,:) > PAInst.CSMinOnset(y,x), 1);
- nextMin = find(PAInst.CSMinOnset(y,:) > PAInst.CSMinOnset(y,x), 1);
- firstPE = find(PAInst.PETimestamps(y,:) > PAInst.CSMinOnset(y,x), 1);
- PAInst.CSMinAbsLat{y,x} = PAInst.PETimestamps(y,firstPE) - PAInst.CSMinOnset(y,x);
- if PAInst.CSMinAbsLat{y,x} < PAInst.Duration{y,1}
- PAInst.CSMinCPLat{y,x} = PAInst.CSMinAbsLat{y,x};
- else
- PAInst.CSMinCPLat{y,x} = NaN;
- end
- if PAInst.CSMinOnset(y,nextMin) > 0 & PAInst.CSMinOnset(y,nextMin) < PAInst.PETimestamps(y,firstPE)
- PAInst.CSMinAbsLat{y,x} = NaN;
- PAInst.CSMinCPLat{y,x} = NaN;
- elseif PAInst.CSPlusOnset(y,nextPlus) > 0 & PAInst.CSPlusOnset(y,nextPlus) < PAInst.PETimestamps(y,firstPE)
- PAInst.CSMinAbsLat{y,x} = NaN;
- PAInst.CSMinCPLat{y,x} = NaN;
- elseif isnan(PAInst.CSMinOnset(y,x))
- PAInst.CSMinAbsLat{y,x} = NaN;
- PAInst.CSMinCPLat{y,x} = NaN;
- elseif PAInst.CSMinOnset(y,x) == 0
- PAInst.CSMinAbsLat{y,x} = NaN;
- PAInst.CSMinCPLat{y,x} = NaN;
- elseif isempty(firstPE)
- PAInst.CSMinAbsLat{y,x} = NaN;
- PAInst.CSMinCPLat{y,x} = NaN;
- end
- end
- end
- % Calculate CSMin absolute and cue period latency means
- PAInst.CSMinAbsLat = cell2mat(PAInst.CSMinAbsLat);
- PAInst.CSMinCPLat = cell2mat(PAInst.CSMinCPLat);
- PAInst.CSMinAbsLatMean = nanmean(PAInst.CSMinAbsLat,2);
- PAInst.CSMinCPLatMean = nanmean(PAInst.CSMinCPLat,2);
- %% Determine when rats reach criteria
- % FOR EACH RAT:
- % criteria = 0 if cs+ratio < .7 or cs-ratio > .3
- % if cs+ratio > .7 and cs-ratio < .3, then
- % for the first time this happens, criteria = 0
- % for every other time this happens and even if they don't meet criteria in later dates (don't need to check cs ratios), criteria = 1
- % if new rat, start over
- k = 1;
- for i=1:length(PAInst.Stage)
- if PAInst.Stage{i} < 5
- criteria_met = false;
- PAInst.Criteria{i,1} = 0;
- elseif isnan(PAInst.Stage{i})
- criteria_met = false;
- PAInst.Criteria{i,1} = NaN;
- elseif criteria_met == true % this condition is set from criteria being met
- PAInst.Criteria{i,1} = 1;
- elseif PAInst.Stage{i,1} == 5
- if PAInst.CSPlusRatio{i} >= 0.7 & PAInst.CSMinRatio{i} <= 0.3 % correct criteria
- PAInst.Criteria{i,1} = 0;
- PAInst.CriteriaDay(k,1) = PAInst.Day(i,1);
- PAInst.CriteriaDayRat(k,1) = PAInst.RatNum(i,1);
- PAInst.CriteriaDayCSPlusRatio(k,1) = PAInst.CSPlusRatio(i,1);
- PAInst.CriteriaDayCSMinRatio(k,1) = PAInst.CSMinRatio(i,1);
- PAInst.CriteriaDayCSPlusLat(k,1) = PAInst.CSPlusCPLatMean(i,1);
- PAInst.CriteriaDayCSMinLat(k,1) = PAInst.CSMinCPLatMean(i,1);
- k = k+1;
- criteria_met = true; % false switched to true
- else
- PAInst.Criteria{i,1} = 0;
- criteria_met = false;
- end
- end
- end
- PAInst.Criteria = cell2mat(PAInst.Criteria);
- PAInst.CSPlusRatio = cell2mat(PAInst.CSPlusRatio);
- PAInst.CSMinRatio = cell2mat(PAInst.CSMinRatio);
- %% Calculate averages of latency means on days where criteria = 0 during cue period (group data)
- % To find averages of CS+ and CS- Cue Period Latency Means by day
- RatSelection=ismember(PAInst.RatNum,[105 107 139 151]);
- for i=1:max(PAInst.Day(PAInst.Criteria == 0))
- PAInst.AverageCSPlusCPLatMean(i) = nanmean(PAInst.CSPlusCPLatMean(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection));
- PAInst.Error_AverageCSPlusCPLatMean(i) = nanste(PAInst.CSPlusCPLatMean(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection), 1);
- end
- for i=1:max(PAInst.Day(PAInst.Criteria == 0))
- PAInst.AverageCSMinCPLatMean(i) = nanmean(PAInst.CSMinCPLatMean(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection));
- PAInst.Error_AverageCSMinCPLatMean(i) = nanste(PAInst.CSMinCPLatMean(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection), 1);
- end
- % To find averages of CS+ and CS- Ratios by day
- for i=1:max(PAInst.Day(PAInst.Criteria == 0))
- PAInst.AverageCSPlusRatio(i) = nanmean(PAInst.CSPlusRatio(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection));
- PAInst.Error_AverageCSPlusRatio(i) = nanste(PAInst.CSPlusRatio(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection), 1);
- end
- for i=1:max(PAInst.Day(PAInst.Criteria == 0))
- PAInst.AverageCSMinRatio(i) = nanmean(PAInst.CSMinRatio(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection));
- PAInst.Error_AverageCSMinRatio(i) = nanste(PAInst.CSMinRatio(PAInst.Criteria == 0 & PAInst.Day == i & RatSelection), 1);
- end
- %% Save file
- filename = 'InstTrainingAnalysis.mat';
- save(filename);
|