|
@@ -0,0 +1,218 @@
|
|
|
|
+{
|
|
|
|
+ "cells": [
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 9,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Processing session1...\n",
|
|
|
|
+ " Adding Trial 1...\n",
|
|
|
|
+ " Adding Trial 2...\n",
|
|
|
|
+ "Processing session2...\n",
|
|
|
|
+ " Adding Trial 3...\n",
|
|
|
|
+ " Adding Trial 4...\n",
|
|
|
|
+ "NIX file created and annotated with metadata.\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Import necessary libraries\n",
|
|
|
|
+ "import pandas as pd\n",
|
|
|
|
+ "import nixio as nix\n",
|
|
|
|
+ "import numpy as np\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "# Part 1: Read CSV Files\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Read the metadata CSV file\n",
|
|
|
|
+ "metadata_df = pd.read_csv('metadata.csv')\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Read spike times CSV files for each session\n",
|
|
|
|
+ "session_files = ['session1_spikes.csv', 'session2_spikes.csv']\n",
|
|
|
|
+ "spike_dfs = {}\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "for session_file in session_files:\n",
|
|
|
|
+ " session_id = session_file.split('_')[0] # Extract session ID from file name\n",
|
|
|
|
+ " spike_dfs[session_id] = pd.read_csv(session_file)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "# Part 2: Create NIX File\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Create a new NIX file\n",
|
|
|
|
+ "nix_file = nix.File.open('neural_data.nix', nix.FileMode.Overwrite)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "# Part 3: Add Data to NIX File\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Iterate over sessions\n",
|
|
|
|
+ "for session_id, spike_df in spike_dfs.items():\n",
|
|
|
|
+ " print(f'Processing {session_id}...')\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Create a block for the session\n",
|
|
|
|
+ " block = nix_file.create_block(f'Session {session_id}', 'nix.session')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Get trials for this session\n",
|
|
|
|
+ " session_trials = metadata_df[metadata_df['session_id'] == session_id]\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Iterate over trials\n",
|
|
|
|
+ " for index, trial in session_trials.iterrows():\n",
|
|
|
|
+ " trial_id = trial['trial_id']\n",
|
|
|
|
+ " print(f' Adding Trial {trial_id}...')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Create a group for the trial\n",
|
|
|
|
+ " trial_group = block.create_group(f'Trial {int(trial_id)}', 'nix.trial')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Get spike times for this trial\n",
|
|
|
|
+ " trial_spikes = spike_df[spike_df['trial_id'] == trial_id]\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Group spike times by unit_id (channel)\n",
|
|
|
|
+ " units = trial_spikes['unit_id'].unique()\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " for unit in units:\n",
|
|
|
|
+ " # Get spike times for the unit\n",
|
|
|
|
+ " unit_spike_times = trial_spikes[trial_spikes['unit_id'] == unit]['spike_time'].values\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Create a data array for the spike times with a unique name\n",
|
|
|
|
+ " data_array = block.create_data_array(f'Trial {int(trial_id)} Unit {int(unit)} Spike Times', 'nix.data.spike_times', data=unit_spike_times)\n",
|
|
|
|
+ " data_array.unit = 's' # Set the unit of the data\n",
|
|
|
|
+ " data_array.label = f'Unit {int(unit)}' # Set the label for the data array\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Add the data array to the trial group\n",
|
|
|
|
+ " trial_group.data_arrays.append(data_array)\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Add trial metadata to the trial group\n",
|
|
|
|
+ " trial_metadata = nix_file.create_section(f'Trial {int(trial_id)} Metadata', 'nix.metadata.trial')\n",
|
|
|
|
+ " trial_metadata['start_time'] = trial['start_time']\n",
|
|
|
|
+ " trial_metadata['end_time'] = trial['end_time']\n",
|
|
|
|
+ " trial_metadata['target_1'] = [trial['target_1_x'], trial['target_1_y']]\n",
|
|
|
|
+ " trial_metadata['target_2'] = [trial['target_2_x'], trial['target_2_y']]\n",
|
|
|
|
+ " trial_metadata['reward_value'] = trial['reward_value']\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Link metadata to the trial group\n",
|
|
|
|
+ " trial_group.metadata = trial_metadata\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "# Part 4: Close NIX File\n",
|
|
|
|
+ "# ---------------------------\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Close the NIX file\n",
|
|
|
|
+ "nix_file.close()\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "print('NIX file created and annotated with metadata.')\n"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "## Exploring the NIX File\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "After creating the NIX file, you can explore it using NIXIO or other tools that support the NIX format, such as for GUI experience, [HDF5 viewer](https://www.hdfgroup.org/downloads/hdfview/)."
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 10,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Block: Session session1\n",
|
|
|
|
+ " Group: Trial 1\n",
|
|
|
|
+ " DataArray: Trial 1 Unit 1 Spike Times, Label: Unit 1, Unit: s\n",
|
|
|
|
+ " DataArray: Trial 1 Unit 2 Spike Times, Label: Unit 2, Unit: s\n",
|
|
|
|
+ " Metadata for Trial 1:\n",
|
|
|
|
+ " start_time: (0.0,)\n",
|
|
|
|
+ " end_time: (10.0,)\n",
|
|
|
|
+ " target_1: (5.0, 5.0)\n",
|
|
|
|
+ " target_2: (-5.0, 5.0)\n",
|
|
|
|
+ " reward_value: (10,)\n",
|
|
|
|
+ " Group: Trial 2\n",
|
|
|
|
+ " DataArray: Trial 2 Unit 1 Spike Times, Label: Unit 1, Unit: s\n",
|
|
|
|
+ " DataArray: Trial 2 Unit 2 Spike Times, Label: Unit 2, Unit: s\n",
|
|
|
|
+ " Metadata for Trial 2:\n",
|
|
|
|
+ " start_time: (11.0,)\n",
|
|
|
|
+ " end_time: (21.0,)\n",
|
|
|
|
+ " target_1: (5.0, 5.0)\n",
|
|
|
|
+ " target_2: (-5.0, 5.0)\n",
|
|
|
|
+ " reward_value: (5,)\n",
|
|
|
|
+ "Block: Session session2\n",
|
|
|
|
+ " Group: Trial 3\n",
|
|
|
|
+ " DataArray: Trial 3 Unit 1 Spike Times, Label: Unit 1, Unit: s\n",
|
|
|
|
+ " DataArray: Trial 3 Unit 2 Spike Times, Label: Unit 2, Unit: s\n",
|
|
|
|
+ " Metadata for Trial 3:\n",
|
|
|
|
+ " start_time: (0.0,)\n",
|
|
|
|
+ " end_time: (9.5,)\n",
|
|
|
|
+ " target_1: (5.0, 5.0)\n",
|
|
|
|
+ " target_2: (-5.0, 5.0)\n",
|
|
|
|
+ " reward_value: (15,)\n",
|
|
|
|
+ " Group: Trial 4\n",
|
|
|
|
+ " DataArray: Trial 4 Unit 1 Spike Times, Label: Unit 1, Unit: s\n",
|
|
|
|
+ " DataArray: Trial 4 Unit 2 Spike Times, Label: Unit 2, Unit: s\n",
|
|
|
|
+ " Metadata for Trial 4:\n",
|
|
|
|
+ " start_time: (10.0,)\n",
|
|
|
|
+ " end_time: (20.0,)\n",
|
|
|
|
+ " target_1: (5.0, 5.0)\n",
|
|
|
|
+ " target_2: (-5.0, 5.0)\n",
|
|
|
|
+ " reward_value: (10,)\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Open the NIX file\n",
|
|
|
|
+ "nix_file = nix.File.open('neural_data.nix', nix.FileMode.ReadOnly)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# List all blocks (sessions)\n",
|
|
|
|
+ "for block in nix_file.blocks:\n",
|
|
|
|
+ " print(f'Block: {block.name}')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # List all groups (trials) in the block\n",
|
|
|
|
+ " for group in block.groups:\n",
|
|
|
|
+ " print(f' Group: {group.name}')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # List all data arrays (units) in the group\n",
|
|
|
|
+ " for da in group.data_arrays:\n",
|
|
|
|
+ " print(f' DataArray: {da.name}, Label: {da.label}, Unit: {da.unit}')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ " # Access metadata\n",
|
|
|
|
+ " if group.metadata:\n",
|
|
|
|
+ " print(f' Metadata for {group.name}:')\n",
|
|
|
|
+ " for prop in group.metadata.props:\n",
|
|
|
|
+ " print(f' {prop.name}: {prop.values}')\n",
|
|
|
|
+ " \n",
|
|
|
|
+ "# Close the NIX file\n",
|
|
|
|
+ "nix_file.close()\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "metadata": {
|
|
|
|
+ "kernelspec": {
|
|
|
|
+ "display_name": "andani-dataset4",
|
|
|
|
+ "language": "python",
|
|
|
|
+ "name": "python3"
|
|
|
|
+ },
|
|
|
|
+ "language_info": {
|
|
|
|
+ "codemirror_mode": {
|
|
|
|
+ "name": "ipython",
|
|
|
|
+ "version": 3
|
|
|
|
+ },
|
|
|
|
+ "file_extension": ".py",
|
|
|
|
+ "mimetype": "text/x-python",
|
|
|
|
+ "name": "python",
|
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
|
+ "version": "3.13.0"
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "nbformat": 4,
|
|
|
|
+ "nbformat_minor": 2
|
|
|
|
+}
|