123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- %% Does the actual reliability calculations. Ruff removed HRTF's have less
- % directions, so downsample normal files. Makes things go faster too.
- clear
- %update these paths
- cd('F:\MATLAB\')
- addpath('F:\MATLAB\Brian_Reliability\Scripts')
- % % Load HRIRs
- owl_folder{1}='Merry';
- owl_folder{2}='Owl19';
- owl_folder{3}='Owl39';
- owl_folder{4}='Ugly';
- owl_folder{5}='Vespucci';
- haircut_id{1}='normal';
- haircut_id{2}='ohne'; % maximum cut
- date_folder = '06-06-22 Data'; %change to current date if rerunning next section
- %% Full analysis of reliability. Takes a while...
- % Once this is done once, this and the next section can be skipped. Could
- % add another if loop to automatically skip this section.
- tic
- for o=2:5
- for h=1:2
- clearvars -except h haircut_id o owl_folder date_folder
- load(['HRTF_Wagner_Lab\results\' owl_folder{o} '\' owl_folder{o} '__' haircut_id{h} '__hrir_result.mat'])
-
- newazimuths = -160:20:160;
- newelevations = -60:20:80;
-
- dir=NaN(2,length(azimuths)*length(elevations));
- TF1=NaN(length(azimuths)*length(elevations),size(hrir_l,3));
- TF2=NaN(length(azimuths)*length(elevations),size(hrir_l,3));
- count=0;
- for a=1:length(azimuths)
- for e=1:length(elevations)
- count=count+1;
- dir(:,count)=[elevations(e);azimuths(a)];
- TF1(count,:)=hrir_l(a,e,:);
- TF2(count,:)=hrir_r(a,e,:);
- end
- end
-
- newdir=NaN(2,length(newazimuths)*length(newelevations));
- count=0;
- for a=1:length(newazimuths)
- for e=1:length(newelevations)
- count=count+1;
- newdir(:,count)=[newelevations(e);newazimuths(a)];
- end
- end
-
- dir = dir';
- newdir = newdir';
- downsample = ismember(dir, newdir, 'rows');
- TF1 = TF1(downsample, :);
- TF2 = TF2(downsample, :);
- dir = newdir';
- azimuth = newazimuths;
- elevation = newelevations;
-
- clear newdir newazimuth newelevation
-
- % % Analysis parameters
-
- %center frequencies of cochlear filters (Hz)
- cF = 400:200:10000;
- %cF = linspace(1000,9000, 9);
- n_cF=length(cF);
-
- %Sampling frequency for HRTFs (Hz)
- Fs = samplingrate;
-
- %Factor by which you will upsample
- Factor = 5;
- %Number of trials for each condition
- Nt=5;
- % % Get cochlear filters
- %Upsampled frequency
- FS=Fs*Factor;
- %Get filters
- fcoefs=getFilterCoefs(cF,FS);
-
-
- % % Number of directions and initialize
- nd_tot=size(TF1,1);
- n_dir = size(TF1,1);
-
- IPDm_all = zeros(n_dir, n_cF, Nt);
- IPDs_all = zeros(n_dir, n_cF, Nt);
- % ITDm=zeros(n_dir,n_cF);
- % ITDs=zeros(n_dir,n_cF);
- ILDm_all = zeros(n_dir, n_cF, Nt);
- ILDs_all = zeros(n_dir, n_cF, Nt);
-
- gainr_all = zeros(n_dir, n_cF, Nt);
- gainl_all = zeros(n_dir, n_cF, Nt);
-
-
- % %
- tic
-
- TF1_res = resample(TF1',Factor,1)';
- TF2_res = resample(TF2',Factor,1)';
-
- parfor idir = 1:n_dir % TODO parfor
-
- %Resample the HRIRs
- hL=TF1_res(idir,:);
- hR=TF2_res(idir,:);
- %Run over trials
-
- for tt=1:Nt
-
- %Generate a target sound
- s=genSignal(100,1/30,1,2,2*pi*12);
- s1=resample(s,Factor,1);
-
- %Generate a masker
- s=genSignal(100,1/30,1,2,2*pi*12);
- s2=resample(s,Factor,1);
-
- %Convolve target with HRIR
- sL1=conv(hL,s1);
- sR1=conv(hR,s1);
-
- Z=zeros(n_dir,n_cF);
- GL=zeros(n_dir,n_cF);
- GR=zeros(n_dir,n_cF);
- ITDp=zeros(n_cF,n_dir);
-
- %Run over masking directions
- %disp(num2str([toc o h idir tt]))
-
- for k=1:nd_tot
- %disp(num2str([o h idir tt k]))
-
- %Resample the HRIRs
- hL2=TF1_res(k,:); %#ok<PFBNS>
- hR2=TF2_res(k,:); %#ok<PFBNS>
-
- %Convolve masker with HRIR and add to target
- sL=sL1+conv(hL2,s2);
- sR=sR1+conv(hR2,s2);
-
- %cochlear (gammmatone) filterbank
- vL=ERBFilterBank(sL,fcoefs);
- vR=ERBFilterBank(sR,fcoefs);
-
- %Run over frequency and compute cross correlation
- for icF = 1:n_cF
- [x,l]=xcorr(vL(icF,:),vR(icF,:));
- [~,j]=max(x);
- ITDp(icF,k)=l(j)*1/Fs*1e6/Factor;
- end
-
- %Compute ILD
- R=rms(vR,2);
- L=rms(vL,2);
- Z(k,:)=20*log10(R./L);
- GR(k,:)=20*log10(R);
- GL(k,:)=20*log10(L);
-
- end
-
-
- %Run over frequency and compute mean and SD
- for n=1:n_cF
-
- IPDp=ITDp(n,:)*cF(n)/1e6*2*pi; %#ok<PFBNS>
- IPDs_all(idir,n,tt) = circstd(IPDp/Nt);
- IPDm_all(idir,n,tt) = circmean(IPDp/Nt);
-
- end
-
- %compute mean and SD for ILD.
- ILDm_all(idir,:,tt) = mean(Z,1);
- ILDs_all(idir,:,tt) = std(Z,[],1);
-
- %compute gain
- gainr_all(idir,:,tt) = mean(GR,1);
- gainl_all(idir,:,tt) = mean(GL,1);
-
- end
- end
- IPDs = sum(IPDs_all, 3);
- IPDm = sum(IPDm_all, 3);
- ITDs = (1e6 * IPDs) ./ (2 * pi * cF);
- ITDm = (1e6 * IPDm) ./ (2 * pi * cF);
- ILDs = sum(ILDs_all, 3)/Nt;
- ILDm = sum(ILDm_all, 3)/Nt;
- gainl = sum(gainl_all, 3)/Nt;
- gainr = sum(gainr_all, 3)/Nt;
- toc
- save(['Shadron_Pena_2022\', date_folder, '\', owl_folder{o} '__' haircut_id{h} '__hrtf_fig1.mat'])
- end
- end
- %% Some minor editing
- for o = 1:5
- for h = 1:2
- clearvars -except h haircut_id o owl_folder date_folder
- load(['Shadron_Pena_2022\', date_folder, '\', owl_folder{o} '__' haircut_id{h} '__hrtf_fig1.mat'])
-
- %have to wrap ITD's to make things make sense
- %Earlier had to convert 17x8x563 to a 136x563, so now have to revert
- %back to 17x8x20.
-
- x = size(hrir_l, 3);
- y = size(cF, 2);
-
- IxD.IPDm = zeros(17,8,y);
- IxD.IPDs = zeros(17,8,y);
- IxD.ITDm = zeros(17,8,y);
- IxD.ITDs = zeros(17,8,y);
- IxD.ILDm = zeros(17,8,y);
- IxD.ILDs = zeros(17,8,y);
- IxD.gainl = zeros(17,8,y);
- IxD.gainr = zeros(17,8,y);
-
- for n = 1:y
- for a = 1:17
- for e = 1:8
- counter = (a-1)*8 + e;
- IxD.IPDm(a,e,n) = IPDm(counter,n);
- IxD.IPDs(a,e,n) = IPDs(counter,n);
- IxD.ITDm(a,e,n) = ITDm(counter,n);
- IxD.ITDs(a,e,n) = ITDs(counter,n);
- IxD.ILDm(a,e,n) = ILDm(counter,n);
- IxD.ILDs(a,e,n) = ILDs(counter,n);
- IxD.gainl(a,e,n) = gainl(counter,n);
- IxD.gainr(a,e,n) = gainr(counter,n);
- end
- end
- end
- clear n a e count Factor Fs FS idir n n_cF n_dir nd_tot Nt tt x ILDm ILDs IPDm IPDp IPDs ITDp ITDs ITDm
- clear samplingrate s1 s2 sL1 sR1 TF1 TF2 Z ax counter fcoef dir s fcoefs hL hR hrir_l hrir_r
-
- if size(IxD.IPDm,2) > 8 %Loop occurs if spatial locations are > 17 azimuth and > 9 elevation positions
- %Resamples to have locations that are
- %-160:20:160 in azimuth and -60:20:80 in elevation
- for n = 1:y
- for a = 1:2:34
- for e = 2:2:16
- IxD2.IPDm((a+1)/2, e/2, n) = IxD.IPDm(a,e,n);
- IxD2.IPDs((a+1)/2, e/2, n) = IxD.IPDs(a,e,n);
- IxD2.ITDm((a+1)/2, e/2, n) = IxD.ITDm(a,e,n);
- IxD2.ITDs((a+1)/2, e/2, n) = IxD.ITDs(a,e,n);
- IxD2.ILDm((a+1)/2, e/2, n) = IxD.ILDm(a,e,n);
- IxD2.ILDs((a+1)/2, e/2, n) = IxD.ILDs(a,e,n);
- end
- end
- end
-
-
- clear IxD
- IxD = IxD2;
- clear IxD2
-
- azimuths = -160:20:160;
- elevations = -60:20:80;
- end
-
-
- save(['Shadron_Pena_2022\', date_folder, '\', owl_folder{o} '__' haircut_id{h} '__stats_fig1.mat'])
-
- end
- end
- %% Compile all data into one struct
- clearvars -except h haircut_id o owl_folder date_folder
- condition = [];
- for o = [1 2 3 4 5]
- for h = 1:2
- clearvars -except h haircut_id o owl_folder condition date_folder
- load(['Shadron_Pena_2022\', date_folder, '\', owl_folder{o} '__' haircut_id{h} '__stats_fig1.mat'])
- condition.(owl_folder{o}).(haircut_id{h}) = IxD;
-
- end
- end
-
- clear IxD name
- %average the owls
- for h=1:2
- for o = [1 2 3 4 5]
- if o == 1
- condition.(haircut_id{h}).avg.IPDm = condition.(owl_folder{o}).(haircut_id{h}).IPDm;
- condition.(haircut_id{h}).avg.IPDs = condition.(owl_folder{o}).(haircut_id{h}).IPDs;
- condition.(haircut_id{h}).avg.ITDm = condition.(owl_folder{o}).(haircut_id{h}).ITDm;
- condition.(haircut_id{h}).avg.ITDs = condition.(owl_folder{o}).(haircut_id{h}).ITDs;
- condition.(haircut_id{h}).avg.ILDm = condition.(owl_folder{o}).(haircut_id{h}).ILDm;
- condition.(haircut_id{h}).avg.ILDs = condition.(owl_folder{o}).(haircut_id{h}).ILDs;
- condition.(haircut_id{h}).avg.gainl = condition.(owl_folder{o}).(haircut_id{h}).gainl;
- condition.(haircut_id{h}).avg.gainr = condition.(owl_folder{o}).(haircut_id{h}).gainr;
- else
- condition.(haircut_id{h}).avg.IPDs = condition.(haircut_id{h}).avg.IPDs + condition.(owl_folder{o}).(haircut_id{h}).IPDs;
- condition.(haircut_id{h}).avg.ITDm = condition.(haircut_id{h}).avg.ITDm + condition.(owl_folder{o}).(haircut_id{h}).ITDm;
- condition.(haircut_id{h}).avg.ITDs = condition.(haircut_id{h}).avg.ITDs + condition.(owl_folder{o}).(haircut_id{h}).ITDs;
- condition.(haircut_id{h}).avg.ILDm = condition.(haircut_id{h}).avg.ILDm + condition.(owl_folder{o}).(haircut_id{h}).ILDm;
- condition.(haircut_id{h}).avg.ILDs = condition.(haircut_id{h}).avg.ILDs + condition.(owl_folder{o}).(haircut_id{h}).ILDs;
- condition.(haircut_id{h}).avg.gainl = condition.(haircut_id{h}).avg.gainl + condition.(owl_folder{o}).(haircut_id{h}).gainl;
- condition.(haircut_id{h}).avg.gainr = condition.(haircut_id{h}).avg.gainr + condition.(owl_folder{o}).(haircut_id{h}).gainr;
- end
- end
- condition.(haircut_id{h}).avg.IPDm = condition.(haircut_id{h}).avg.IPDm / 5;
- condition.(haircut_id{h}).avg.IPDs = condition.(haircut_id{h}).avg.IPDs / 5;
- condition.(haircut_id{h}).avg.ITDm = condition.(haircut_id{h}).avg.ITDm / 5;
- condition.(haircut_id{h}).avg.ITDs = condition.(haircut_id{h}).avg.ITDs / 5;
- condition.(haircut_id{h}).avg.ILDm = condition.(haircut_id{h}).avg.ILDm / 5;
- condition.(haircut_id{h}).avg.ILDs = condition.(haircut_id{h}).avg.ILDs / 5;
- condition.(haircut_id{h}).avg.gainl = condition.(haircut_id{h}).avg.gainl/5;
- condition.(haircut_id{h}).avg.gainr = condition.(haircut_id{h}).avg.gainr/5;
- end
- %% Makes the reliability maps across azimuth as in Cazettes et al (2014)
- lowf = 1200; % The lowest frequency you want to include in the normalization
- highf = 8000;
- %low = ((lowf-1000)/200);
- low = find(cF == lowf) - 1;
- high = find(cF == highf);
- for h = 1:2
- condition.(haircut_id{h}).avg.reliability.IPD = (condition.(haircut_id{h}).avg.IPDs.^-1);
- condition.(haircut_id{h}).avg.reliability.ILD = (condition.(haircut_id{h}).avg.ILDs.^-1);
- condition.(haircut_id{h}).avg.reliability.normalizedIPD = zeros(size(azimuths,1),high-low);
- condition.(haircut_id{h}).avg.reliability.normalizedILD = zeros(size(azimuths,1),high-low);
- condition.(haircut_id{h}).avg.reliability.normIPDaz = zeros(size(azimuths,1),2);
-
- for a = 1:17
- [big, pt] = max(condition.(haircut_id{h}).avg.reliability.IPD(a,4,1+low:high));
- for n = 1:high-low
- condition.(haircut_id{h}).avg.reliability.normalizedIPD(a,n) = condition.(haircut_id{h}).avg.reliability.IPD(a,4,n+low)/big;
- end
- condition.(haircut_id{h}).avg.reliability.normIPDaz(a,1) = mean(condition.(haircut_id{h}).avg.reliability.IPD(a,4,1+low:high).^-1);
- condition.(haircut_id{h}).avg.reliability.normIPDaz(a,2) = std(condition.(haircut_id{h}).avg.reliability.IPD(a,4,1+low:high).^-1);
- end
- for a = 1:17
- [big, pt] = max(condition.(haircut_id{h}).avg.reliability.ILD(a,4,1+low:high));
- for n = 1:high-low
- condition.(haircut_id{h}).avg.reliability.normalizedILD(a,n) = condition.(haircut_id{h}).avg.reliability.ILD(a,4,n+low)/big;
- end
- end
- end
- short = cF(1+low:high);
- % Can run to see overall pattern before normalization
- % figure
- % normalmap = imagesc(azimuths, short, condition.(haircut_id{1}).avg.reliability.normalizedIPD'); axis xy
- % title(['IPD Reliability Along Azimuth: ', haircut_id{1}, ' (n = 5)']); colorbar; colormap jet
- %
- % figure
- % ohnemap = imagesc(azimuths, short, condition.(haircut_id{2}).avg.reliability.normalizedIPD'); axis xy
- % title(['IPD Reliability Along Azimuth: ', haircut_id{2}, ' (n = 5)']); colorbar; colormap jet
- %% Figure 1a and 1b
- posazi = 0:20:160;
- shortKHz = short/1000;
- colors = f_gsafecmap(256);
- colormap(flipud(colors));
- d = figure;
- set(gcf,'Position',[100 100 600 450]);
- posnormalmap = imagesc(posazi, shortKHz, condition.(haircut_id{1}).avg.reliability.normalizedIPD(9:17,:)'); axis xy
- title('Normal')
- %title(['IPD Reliability Along Azimuth: ', haircut_id{1}, ' (n = 5)']);
- posnormalmapc = colorbar; colormap(flipud(colors)); clim([0.2 1]);
- %posnormalmapc.Label.String = 'Reliability'; posnormalmapc.Label.FontSize = 18;
- ylabel('Frequency (KHz)'); xlabel('Azimuth (°)');
- ylabel('Frequency (KHz)', 'FontSize', 22); xlabel('Azimuth (°)', 'FontSize', 22);
- set(gca,'XTick',[0 45 90 135 180], 'XTickLabel', [0 45 90 135 180], 'fontsize', 18);
- set(d,'Units','Inches');
- set(d,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[2.8, 2.24])
- text(-35,8.6, 'a', 'FontSize', 28);
- %saveas(posnormalmap, 'F:\Various Files\My Papers\Shadron and Pena 2022\Matlab\normreliab.png')
- figure
- set(gcf,'Position',[100 100 600 450]);
- posohnemap = imagesc(posazi, shortKHz, condition.(haircut_id{2}).avg.reliability.normalizedIPD(9:17,:)'); axis xy
- title('Ruffcut')
- %title(['IPD Reliability Along Azimuth: ', haircut_id{2}, ' (n = 5)']);
- posohnemapc = colorbar; colormap(flipud(colors)); clim([0.2 1]);
- posohnemapc.Label.String = 'Reliability'; posohnemapc.Label.FontSize = 22;
- %ylabel('Frequency (KHz)'); xlabel('Azimuth (deg)');
- xlabel('Azimuth (°)', 'FontSize', 22);
- set(gca,'XTick',[0 45 90 135 180], 'XTickLabel', [0 45 90 135 180], 'fontsize', 18);
- text(-35,8.6, 'b', 'FontSize', 28);
- %saveas(posohnemap, 'F:\Various Files\My Papers\Shadron and Pena 2022\Matlab\ruffcutreliab.png')
- %For non normalized:
- %imagesc(posazi, shortKHz, permute(squeeze(condition.(haircut_id{1}).avg.reliability.IPD(9:17,4,:)),[2 1]));colorbar
- %% Figure 1c
- diffIPD = condition.(haircut_id{2}).avg.reliability.IPD - condition.(haircut_id{1}).avg.reliability.IPD;
- diffILD = condition.(haircut_id{2}).avg.reliability.ILD - condition.(haircut_id{1}).avg.reliability.ILD;
- dIPD = squeeze(diffIPD(:,4,:));
- dILD = squeeze(diffILD(:,4,:));
- figure
- set(gcf,'Position',[100 100 600 450]);
- IPDd = imagesc(azimuths(9:end), cF(low:high), dIPD(9:end,low:high)'); axis xy;
- IPDdc = colorbar; clim([-.3 .3]); colors = f_gsafecmap(256); colormap(flipud(colors));
- ylabel('Frequency (KHz)', 'FontSize', 22);
- xlabel('Azimuth (°)', 'FontSize', 22);
- IPDdc.Label.String = 'Ruffcut IPD - Normal IPD';
- IPDdc.Label.FontSize = 22;
- IPDdc.FontSize = 16;
- set(gca,'XTick',[0 45 90 135 180], 'XTickLabel', [0 45 90 135 180], 'fontsize', 18);
- set(gca,'YTick',2000:2000:8000, 'YTickLabel', [2 4 6 8], 'fontsize', 18);
- text(-35,8600, 'c', 'FontSize', 24);
- %saveas(IPDd, 'F:\Various Files\My Papers\Shadron and Pena 2022\Matlab\reliabdiff.png')
- %set(IPDdc,'Units','Inches');
- % colors = f_gsafecmap(256);
- % colormap(flipud(colors));
- % ILDd = imagesc(azimuths(9:end), cF(4:end), dILD(9:end,4:end)'); axis xy; colorbar; caxis([-.5 .5]);
- % ylabel('Frequency (KHz)','FontSize', 20);
- % xlabel('Azimuth (Deg)','FontSize', 20);
- % title('Difference in ILD reliability', 'FontSize', 20)
- %% ILD, not shown in manuscript
- posazi = 160:-20:0;
- shortKHz = short/1000;
- colors = f_gsafecmap(256);
- colormap(flipud(colors));
- figure
- negnormalmap = imagesc(posazi, shortKHz, condition.(haircut_id{1}).avg.reliability.normalizedILD(1:9,:)'); axis xy
- title('Normal', 'FontSize', 20);
- negnormalmapc = colorbar; clim([0.2 1]);
- negnormalmapc.Label.String = 'Reliability'; negnormalmapc.Label.FontSize = 18;
- colormap(flipud(colors));
- ylabel('Frequency (KHz)', 'FontSize', 20); xlabel('Azimuth (deg)', 'FontSize', 20);
- set(gca,'XTick',[0 45 90 135 180], 'XTickLabel', [0 45 90 135 180], 'fontsize', 16);
- figure
- negohnemap = imagesc(posazi, shortKHz, condition.(haircut_id{2}).avg.reliability.normalizedILD(1:9,:)'); axis xy
- title('Ruff Cut', 'FontSize', 20);
- negohnemapc = colorbar; colormap(flipud(colors)); clim([0.2 1]);
- negohnemapc.Label.String = 'Reliability'; negohnemapc.Label.FontSize = 18;
- %ylabel('Frequency (KHz)','FontSize', 20);
- xlabel('Azimuth (deg)', 'FontSize', 20);
- set(gca,'XTick',[0 45 90 135 180], 'XTickLabel', [0 45 90 135 180], 'fontsize', 16);
- %For non normalized:
- %imagesc(posazi, shortKHz, permute(squeeze(condition.(haircut_id{1}).avg.reliability.IPD(9:17,4,:)),[2 1]));colorbar
- %% ILD reliability, not used in manuscript
- colors = f_gsafecmap(256);
- colormap(flipud(colors));
- figure
- posnormalmap = imagesc(posazi, shortKHz, condition.(haircut_id{1}).avg.reliability.normalizedILD(9:17,:)'); axis xy
- title('Normal: ILD reliability')
- %title(['ILD Reliability Along Azimuth: ', haircut_id{1}, ' (n = 5)']);
- posnormalmapc = colorbar; colormap(flipud(colors));
- posnormalmapc.Label.String = 'Reliability'; posnormalmapc.Label.FontSize = 12;
- ylabel('Frequency (KHz)'); xlabel('ITD (us)');
- figure
- posohnemap = imagesc(posazi, shortKHz, condition.(haircut_id{2}).avg.reliability.normalizedILD(9:17,:)'); axis xy
- title('Ruffcut: ILD reliability')
- %title(['IPD Reliability Along Azimuth: ', haircut_id{2}, ' (n = 5)']);
- posohnemapc = colorbar; colormap(flipud(colors));
- posohnemapc.Label.String = 'Reliability'; posohnemapc.Label.FontSize = 12;
- ylabel('Frequency (KHz)'); xlabel('ITD (us)');
- %For non normalized:
- %imagesc(posazi, shortKHz, permute(squeeze(condition.(haircut_id{1}).avg.reliability.IPD(9:17,4,:)),[2 1]));colorbar
- %% s.d. IPD averaged across freq for each azimuth, not used in manuscript
- IPDstd = figure;
- hold on
- scatter(azimuths, condition.(haircut_id{1}).avg.reliability.normIPDaz(:,1)/180, 40, 'blue', 'filled', 'o')
- scatter(azimuths, condition.(haircut_id{2}).avg.reliability.normIPDaz(:,1)/180, 40, 'red', 'filled', 'o')
- errorbar(azimuths, condition.(haircut_id{1}).avg.reliability.normIPDaz(:,1)/180, condition.(haircut_id{1}).avg.reliability.normIPDaz(:,2)/180, ...
- 'blue', 'LineStyle', 'none')
- errorbar(azimuths, condition.(haircut_id{2}).avg.reliability.normIPDaz(:,1)/180, condition.(haircut_id{2}).avg.reliability.normIPDaz(:,2)/180, ...
- 'red', 'LineStyle', 'none')
- xlabel('Azimuth (deg)')
- ylabel('IPD standard deviation')
- xlim([-10,90])
- legend('Normal', 'Ruff-Removed', 'Location', 'southeast')
- fontsize(gca, 16,"points")
|