123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- import pandas as pd
- import numpy as np
- from matplotlib import pyplot as plt
- import matplotlib.dates as mdates
- import yaml
- from mix_simul.scenarios import Scenario
- with open("scenarios/rte.yml", 'r') as f:
- rte = yaml.load(f, Loader=yaml.FullLoader)
- potential = pd.read_parquet("data/potential.parquet")
- potential = potential.loc['1985-01-01 00:00:00':'2015-01-01 00:00:00', :]
- potential.fillna(0, inplace=True)
- begin = "2012-01-01"
- end = "2015-01-01"
- flexibility = False
- potential = potential.loc[(
- slice(f'{begin} 00:00:00', f'{end} 00:00:00'), 'FR'), :]
- # intermittent sources potential
- p = potential[["onshore", "offshore", "solar"]].to_xarray().to_array()
- p = np.insert(p, 3, 0.7, axis=0) # nuclear power-like
- times = potential.index.get_level_values(0)
- fig, axes = plt.subplots(nrows=6, ncols=2, sharex="col", sharey=True)
- w, h = fig.get_size_inches()
- fig.set_figwidth(w*1.5)
- fig.set_figheight(h*1.5)
- fig_storage, axes_storage = plt.subplots(nrows=6, ncols=2, sharex="col", sharey=True)
- fig_storage.set_figwidth(w*1.5)
- fig_storage.set_figheight(h*1.5)
- fig_dispatch, axes_dispatch = plt.subplots(nrows=6, ncols=2, sharex="col", sharey=True)
- fig_dispatch.set_figwidth(w*1.5)
- fig_dispatch.set_figheight(h*1.5)
- fig_gap_distribution, axes_gap_distribution = plt.subplots(nrows=3, ncols=2, sharex="col", sharey=True)
- fig_gap_distribution.set_figwidth(w*1.5)
- fig_gap_distribution.set_figheight(h*1.5)
- date_fmt = mdates.DateFormatter('%d/%m')
- # for step in np.linspace(start, stop, 2050-2022, True)[::-1]:
- row = 0
- for scenario in rte:
- rte[scenario]["flexibility_power"] = 0
- scenario_model = Scenario(**rte[scenario])
- S, load, production, gap, storage, dp = scenario_model.run(times, p)
- print(f"{scenario}:", S, gap.max(), np.quantile(gap, 0.95))
- print(f"exports: {np.minimum(np.maximum(-gap, 0), 39).sum()/1000} TWh; imports: {np.minimum(np.maximum(gap, 0), 39).sum()/1000} TWh")
- print(f"dispatchable: " + ", ".join([f"{dp[i].sum()/1000:.2f} TWh" for i in range(dp.shape[0])]))
- potential['load'] = load
- potential['production'] = production
- potential['available'] = production-np.diff(storage.sum(axis=0), append=0)
- for i in range(3):
- potential[f"storage_{i}"] = np.diff(storage[i,:], append=0)#storage[i,:]/1000
- potential[f"storage_{i}"] = storage[i,:]/1000
- for i in range(dp.shape[0]):
- potential[f"dispatch_{i}"] = dp[i,:]
- potential["dispatch"] = dp.sum(axis=0)
- data = [
- potential.loc[(slice('2013-02-01 00:00:00',
- '2013-03-01 00:00:00'), 'FR'), :],
- potential.loc[(slice('2013-06-01 00:00:00',
- '2013-07-01 00:00:00'), 'FR'), :]
- ]
- months = [
- "Février",
- "Juin"
- ]
- labels = [
- "load (GW)",
- "production (GW)",
- "available power (production-storage) (GW)",
- "power deficit"
- ]
- labels_storage = [
- "Batteries (TWh)",
- "STEP (TWh)",
- "P2G (TWh)"
- ]
- labels_dispatch = [
- "Hydro (GW)",
- "Biomass (GW)",
- "Thermal (GW)"
- ]
- for col in range(2):
- ax = axes[row, col]
- ax.plot(data[col].index.get_level_values(0), data[col]
- ["load"], label="adjusted load (GW)", lw=1)
- ax.plot(data[col].index.get_level_values(0), data[col]
- ["production"], label="production (GW)", ls="dotted", lw=1)
- ax.plot(data[col].index.get_level_values(0), data[col]["available"],
- label="available power (production-d(storage)/dt) (GW)", lw=1)
- ax.fill_between(
- data[col].index.get_level_values(0),
- data[col]["available"],
- data[col]["load"],
- where=data[col]["load"] > data[col]["available"],
- color='red',
- alpha=0.15
- )
- ax.xaxis.set_major_formatter(date_fmt)
- ax.text(
- 0.5, 0.87, f"Scénario {scenario} ({months[col]})", ha='center', transform=ax.transAxes)
- ax.set_ylim(10, 210)
- ax = axes_storage[row, col]
- for i in np.arange(3):
- if i == 2:
- base = 0
- else:
- base = np.sum([data[col][f"storage_{j}"] for j in np.arange(i+1,3)], axis=0)
-
- ax.fill_between(data[col].index.get_level_values(0), base, base+data[col]
- [f"storage_{i}"], label=f"storage {i}", alpha=0.5)
- ax.plot(data[col].index.get_level_values(0), base+data[col]
- [f"storage_{i}"], label=f"storage {i}", lw=0.25)
- ax.xaxis.set_major_formatter(date_fmt)
- ax.text(
- 0.5, 0.87, f"Scénario {scenario} ({months[col]})", ha='center', transform=ax.transAxes)
- ax = axes_dispatch[row, col]
- for i in range(dp.shape[0]):
- if i == 0:
- base = 0
- else:
- base = np.sum([data[col][f"dispatch_{j}"] for j in np.arange(i)], axis=0)
-
- ax.fill_between(data[col].index.get_level_values(0), base, base+data[col]
- [f"dispatch_{i}"], label=f"dispatch {i}", alpha=0.5)
- ax.plot(data[col].index.get_level_values(0), base+data[col]
- [f"dispatch_{i}"], label=f"dispatch {i}", lw=0.25)
- ax.xaxis.set_major_formatter(date_fmt)
- ax.text(
- 0.5, 0.87, f"Scénario {scenario} ({months[col]})", ha='center', transform=ax.transAxes)
- ax = axes_gap_distribution[row%3, row//3]
- hist, bin_edges = np.histogram(gap, bins=1000)
- hist = np.cumsum(hist)
- hist = 100*(hist - hist.min()) / hist.ptp()
- keep = np.abs(bin_edges[:-1]) < 50
- ax.plot(bin_edges[:-1][keep], hist[keep], label="power gap")
- ax.text(
- 0.5, 0.87, f"Scénario {scenario}", ha='center', transform=ax.transAxes)
-
- row += 1
- for label in axes[-1, 0].get_xmajorticklabels() + axes[-1, 1].get_xmajorticklabels():
- label.set_rotation(30)
- label.set_horizontalalignment("right")
- for label in axes_storage[-1, 0].get_xmajorticklabels() + axes_storage[-1, 1].get_xmajorticklabels():
- label.set_rotation(30)
- label.set_horizontalalignment("right")
- for label in axes_dispatch[-1, 0].get_xmajorticklabels() + axes_dispatch[-1, 1].get_xmajorticklabels():
- label.set_rotation(30)
- label.set_horizontalalignment("right")
- flex = "With" if flexibility else "Without"
- plt.subplots_adjust(wspace=0, hspace=0)
- fig.suptitle(f"Simulations based on {begin}--{end} weather data.\n{flex} consumption flexibility; no nuclear seasonality (unrealistic)")
- fig.text(1, 0, 'Lucas Gautheron', ha="right")
- fig.legend(labels, loc='lower right', bbox_to_anchor=(1, -0.1),
- ncol=len(labels), bbox_transform=fig.transFigure)
- fig.savefig("output/load_supply.png", bbox_inches="tight", dpi=200)
- fig_storage.suptitle(f"Simulations based on {begin}--{end} weather data.\n{flex} consumption flexibility; no nuclear seasonality (unrealistic)")
- fig_storage.text(1, 0, 'Lucas Gautheron', ha="right")
- fig_storage.legend(labels_storage, loc='lower right', bbox_to_anchor=(1, -0.1),
- ncol=len(labels_storage), bbox_transform=fig_storage.transFigure)
- fig_storage.savefig("output/storage.png", bbox_inches="tight", dpi=200)
- fig_dispatch.suptitle(f"Simulations based on {begin}--{end} weather data.\n{flex} consumption flexibility; no nuclear seasonality (unrealistic)")
- fig_dispatch.text(1, 0, 'Lucas Gautheron', ha="right")
- fig_dispatch.legend(labels_dispatch, loc='lower right', bbox_to_anchor=(1, -0.1),
- ncol=len(labels_dispatch), bbox_transform=fig_dispatch.transFigure)
- fig_dispatch.savefig("output/dispatch.png", bbox_inches="tight", dpi=200)
- fig_gap_distribution.suptitle(f"Power gap cumulative distribution (%)\nSimulations based on {begin}--{end} weather data.\n{flex} consumption flexibility; no nuclear seasonality (unrealistic)")
- fig_gap_distribution.legend(["Power gap (available-load) (GW)"], loc='lower right', bbox_to_anchor=(1, -0.1),
- ncol=1, bbox_transform=fig_dispatch.transFigure)
- fig_gap_distribution.text(1, 0, 'Lucas Gautheron', ha="right")
- fig_gap_distribution.savefig("output/gap_distribution.png", bbox_inches="tight", dpi=200)
- plt.show()
|