change.stan 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. functions {
  2. vector z_scale(vector x) {
  3. return (x-mean(x))/sd(x);
  4. }
  5. }
  6. data {
  7. int<lower=1> N;
  8. int<lower=1> K;
  9. vector<lower=0>[N] soc_cap;
  10. vector<lower=0>[N] soc_div;
  11. vector<lower=0>[N] int_div;
  12. vector[N] res_soc_div;
  13. vector<lower=0>[N] age;
  14. vector<lower=0>[N] m;
  15. matrix<lower=0,upper=1>[N,K] x;
  16. vector[N] stable;
  17. array [N] int<lower=0,upper=K-1> primary_research_area;
  18. }
  19. transformed data {
  20. vector[N] z_m = z_scale(m);
  21. vector[N] z_soc_cap = z_scale(soc_cap);
  22. vector[N] z_soc_div = z_scale(soc_div);
  23. vector[N] z_int_div = z_scale(int_div);
  24. vector[N] z_res_soc_div = z_scale(res_soc_div);
  25. vector[N] z_age = z_scale(age);
  26. }
  27. parameters {
  28. real beta_soc_cap;
  29. real beta_soc_div;
  30. real beta_int_div;
  31. real beta_stable;
  32. real beta_age;
  33. vector[K] beta_x;
  34. real mu;
  35. real<lower=0> tau;
  36. real<lower=0> sigma;
  37. vector<lower=0,upper=1>[K] mu_x;
  38. vector<lower=1>[K] eta;
  39. real<lower=0,upper=1> mu_pop;
  40. real<lower=1> eta_pop;
  41. }
  42. model {
  43. vector[N] beta_research_area;
  44. for (k in 1:N) {
  45. beta_research_area[k] = beta_x[primary_research_area[k]+1]*tau;
  46. }
  47. beta_soc_cap ~ normal(0, 1);
  48. beta_soc_div ~ normal(0, 1);
  49. beta_int_div ~ normal(0, 1);
  50. beta_x ~ double_exponential(0, 1);
  51. beta_stable ~ normal(0, 1);
  52. beta_age ~ normal(0, 1);
  53. mu ~ normal(0, 1);
  54. tau ~ exponential(1);
  55. sigma ~ exponential(1);
  56. z_m ~ normal(beta_soc_cap*z_soc_cap + beta_soc_div*z_res_soc_div + beta_int_div*z_int_div + beta_stable*stable + beta_age*z_age + beta_research_area + mu, sigma);
  57. eta ~ pareto(1, 1.5);
  58. mu_x ~ uniform(0, 1);
  59. eta_pop ~ pareto(1, 1.5);
  60. mu_pop ~ uniform(0, 1);
  61. for (k in 1:N) {
  62. m[k] ~ beta_proportion(mu_x[primary_research_area[k]+1], eta[primary_research_area[k]+1]);
  63. }
  64. m ~ beta_proportion(mu_pop, eta_pop);
  65. }
  66. generated quantities {
  67. real R2 = 0;
  68. {
  69. vector[N] beta_research_area;
  70. for (k in 1:N) {
  71. beta_research_area[k] = beta_x[primary_research_area[k]+1]*tau;
  72. }
  73. //vector[N] pred = inv_logit(beta_soc_cap*z_soc_cap + beta_soc_div*res_soc_div + beta_int_div*z_int_div + beta_stable*stable + beta_research_area + mu);
  74. vector[N] pred = beta_soc_cap*z_soc_cap + beta_soc_div*z_res_soc_div + beta_int_div*z_int_div + beta_stable*stable + beta_age*z_age + beta_research_area + mu;
  75. R2 = mean(square(z_m-pred))/variance(z_m);
  76. R2 = 1-R2;
  77. }
  78. }