123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727 |
- from cProfile import label
- import numpy as np
- import pandas as pd
- from scipy.stats import entropy
- import ot
- from sklearn.linear_model import LinearRegression
- from matplotlib import pyplot as plt
- import matplotlib
- matplotlib.use("pgf")
- matplotlib.rcParams.update(
- {
- "pgf.texsystem": "xelatex",
- "font.family": "serif",
- "font.serif": "Times New Roman",
- "text.usetex": True,
- "pgf.rcfonts": False,
- }
- )
- plt.rcParams["text.latex.preamble"].join([
- r"\usepackage{amsmath}",
- r"\setmainfont{amssymb}",
- ])
- from textwrap import wrap
- import argparse
- from os.path import join as opj, exists
- import pickle
- from cmdstanpy import CmdStanModel
- parser = argparse.ArgumentParser()
- parser.add_argument("--input")
- parser.add_argument("--dataset", default="inspire-harvest/database")
- parser.add_argument("--suffix", default=None)
- parser.add_argument("--metric", default="change", choices=["change", "disruption", "diversification", "diversification_stirling", "entered", "exited", "exited_total_power_effect"])
- parser.add_argument("--diversity", default="entropy", choices=["entropy", "stirling"])
- parser.add_argument("--power", choices=["magnitude", "brokerage"], default="magnitude")
- parser.add_argument("--model", default="", choices=["", "bare"])
- parser.add_argument("--compact", action="store_true", default=False)
- parser.add_argument("--fla", action="store_true", default=False)
- args = parser.parse_args()
- fla = "_fla" if args.fla else ""
- def age():
- if not exists(opj(args.input, "age.csv")):
- articles = pd.read_parquet(opj(args.dataset, "articles.parquet"))[["article_id", "date_created", "pacs_codes", "curated", "accelerators"]]
- articles["article_id"] = articles.article_id.astype(int)
- articles = articles[articles["date_created"].str.len() >= 4]
- articles["year"] = articles["date_created"].str[:4].astype(int)
- articles["age"] = 2015-articles["date_created"].str[:4].astype(int)
- age = articles[["article_id", "age"]].copy()
- articles = articles[(articles["year"]>=2000)&(articles["year"]<2010)]
- _articles = pd.read_csv(opj(args.input, "articles.csv"))
- articles = _articles.merge(articles, how="inner")
- authors = pd.read_parquet(opj(args.dataset, "articles_authors.parquet"))
- authors["article_id"] = authors.article_id.astype(int)
- n_authors = authors.groupby("article_id").agg(n_authors=("bai", "count")).reset_index()
- articles = articles.merge(n_authors, how="left", left_on="article_id", right_on="article_id")
- # exclude large collaborations (experiments, software, etc.)
- articles = articles[articles.accelerators.map(len)==0]
- articles = articles[articles["n_authors"]<10]
- references = pd.read_parquet(opj(args.dataset, "articles_references.parquet"))
- references = references[references["cites"]!=references["cited"]]
- references = references.groupby("cited").agg(citations=("cites", "count")).reset_index()
- references["cited"] = references.cited.astype(int)
- references = references[references["cited"].isin(articles.article_id)]
- articles = articles.merge(references, how="outer", left_on="article_id", right_on="cited")
- articles.dropna(subset=["year"], inplace=True)
- articles.fillna({"citations": 0}, inplace=True)
- articles["citations_per_author"] = articles["citations"]/articles["n_authors"]
- del references
- age = age.merge(authors, how="inner", left_on="article_id", right_on="article_id")
- age = age.groupby("bai").agg(age=("age", "max")).reset_index()
- age.to_csv(opj(args.input, "age.csv"))
- else:
- age = pd.read_csv(opj(args.input, "age.csv"))
- return age
- def institution_stability():
- if exists(opj(args.input, "institutional_stability.csv")):
- return pd.read_csv(opj(args.input, "institutional_stability.csv"), index_col="bai")
-
- affiliations = pd.read_parquet(opj(args.dataset, "affiliations.parquet"))
- affiliations["article_id"] = affiliations.article_id.astype(int)
- articles = pd.read_parquet(opj(args.dataset, "articles.parquet"))[["article_id", "date_created"]]
- articles = articles[articles["date_created"].str.len() >= 4]
- articles["year"] = articles["date_created"].str[:4].astype(int) - 2000
- articles["article_id"] = articles.article_id.astype(int)
- articles = articles[articles["year"] <= 2019 - 2000]
- articles = articles[articles["year"] >= 0]
- affiliations["article_id"] = affiliations.article_id.astype(int)
- affiliations = affiliations.merge(articles, how="inner", left_on="article_id", right_on="article_id")
- affiliations = affiliations[affiliations["bai"].isin(df["bai"])]
- authors_last = affiliations.groupby("bai").agg(last_article=("year", "max"))
- hosts = affiliations.sort_values(["bai", "institution_id", "year"]).groupby(["bai", "institution_id"]).agg(
- first=("year", "min"),
- last=("year", "max")
- )
- hosts["duration"] = hosts["last"]-hosts["first"]
- stability = hosts.groupby("bai").agg(stability=("duration", "max"), last=("last", "max"), first=("first", "min"))
- stability = stability.merge(authors_last, left_index=True, right_index=True)
- stability["stable"] = stability["stability"]>=(stability["last"]-stability["first"]-1)
- stability.to_csv(opj(args.input, "institutional_stability.csv"))
- return stability
- def productivity():
- if exists(opj(args.input, "productivity.csv")):
- return pd.read_csv(opj(args.input, "productivity.csv"), index_col="bai")
- articles = pd.read_parquet(opj(args.dataset, "articles.parquet"))[["article_id", "date_created", "categories"]]
- articles["article_id"] = articles.article_id.astype(int)
- articles = articles[articles["date_created"].str.len() >= 4]
- articles["year"] = articles["date_created"].str[:4].astype(int)
- articles = articles[articles["categories"].map(lambda x: "Phenomenology-HEP" in x or "Theory-HEP" in x)]
- articles = articles[(articles["year"]>=2000)&(articles["year"]<2010)]
- _articles = pd.read_csv(opj(args.input, "articles.csv"))
- articles = _articles.merge(articles, how="inner")
- authors = pd.read_parquet(opj(args.dataset, "articles_authors.parquet"))
- authors["article_id"] = authors.article_id.astype(int)
- n_authors = authors.groupby("article_id").agg(n_authors=("bai", "count")).reset_index()
- articles = articles.merge(n_authors, how="inner", left_on="article_id", right_on="article_id")
- articles["solo"] = articles["n_authors"]==1
- articles = articles.merge(authors, how="left", left_on="article_id", right_on="article_id")
- productivity = articles.groupby("bai").agg(
- productivity=("solo", lambda x: (~x).sum()),
- productivity_solo=("solo", "sum")
- )
- productivity.to_csv(opj(args.input, "productivity.csv"))
- return productivity
- suffix = f"_{args.suffix}" if args.suffix is not None else ""
- topics = pd.read_csv(opj(args.input, "topics.csv"))
- junk = topics["label"].str.contains("Junk")
- topics = topics[~junk]["label"].tolist()
- fig, ax = plt.subplots()
- n_topics = len(pd.read_csv(opj(args.input, "topics.csv")))
- df = pd.read_csv(opj(args.input, f"aggregate{fla}.csv"))
- resources = pd.read_parquet(opj(args.input, "pooled_resources.parquet"))
- df = df.merge(resources, left_on="bai", right_on="bai")
- NR = np.stack(df[[f"start_{k+1}" for k in range(n_topics)]].values).astype(int)
- NC = np.stack(df[[f"end_{k+1}" for k in range(n_topics)]].values).astype(int)
- expertise = np.stack(df[[f"expertise_{k+1}" for k in range(n_topics)]].values)
- S = np.stack(df["pooled_resources"])
- brokerage = pd.read_csv("output/authors_brokerage.csv")
- df = df.merge(brokerage, left_on="bai", right_on="bai")
- NR = NR[:,~junk]
- NC = NC[:,~junk]
- expertise = expertise[:,~junk]
- S = S[:,~junk]
- x = NR/NR.sum(axis=1)[:,np.newaxis]
- y = NC/NC.sum(axis=1)[:,np.newaxis]
- S_distrib = S/S.sum(axis=1)[:,np.newaxis]
- R = np.array([
- [((expertise[:,i]>expertise[:,i].mean())&(expertise[:,j]>expertise[:,j].mean())).mean()/(expertise[:,i]>expertise[:,i].mean()).mean() for j in range(len(topics))]
- for i in range(len(topics))
- ])
- change = np.abs(y-x).sum(axis=1)/2
- diversification = (np.exp(entropy(y, axis=1))-np.exp(entropy(x, axis=1)))/x.shape[1]
- x_matrix = np.einsum("ki,kj->kij", x, x)
- y_matrix = np.einsum("ki,kj->kij", y, y)
- x_stirling = 1-np.einsum("ij,kij->k", R, x_matrix)
- y_stirling = 1-np.einsum("ij,kij->k", R, y_matrix)
- cost_matrix = np.load(opj(args.input, f"cost_knowledge_bounded.npz"))["C"].mean(axis=0)
- print(cost_matrix.sum())
- cost_matrix = cost_matrix*(1-np.eye(x.shape[1])).sum()/cost_matrix.sum()
- disruption = np.zeros(len(change))
- for a in range(len(change)):
- # disruption[a] = ot.emd2(x[a,:].copy(order='C'), y[a,:].copy(order='C'), 1-R, processes=4)
- disruption[a] = ot.emd2(x[a,:].copy(order='C'), y[a,:].copy(order='C'), cost_matrix, processes=4)
- alpha = 1
- exited = ((x>alpha*x.mean(axis=0))&(y<alpha*y.mean(axis=0))).sum(axis=1)
- entered = ((x<alpha*x.mean(axis=0))&(y>alpha*y.mean(axis=0))).sum(axis=1)
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- ax.hist(change, bins=np.linspace(0,1,50), histtype="step", color = '#377eb8', label="Change score $c_a$")
- ax.hist(disruption, bins=np.linspace(0,1,50), histtype="step", color = '#ff7f00', label="Cognitive distance $d_a$")
- ax.set_xlabel(f"Change score $c_a$ and cognitive distance $d_a$")
- ax.set_ylabel("\\# of scientists")
- ax.legend()
- fig.savefig(opj(args.input, f"change_disruption_score{fla}.eps"), bbox_inches="tight")
- print("change 50%% interval: ", np.quantile(change,q=0.25), np.quantile(change,q=1-0.25))
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- ax.hist(diversification, bins=np.linspace(-0.5,0.5,50), histtype="step")
- ax.set_xlabel(f"Diversification score $\\Delta_a$")
- ax.set_ylabel("\\# of scientists")
- fig.savefig(opj(args.input, f"diversification_score{fla}.eps"), bbox_inches="tight")
- fig, ax = plt.subplots()
- ax.hist(disruption, bins=np.linspace(0,1,50), histtype="step")
- ax.set_xlabel(f"Disruption score $d_a$")
- ax.set_ylabel("\\# of scientists")
- fig.savefig(opj(args.input, f"disruption_score{fla}.eps"), bbox_inches="tight")
- df["change_score"] = change
- df["disruption_score"] = disruption
- df["diversification_score"] = diversification
- df["diversification_stirling_score"] = y_stirling-x_stirling
- df["entered_score"] = (entered>0).astype(int)
- df["exited_score"] = (exited>0).astype(int)
- df["exited_total_power_effect_score"] = (exited>0).astype(int)
- df["origin"] = np.argmax(x, axis=1)
- df["target"] = np.argmax(y, axis=1)
- df["origin_value"] = x.max(axis=1)
- df["target_value"] = y.max(axis=1)
- df["origin_final_value"] = np.array(y[a,df.loc[a, "origin"]] for a in range(x.shape[0]))
- df["target_initial_value"] = np.array(x[a,df.loc[a, "target"]] for a in range(x.shape[0]))
- df["origin_label"] = df["origin"].apply(lambda k: topics[k])
- df["target_label"] = df["target"].apply(lambda k: topics[k])
- df["origin_label"] = df.apply(lambda row: row["origin_label"] + (f" ({row['origin_value']:.2f})" if row["origin"]==row["target"] else f" ({row['origin_value']:.2f}$\\to${row['origin_final_value']:.2f})"), axis=1)
- df["target_label"] = df.apply(lambda row: row["target_label"] + (f" ({row['target_value']:.2f})" if row["origin"]==row["target"] else f" ({row['target_initial_value']:.2f}$\\to${row['target_value']:.2f})"), axis=1)
- df["social_entropy"] = np.exp(entropy(S,axis=1))
- df["intellectual_entropy"] = np.exp(entropy(expertise,axis=1))
- expertise_matrix = np.einsum("ki,kj->kij", expertise, expertise)
- social_expertise_matrix = np.einsum("ki,kj->kij", S_distrib, S_distrib)
- df["intellectual_stirling"] = 1-np.einsum("ij,kij->k", R, expertise_matrix)
- df["social_stirling"] = 1-np.einsum("ij,kij->k", R, social_expertise_matrix)
- stability = institution_stability()
- df = df.merge(stability, left_on="bai", right_index=True)
- df = df.merge(age(), left_on="bai", right_on="bai")
- df = df.merge(productivity(), left_on="bai", right_on="bai")
- df["productivity"] /= np.maximum(df["age"]-5, 10)
- df["productivity_solo"] /= np.maximum(df["age"]-5, 10)
- print(df["productivity_solo"])
- df["primary_research_area"] = x.argmax(axis=1)
- df["social_diversity"] = df[f"social_{args.diversity}"].fillna(0)
- df["intellectual_diversity"] = df[f"intellectual_{args.diversity}"].fillna(0)
- df["res_social_diversity"] = df["social_diversity"]-LinearRegression().fit(df[["intellectual_diversity"]], df["social_diversity"]).predict(df[["intellectual_diversity"]])
- data = {
- "N": len(df),
- "K": x.shape[1],
- "m": df[f"{args.metric}_score"],
- "soc_cap": np.log(1+S.sum(axis=1)) if args.power == "magnitude" else np.log(1+df["brokerage"].values),
- # "soc_cap": S.sum(axis=1) if args.power == "magnitude" else df["brokerage"].values,
- "soc_div": df["social_diversity"],
- "int_div": df["intellectual_diversity"],
- "res_soc_div": df["res_social_diversity"],
- "productivity": df["productivity"],
- "productivity_solo": df["productivity_solo"],
- "x": x,
- "initial_div": np.exp(entropy(x, axis=1)),
- "primary_research_area": df["primary_research_area"],
- "stable": df["stable"].astype(float).values,
- "age": df["age"].values
- }
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- ax.hist(change[df["primary_research_area"] != 4], bins=np.linspace(0,1,25), histtype="step", label=f"Others ($\\mu={change[df['primary_research_area'] != 4].mean():.2f}$)", density=True)
- ax.hist(change[df["primary_research_area"] == 4], bins=np.linspace(0,1,25), histtype="step", label=f"Collider physics ($\\mu={change[df['primary_research_area'] == 4].mean():.2f}$)", density=True)
- ax.set_xlabel(f"Change score $c_a = \\frac{{1}}{{2}}\\sum_k |y_{{ak}}-x_{{ak}}|$")
- ax.set_ylabel("\\# of scientists")
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
- fig.savefig(opj(args.input, f"change_score_collider_physics{fla}.eps"), bbox_inches="tight")
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- ax.hist(disruption[df["primary_research_area"] != 4], bins=np.linspace(0,1,25), histtype="step", label=f"Others ($\\mu={disruption[df['primary_research_area'] != 4].mean():.2f}$)", density=True)
- ax.hist(disruption[df["primary_research_area"] == 4], bins=np.linspace(0,1,25), histtype="step", label=f"Collider physics ($\\mu={disruption[df['primary_research_area'] == 4].mean():.2f}$)", density=True)
- ax.set_xlabel(f"Cognitive distance $d_a$")
- ax.set_ylabel("\\# of scientists")
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
- fig.savefig(opj(args.input, f"disruption_score_collider_physics{fla}.eps"), bbox_inches="tight")
- if not exists(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}{fla}.npz")):
- model = CmdStanModel(
- stan_file=f"code/{args.metric}.stan" if args.model==""
- else f"code/{args.metric}_{args.model}_{args.power}.stan",
- )
- fit = model.sample(
- data=data,
- chains=4,
- iter_sampling=10000,
- iter_warmup=1000,
- show_console=True
- )
- vars = fit.stan_variables()
- samples = {}
- for (k, v) in vars.items():
- samples[k] = v
- np.savez_compressed(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}{fla}.npz"), **samples)
- samples = np.load(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}{fla}.npz"))
- labels = [
- "Intellectual capital (diversity)",
- "Social capital (diversity)",
- "Social capital (power)",
- "Stable affiliation",
- "Academic age",
- "Productivity (co-authored)",
- "Productivity (solo-authored)",
- ]
- labels = [f"\\textbf{{{label}}}" for label in labels]
- labels += topics
- names = [
- "beta_int_div", "beta_soc_div", "beta_soc_cap", "beta_stable", "beta_age", "beta_productivity", "beta_productivity_solo"
- ]
- if args.metric not in ["entered", "exited"] and args.metric not in ["change", "disruption"]:
- mu = np.array([samples[name].mean() for name in names] + [(samples["beta_x"][:,i]*samples["tau"]).mean() for i in range(x.shape[1])])
- low = np.array([np.quantile(samples[name], q=0.05/2) for name in names] + [np.quantile(samples["beta_x"][:,i]*samples["tau"], q=0.05/2) for i in range(x.shape[1])])
- up = np.array([np.quantile(samples[name], q=1-0.05/2) for name in names] + [np.quantile(samples["beta_x"][:,i]*samples["tau"], q=1-0.05/2) for i in range(x.shape[1])])
- sig = up*low>0
- prob = np.array([(samples[name]*np.sign(samples[name].mean())<0).mean() for name in names] + [((samples["beta_x"][:,i]*np.sign(samples["beta_x"][:,i].mean()))<0).mean() for i in range(x.shape[1])])
- keep = sig | (np.arange(len(sig))<len(names))
- mu = mu[keep]
- low = low[keep]
- up = up[keep]
- prob = prob[keep]
- sign = ["<" if _mu>0 else ">" for i, _mu in enumerate(mu)]
- labels = [label for i, label in enumerate(labels) if keep[i]]
- n_vars = len(labels)
- # effect of capital and controls
- fig, ax = plt.subplots(figsize=[6.4, 0.4*(1+n_vars)])
- ax.scatter(mu, np.arange(len(labels))[::-1])
- ax.errorbar(mu, np.arange(len(labels))[::-1], xerr=(mu-low,up-mu), ls="none", capsize=4, elinewidth=1)
- ax.set_yticks(np.arange(len(labels))[::-1], labels)
- for i, p in enumerate(prob):
- if p>1e-4 and np.abs(p-0.5)>0.4:
- ax.text(
- -0.02 if mu[i]>0 else 0.02,
- np.arange(len(labels))[::-1][i],
- f"\\scriptsize $\\mu(\\beta)={mu[i]:.2g}, P(\\beta{sign[i]}0)={p:.2g}$",
- ha="right" if mu[i]>0 else "left",
- va="center"
- )
- elif p<0.05/2 or p>1-0.05/2:
- ax.text(
- -0.02 if mu[i]>0 else 0.02,
- np.arange(len(labels))[::-1][i],
- f"\\scriptsize $\\mu(\\beta)={mu[i]:.2g}$",
- ha="right" if mu[i]>0 else "left",
- va="center"
- )
- ax.set_xlabel(f"Effect on {args.metric}")
- ax.axvline(0, color="black")
- low, high = ax.get_xlim()
- bound = max(abs(low), abs(high))
- ax.set_xlim(-bound, bound)
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{fla}.eps"), bbox_inches="tight")
- # average change score per research area
- ratio = args.metric != "diversification"
- labels = topics
- if ratio:
- mu = np.array([(samples["mu_x"][:,i]/samples["mu_pop"]).mean() for i in range(x.shape[1])])
- low = np.array([np.quantile(samples["mu_x"][:,i]/samples["mu_pop"], q=0.05/2) for i in range(x.shape[1])])
- up = np.array([np.quantile(samples["mu_x"][:,i]/samples["mu_pop"], q=1-0.05/2) for i in range(x.shape[1])])
- sig = (up-1)*(low-1)>0
- else:
- mu = np.array([(samples["mu_x"][:,i]-samples["mu_pop"]).mean() for i in range(x.shape[1])])
- low = np.array([np.quantile(samples["mu_x"][:,i]-samples["mu_pop"], q=0.05/2) for i in range(x.shape[1])])
- up = np.array([np.quantile(samples["mu_x"][:,i]-samples["mu_pop"], q=1-0.05/2) for i in range(x.shape[1])])
- sig = (up)*(low)>0
- keep = sig
- mu = mu[keep]
- low = low[keep]
- up = up[keep]
- labels = [label for i, label in enumerate(labels) if keep[i]]
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- ax.scatter(mu, np.arange(len(labels))[::-1])
- ax.errorbar(mu, np.arange(len(labels))[::-1], xerr=(mu-low,up-mu), ls="none", capsize=4, elinewidth=1)
- ax.set_yticks(np.arange(len(labels))[::-1], labels)
- fig, ax = plt.subplots(figsize=[6.4, 3.2])
- df["m_ratio"] = df[f"{args.metric}_score"]/df[f"{args.metric}_score"].mean()
- research_areas = df.groupby("primary_research_area").agg(
- mu=("m_ratio", "mean"),
- low=("m_ratio", lambda x: np.quantile(x, q=0.05/2)),
- up=("m_ratio", lambda x: np.quantile(x, q=1-0.05/2)),
- label=("origin_label", lambda x: x.iloc[0])
- ).reset_index()
- low, high = ax.get_xlim()
- bound = max(abs(low), abs(high))
- ax.set_xlim(-bound, bound)
- ax.scatter(research_areas["mu"], research_areas.index)
- ax.errorbar(research_areas["mu"], research_areas.index, xerr=(research_areas["mu"]-research_areas["low"],research_areas["up"]-research_areas["low"]), ls="none", capsize=4, elinewidth=1)
- ax.set_yticks(research_areas.index, research_areas["label"])
- ax.set_xlabel(f"Ratio to average {args.metric} score" if ratio else f"Difference with average {args.metric} score")
- ax.axvline(1 if ratio else 0, color="black")
- fig.savefig(opj(args.input, f"{args.metric}_research_area{fla}.eps"), bbox_inches="tight")
- elif args.metric in ["change", "disruption"]:
- labels = [
- "Intellectual capital (diversity)",
- "Social capital (diversity)",
- "Social capital (power)",
- "Stable affiliation",
- "Academic age",
- "Productivity (co-authored)",
- "Productivity (solo-authored)",
- ]
- names = [
- "beta_int_div", "beta_soc_div", "beta_soc_cap", "beta_stable", "beta_age", "beta_productivity", "beta_productivity_solo"
- ]
- if not args.compact:
- labels = [f"\\textbf{{{label}}}" for label in labels]
- labels += topics
- samples = [
- np.load(opj(args.input, f"samples_change_{args.diversity}_{args.power}{fla}.npz")),
- np.load(opj(args.input, f"samples_disruption_{args.diversity}_{args.power}{fla}.npz"))
- ]
- mu = [None, None]
- low = [None, None]
- up = [None, None]
- sig = [None, None]
- prob = [None, None]
- for i in range(2):
- mu[i] = np.array([samples[i][name].mean() for name in names] + [(samples[i]["beta_x"][:,j]*samples[i]["tau"]).mean() for j in range(x.shape[1])])
- low[i] = np.array([np.quantile(samples[i][name], q=0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=0.05/2) for j in range(x.shape[1])])
- up[i] = np.array([np.quantile(samples[i][name], q=1-0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=1-0.05/2) for j in range(x.shape[1])])
- sig[i] = up[i]*low[i]>0
- prob[i] = np.array([(samples[i][name]*np.sign(samples[i][name].mean())<0).mean() for name in names] + [((samples[i]["beta_x"][:,j]*np.sign(samples[i]["beta_x"][:,j].mean()))<0).mean() for j in range(x.shape[1])])
- if args.compact:
- keep = (np.arange(len(sig[0]))<len(names))
- else:
- keep = sig[0] | sig[1] | (np.arange(len(sig[0]))<len(names))
- for i in range(2):
- mu[i] = mu[i][keep]
- low[i] = low[i][keep]
- up[i] = up[i][keep]
- prob[i] = prob[i][keep]
- sign = [["<" if _mu>0 else ">" for j, _mu in enumerate(mu[i])] for i in range(2)]
- labels = [label for i, label in enumerate(labels) if keep[i]]
- n_vars = len(labels)
- if args.compact:
- labels = [
- '\n'.join(map(lambda x: f"\\textbf{{{x}}}", wrap(label, width=15))) if i < 4
- else
- '\n'.join(wrap(label, width=15))
- for i, label in enumerate(labels)
- ]
- print(labels)
- # effect of capital and controls
- fig, ax = plt.subplots(figsize=[4.8 if args.compact else 6.4, 0.52*(1+n_vars)])
- colors = ['#377eb8', '#ff7f00']
- legend = ["change ($c_a$)", "cognitive distance ($d_a$)"]
- if args.compact:
- ax.set_xlim(-0.9, 1.25)
- for j in range(2):
- R2 = samples[j]["R2"].mean()
- dy = -0.125 if j else +0.125
- ax.scatter(mu[j], np.arange(len(labels))[::-1]+dy, color=colors[j])
- ax.errorbar(mu[j], np.arange(len(labels))[::-1]+dy, xerr=(mu[j]-low[j],up[j]-mu[j]), ls="none", capsize=4, elinewidth=1, color=colors[j], label=f"{legend[j]}, $R^2={R2:.2f}$")
- for i, p in enumerate(prob[j]):
- significant = p<0.05/2
- if p>1e-4 and np.abs(p-0.5)>0.4 and significant:
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g},P(\\beta{sign[j][i]}0)={p:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- elif p>1e-4 and np.abs(p-0.5)>0.4 and (not significant):
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $P(\\beta{sign[j][i]}0)={p:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- elif significant:
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- low, high = ax.get_xlim()
- bound = max(abs(low), abs(high))
- ax.set_xlim(-bound, bound)
- ax.set_yticks(np.arange(len(labels))[::-1], labels)
- ax.set_xlabel(f"Effect size (standard deviations)")
- ax.axvline(0, color="black")
- if args.compact:
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.3))
- else:
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.eps"), bbox_inches="tight")
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.pdf"), bbox_inches="tight")
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.png"), bbox_inches="tight", dpi=300)
- else:
- labels = [
- "Intellectual capital (diversity)",
- "Social capital (diversity)",
- "Social capital (power)",
- "Stable affiliation",
- "Academic age",
- "Productivity (co-authored)",
- "Productivity (solo-authored)",
- ]
- if not args.compact:
- labels = [f"\\textbf{{{label}}}" for label in labels]
- labels += topics
- samples = [
- np.load(opj(args.input, f"samples_entered_{args.diversity}_{args.power}{fla}.npz")),
- np.load(opj(args.input, f"samples_exited_{args.diversity}_{args.power}{fla}.npz"))
- ]
- mu = [None, None]
- low = [None, None]
- up = [None, None]
- sig = [None, None]
- prob = [None, None]
- for i in range(2):
- mu[i] = np.array([samples[i][name].mean() for name in names] + [(samples[i]["beta_x"][:,j]*samples[i]["tau"]).mean() for j in range(x.shape[1])])
- low[i] = np.array([np.quantile(samples[i][name], q=0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=0.05/2) for j in range(x.shape[1])])
- up[i] = np.array([np.quantile(samples[i][name], q=1-0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=1-0.05/2) for j in range(x.shape[1])])
- sig[i] = up[i]*low[i]>0
- prob[i] = np.array([(samples[i][name]*np.sign(samples[i][name].mean())<0).mean() for name in names] + [((samples[i]["beta_x"][:,j]*np.sign(samples[i]["beta_x"][:,j].mean()))<0).mean() for j in range(x.shape[1])])
- if args.compact:
- keep = (np.arange(len(sig[0]))<len(names))
- else:
- keep = sig[0] | sig[1] | (np.arange(len(sig[0]))<len(names))
- for i in range(2):
- mu[i] = mu[i][keep]
- low[i] = low[i][keep]
- up[i] = up[i][keep]
- prob[i] = prob[i][keep]
- sign = [["<" if _mu>0 else ">" for j, _mu in enumerate(mu[i])] for i in range(2)]
- labels = [label for i, label in enumerate(labels) if keep[i]]
- n_vars = len(labels)
- if args.compact:
- labels = [
- '\n'.join(map(lambda x: f"\\textbf{{{x}}}", wrap(label, width=15))) if i < 4
- else
- '\n'.join(wrap(label, width=15))
- for i, label in enumerate(labels)
- ]
- print(labels)
- # effect of capital and controls
- fig, ax = plt.subplots(figsize=[4.8 if args.compact else 6.4, 0.52*(1+n_vars)])
- colors = ['#377eb8', '#ff7f00']
- legend = ["entered new research area", "exited research area"]
- if args.compact:
- ax.set_xlim(-0.9, 1.25)
- for j in range(2):
- dy = -0.125 if j else +0.125
- ax.scatter(mu[j], np.arange(len(labels))[::-1]+dy, color=colors[j])
- ax.errorbar(mu[j], np.arange(len(labels))[::-1]+dy, xerr=(mu[j]-low[j],up[j]-mu[j]), ls="none", capsize=4, elinewidth=1, color=colors[j], label=legend[j])
- for i, p in enumerate(prob[j]):
- significant = p<0.05/2
- if p>1e-4 and np.abs(p-0.5)>0.4 and significant:
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g},P(\\beta{sign[j][i]}0)={p:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- elif p>1e-4 and np.abs(p-0.5)>0.4 and (not significant):
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $P(\\beta{sign[j][i]}0)={p:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- elif significant:
- ax.text(
- -0.02 if mu[j][i]>0 else 0.02,
- np.arange(len(labels))[::-1][i]+dy,
- f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g}$",
- ha="right" if mu[j][i]>0 else "left",
- va="center"
- )
- low, high = ax.get_xlim()
- bound = max(abs(low), abs(high))
- ax.set_xlim(-bound, bound)
-
- ax.set_yticks(np.arange(len(labels))[::-1], labels)
- ax.set_xlabel(f"Effect size (log odds ratio)")
- ax.axvline(0, color="black")
- if args.compact:
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.3))
- else:
- ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.eps"), bbox_inches="tight")
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.pdf"), bbox_inches="tight")
- fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}{fla}.png"), bbox_inches="tight", dpi=300)
- table = df[["bai", "stable", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"]].sort_values(f"{args.metric}_score", ascending=False)
- table.to_csv(opj(args.input, f"{args.metric}_scores.csv"))
- table["bai"] = table["bai"].str.replace(".1", "")
- table["bai"] = table["bai"].str.replace(r"^([A-Z])\.", r"\1.~")
- table["bai"] = table["bai"].str.replace(r"\.\~([A-Z])\.", r".~\1.~")
- table["bai"] = table["bai"].str.replace(r"([a-zA-Z]{2,})\.", r"\1 ")
- table["bai"] = table.apply(lambda r: r["bai"] if not r["stable"] else f"{r['bai']} ($\\ast$)", axis=1)
- table["target_label"] += "EOL"
- latex = table.head(20).to_latex(
- columns=["bai", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"],
- header=["Physicist", "$c_a$", "$D(\\bm{I_a})$", "$D(\\bm{S_a})$", "Previous main area", "Current main area"],
- index=False,
- multirow=True,
- multicolumn=True,
- column_format='p{0.15\\textwidth}|c|c|c|b{0.25\\textwidth}|b{0.25\\textwidth}',
- escape=False,
- float_format=lambda x: f"{x:.2f}",
- caption="Physicists with the highest change scores $c_a$. $D(\\bm{I_a})$ and $D(\\bm{S_a})$ measure the diversity of intellectual and social capital. Numbers in parentheses indicate the share of attention dedicated to each research area during each time-period. Asterisks ($\\ast$) indicate physicists with a permanent position.",
- label=f"table:top_{args.metric}",
- position="H"
- )
- latex = latex.replace('EOL \\\\\n', '\\\\ \\hline\n')
- with open(opj(args.input, f"top_{args.metric}.tex"), "w+") as fp:
- fp.write(latex)
- latex = table.sort_values(f"{args.metric}_score", ascending=True).head(20).to_latex(
- columns=["bai", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"],
- header=["Physicist", "$c_a$", "$D(\\bm{I_a})$", "$D(\\bm{S_a})$", "Previous main area", "Current main area"],
- index=False,
- multirow=True,
- multicolumn=True,
- column_format='p{0.15\\textwidth}|c|c|c|b{0.25\\textwidth}|b{0.25\\textwidth}',
- escape=False,
- float_format=lambda x: f"{x:.2f}",
- caption="Physicists with the lowest change scores $c_a$. $D(\\bm{I_a})$ and $D(\\bm{S_a})$ measure the diversity of intellectual and social capital. Numbers in parentheses indicate the share of attention dedicated to each research area. Asterisks ($\\ast$) indicate physicists with a permanent position.",
- label=f"table:low_{args.metric}",
- position="H"
- )
- latex = latex.replace('EOL \\\\\n', '\\\\ \\hline\n')
- with open(opj(args.input, f"low_{args.metric}.tex"), "w+") as fp:
- fp.write(latex)
|