entered.stan 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. functions {
  2. vector z_scale(vector x) {
  3. return (x-mean(x))/sd(x);
  4. }
  5. }
  6. data {
  7. int<lower=1> N;
  8. int<lower=1> K;
  9. vector<lower=0>[N] soc_cap;
  10. vector<lower=0>[N] soc_div;
  11. vector<lower=0>[N] int_div;
  12. vector[N] res_soc_div;
  13. vector<lower=0>[N] age;
  14. array[N] int<lower=0,upper=1> m;
  15. matrix<lower=0,upper=1>[N,K] x;
  16. vector[N] stable;
  17. array [N] int<lower=0,upper=K-1> primary_research_area;
  18. }
  19. transformed data {
  20. vector[N] z_soc_cap = z_scale(soc_cap);
  21. vector[N] z_soc_div = z_scale(soc_div);
  22. vector[N] z_int_div = z_scale(int_div);
  23. vector[N] z_res_soc_div = z_scale(res_soc_div);
  24. vector[N] z_age = z_scale(age);
  25. }
  26. parameters {
  27. real beta_soc_cap;
  28. real beta_soc_div;
  29. real beta_int_div;
  30. real beta_stable;
  31. real beta_age;
  32. vector[K] beta_x;
  33. real mu;
  34. real<lower=0> tau;
  35. real<lower=1> sigma;
  36. }
  37. model {
  38. vector[N] beta_research_area;
  39. for (k in 1:N) {
  40. beta_research_area[k] = tau*beta_x[primary_research_area[k]+1];
  41. }
  42. beta_soc_cap ~ normal(0, 1);
  43. beta_soc_div ~ normal(0, 1);
  44. beta_int_div ~ normal(0, 1);
  45. beta_x ~ double_exponential(0, 1);
  46. beta_stable ~ normal(0, 1);
  47. beta_age ~ normal(0, 1);
  48. mu ~ normal(0, 1);
  49. tau ~ exponential(1);
  50. sigma ~ pareto(1,1.5);
  51. m ~ bernoulli_logit(beta_soc_cap*z_soc_cap + beta_soc_div*z_res_soc_div + beta_int_div*z_int_div + beta_stable*stable + beta_age*z_age + beta_research_area + mu);
  52. }
  53. generated quantities {
  54. }