comparative_analysis.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. from cProfile import label
  2. import numpy as np
  3. import pandas as pd
  4. from scipy.stats import entropy
  5. import ot
  6. from sklearn.linear_model import LinearRegression
  7. from matplotlib import pyplot as plt
  8. import matplotlib
  9. matplotlib.use("pgf")
  10. matplotlib.rcParams.update(
  11. {
  12. "pgf.texsystem": "xelatex",
  13. "font.family": "serif",
  14. "font.serif": "Times New Roman",
  15. "text.usetex": True,
  16. "pgf.rcfonts": False,
  17. }
  18. )
  19. plt.rcParams["text.latex.preamble"].join([
  20. r"\usepackage{amsmath}",
  21. r"\setmainfont{amssymb}",
  22. ])
  23. from textwrap import wrap
  24. import argparse
  25. from os.path import join as opj, exists
  26. import pickle
  27. from cmdstanpy import CmdStanModel
  28. parser = argparse.ArgumentParser()
  29. parser.add_argument("--input")
  30. parser.add_argument("--suffix", default=None)
  31. parser.add_argument("--metric", default="change", choices=["change", "disruption", "diversification", "diversification_stirling", "entered", "exited"])
  32. parser.add_argument("--diversity", default="entropy", choices=["entropy", "stirling"])
  33. parser.add_argument("--power", choices=["magnitude", "brokerage"], default="magnitude")
  34. parser.add_argument("--model", default="", choices=["", "bare"])
  35. parser.add_argument("--compact", action="store_true", default=False)
  36. args = parser.parse_args()
  37. def institution_stability():
  38. if exists(opj(args.input, "institutional_stability.csv")):
  39. return pd.read_csv(opj(args.input, "institutional_stability.csv"), index_col="bai")
  40. affiliations = pd.read_parquet("../semantics/inspire-harvest/database/affiliations.parquet")
  41. affiliations["article_id"] = affiliations.article_id.astype(int)
  42. articles = pd.read_parquet("../semantics/inspire-harvest/database/articles.parquet")[["article_id", "date_created"]]
  43. articles = articles[articles["date_created"].str.len() >= 4]
  44. articles["year"] = articles["date_created"].str[:4].astype(int) - 2000
  45. articles["article_id"] = articles.article_id.astype(int)
  46. articles = articles[articles["year"] <= 2019 - 2000]
  47. articles = articles[articles["year"] >= 0]
  48. affiliations["article_id"] = affiliations.article_id.astype(int)
  49. affiliations = affiliations.merge(articles, how="inner", left_on="article_id", right_on="article_id")
  50. affiliations = affiliations[affiliations["bai"].isin(df["bai"])]
  51. authors_last = affiliations.groupby("bai").agg(last_article=("year", "max"))
  52. hosts = affiliations.sort_values(["bai", "institution_id", "year"]).groupby(["bai", "institution_id"]).agg(
  53. first=("year", "min"),
  54. last=("year", "max")
  55. )
  56. hosts["duration"] = hosts["last"]-hosts["first"]
  57. stability = hosts.groupby("bai").agg(stability=("duration", "max"), last=("last", "max"), first=("first", "min"))
  58. stability = stability.merge(authors_last, left_index=True, right_index=True)
  59. stability["stable"] = stability["stability"]>=(stability["last"]-stability["first"]-1)
  60. stability.to_csv(opj(args.input, "institutional_stability.csv"))
  61. return stability
  62. suffix = f"_{args.suffix}" if args.suffix is not None else ""
  63. topics = pd.read_csv(opj(args.input, "topics.csv"))
  64. junk = topics["label"].str.contains("Junk")
  65. topics = topics[~junk]["label"].tolist()
  66. fig, ax = plt.subplots()
  67. n_topics = len(pd.read_csv(opj(args.input, "topics.csv")))
  68. df = pd.read_csv(opj(args.input, "aggregate.csv"))
  69. resources = pd.read_parquet(opj(args.input, "pooled_resources.parquet"))
  70. df = df.merge(resources, left_on="bai", right_on="bai")
  71. NR = np.stack(df[[f"start_{k+1}" for k in range(n_topics)]].values).astype(int)
  72. NC = np.stack(df[[f"end_{k+1}" for k in range(n_topics)]].values).astype(int)
  73. expertise = np.stack(df[[f"expertise_{k+1}" for k in range(n_topics)]].values)
  74. S = np.stack(df["pooled_resources"])
  75. brokerage = pd.read_csv("output/authors_brokerage.csv")
  76. df = df.merge(brokerage, left_on="bai", right_on="bai")
  77. NR = NR[:,~junk]
  78. NC = NC[:,~junk]
  79. expertise = expertise[:,~junk]
  80. S = S[:,~junk]
  81. x = NR/NR.sum(axis=1)[:,np.newaxis]
  82. y = NC/NC.sum(axis=1)[:,np.newaxis]
  83. S_distrib = S/S.sum(axis=1)[:,np.newaxis]
  84. # R = np.array([
  85. # [((expertise[:,i]>expertise[:,i].mean())&(expertise[:,j]>expertise[:,j].mean())).mean()/((expertise[:,i]>expertise[:,i].mean())|(expertise[:,j]>expertise[:,j].mean())).mean() for j in range(len(topics))]
  86. # for i in range(len(topics))
  87. # ])
  88. R = np.array([
  89. [((expertise[:,i]>expertise[:,i].mean())&(expertise[:,j]>expertise[:,j].mean())).mean()/(expertise[:,i]>expertise[:,i].mean()).mean() for j in range(len(topics))]
  90. for i in range(len(topics))
  91. ])
  92. change = np.abs(y-x).sum(axis=1)/2
  93. diversification = (np.exp(entropy(y, axis=1))-np.exp(entropy(x, axis=1)))/x.shape[1]
  94. x_matrix = np.einsum("ki,kj->kij", x, x)
  95. y_matrix = np.einsum("ki,kj->kij", y, y)
  96. x_stirling = 1-np.einsum("ij,kij->k", R, x_matrix)
  97. y_stirling = 1-np.einsum("ij,kij->k", R, y_matrix)
  98. disruption = np.zeros(len(change))
  99. for a in range(len(change)):
  100. disruption[a] = ot.emd2(x[a,:].copy(order='C'), y[a,:].copy(order='C'), 1-R, processes=4)
  101. alpha = 1
  102. exited = ((x>alpha*x.mean(axis=0))&(y<alpha*y.mean(axis=0))).sum(axis=1)
  103. entered = ((x<alpha*x.mean(axis=0))&(y>alpha*y.mean(axis=0))).sum(axis=1)
  104. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  105. ax.hist(change, bins=np.linspace(0,1,50), histtype="step")
  106. ax.set_xlabel(f"Change score $c_a = \\frac{{1}}{{2}}\\sum_k |y_{{ak}}-x_{{ak}}|$")
  107. ax.set_ylabel("\\# of scientists")
  108. fig.savefig(opj(args.input, "change_score.eps"), bbox_inches="tight")
  109. print("change 50%% interval: ", np.quantile(change,q=0.25), np.quantile(change,q=1-0.25))
  110. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  111. ax.hist(diversification, bins=np.linspace(-0.5,0.5,50), histtype="step")
  112. ax.set_xlabel(f"Diversification score $\\Delta_a$")
  113. ax.set_ylabel("\\# of scientists")
  114. fig.savefig(opj(args.input, "diversification_score.eps"), bbox_inches="tight")
  115. fig, ax = plt.subplots()
  116. ax.hist(disruption, bins=np.linspace(0,1,50), histtype="step")
  117. ax.set_xlabel(f"Disruption score $d_a$")
  118. ax.set_ylabel("\\# of scientists")
  119. fig.savefig(opj(args.input, "disruption_score.eps"), bbox_inches="tight")
  120. df["change_score"] = change
  121. df["disruption_score"] = disruption
  122. df["diversification_score"] = diversification
  123. df["diversification_stirling_score"] = y_stirling-x_stirling
  124. df["entered_score"] = (entered>0).astype(int)
  125. df["exited_score"] = (exited>0).astype(int)
  126. df["origin"] = np.argmax(x, axis=1)
  127. df["target"] = np.argmax(y, axis=1)
  128. df["origin_value"] = x.max(axis=1)
  129. df["target_value"] = y.max(axis=1)
  130. df["origin_final_value"] = np.array(y[a,df.loc[a, "origin"]] for a in range(x.shape[0]))
  131. df["target_initial_value"] = np.array(x[a,df.loc[a, "target"]] for a in range(x.shape[0]))
  132. df["origin_label"] = df["origin"].apply(lambda k: topics[k])
  133. df["target_label"] = df["target"].apply(lambda k: topics[k])
  134. df["origin_label"] = df.apply(lambda row: row["origin_label"] + (f" ({row['origin_value']:.2f})" if row["origin"]==row["target"] else f" ({row['origin_value']:.2f}$\\to${row['origin_final_value']:.2f})"), axis=1)
  135. df["target_label"] = df.apply(lambda row: row["target_label"] + (f" ({row['target_value']:.2f})" if row["origin"]==row["target"] else f" ({row['target_initial_value']:.2f}$\\to${row['target_value']:.2f})"), axis=1)
  136. df["social_entropy"] = np.exp(entropy(S,axis=1))
  137. df["intellectual_entropy"] = np.exp(entropy(expertise,axis=1))
  138. expertise_matrix = np.einsum("ki,kj->kij", expertise, expertise)
  139. social_expertise_matrix = np.einsum("ki,kj->kij", S_distrib, S_distrib)
  140. df["intellectual_stirling"] = 1-np.einsum("ij,kij->k", R, expertise_matrix)
  141. df["social_stirling"] = 1-np.einsum("ij,kij->k", R, social_expertise_matrix)
  142. stability = institution_stability()
  143. df = df.merge(stability, left_on="bai", right_index=True)
  144. age = pd.read_csv(opj(args.input, "outcomes.csv"))[["bai", "age"]].drop_duplicates()
  145. df = df.merge(age, left_on="bai", right_on="bai")
  146. df["primary_research_area"] = x.argmax(axis=1)
  147. df["social_diversity"] = df[f"social_{args.diversity}"].fillna(0)
  148. df["intellectual_diversity"] = df[f"intellectual_{args.diversity}"].fillna(0)
  149. df["res_social_diversity"] = df["social_diversity"]-LinearRegression().fit(df[["intellectual_diversity"]], df["social_diversity"]).predict(df[["intellectual_diversity"]])
  150. data = {
  151. "N": len(df),
  152. "K": x.shape[1],
  153. "m": df[f"{args.metric}_score"],
  154. # "soc_cap": np.log(1+S.sum(axis=1)),
  155. "soc_cap": S.sum(axis=1) if args.power == "magnitude" else df["brokerage"].values,
  156. "soc_div": df["social_diversity"],
  157. "int_div": df["intellectual_diversity"],
  158. "res_soc_div": df["res_social_diversity"],
  159. "x": x,
  160. "initial_div": np.exp(entropy(x, axis=1)),
  161. "primary_research_area": df["primary_research_area"],
  162. "stable": df["stable"].astype(float).values,
  163. "age": df["age"].values
  164. }
  165. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  166. ax.hist(change[df["primary_research_area"] != 4], bins=np.linspace(0,1,25), histtype="step", label=f"Others ($\\mu={change[df['primary_research_area'] != 4].mean():.2f}$)", density=True)
  167. ax.hist(change[df["primary_research_area"] == 4], bins=np.linspace(0,1,25), histtype="step", label=f"Collider physics ($\\mu={change[df['primary_research_area'] == 4].mean():.2f}$)", density=True)
  168. ax.set_xlabel(f"Change score $c_a = \\frac{{1}}{{2}}\\sum_k |y_{{ak}}-x_{{ak}}|$")
  169. ax.set_ylabel("\\# of scientists")
  170. ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
  171. fig.savefig(opj(args.input, "change_score_collider_physics.eps"), bbox_inches="tight")
  172. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  173. ax.hist(disruption[df["primary_research_area"] != 4], bins=np.linspace(0,1,25), histtype="step", label=f"Others ($\\mu={disruption[df['primary_research_area'] != 4].mean():.2f}$)", density=True)
  174. ax.hist(disruption[df["primary_research_area"] == 4], bins=np.linspace(0,1,25), histtype="step", label=f"Collider physics ($\\mu={disruption[df['primary_research_area'] == 4].mean():.2f}$)", density=True)
  175. ax.set_xlabel(f"Disruption score $d_a$")
  176. ax.set_ylabel("\\# of scientists")
  177. ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
  178. fig.savefig(opj(args.input, "disruption_score_collider_physics.eps"), bbox_inches="tight")
  179. if not exists(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}.npz")):
  180. model = CmdStanModel(
  181. stan_file=f"code/{args.metric}.stan" if args.model=="" else f"code/{args.metric}_{args.model}_{args.power}.stan",
  182. )
  183. fit = model.sample(
  184. data=data,
  185. chains=4,
  186. iter_sampling=10000,
  187. iter_warmup=1000,
  188. show_console=True
  189. )
  190. vars = fit.stan_variables()
  191. samples = {}
  192. for (k, v) in vars.items():
  193. samples[k] = v
  194. np.savez_compressed(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}.npz"), **samples)
  195. samples = np.load(opj(args.input, f"samples_{args.metric}_{args.diversity}_{args.power}.npz"))
  196. labels = [
  197. "Intellectual capital (diversity)",
  198. "Social capital (diversity)",
  199. "Social capital (power)",
  200. "Stable affiliation",
  201. ]
  202. labels = [f"\\textbf{{{label}}}" for label in labels]
  203. labels += topics
  204. names = [
  205. "beta_int_div", "beta_soc_div", "beta_soc_cap", "beta_stable"
  206. ]
  207. if args.metric not in ["entered", "exited"]:
  208. mu = np.array([samples[name].mean() for name in names] + [(samples["beta_x"][:,i]*samples["tau"]).mean() for i in range(x.shape[1])])
  209. low = np.array([np.quantile(samples[name], q=0.05/2) for name in names] + [np.quantile(samples["beta_x"][:,i]*samples["tau"], q=0.05/2) for i in range(x.shape[1])])
  210. up = np.array([np.quantile(samples[name], q=1-0.05/2) for name in names] + [np.quantile(samples["beta_x"][:,i]*samples["tau"], q=1-0.05/2) for i in range(x.shape[1])])
  211. sig = up*low>0
  212. prob = np.array([(samples[name]*np.sign(samples[name].mean())<0).mean() for name in names] + [((samples["beta_x"][:,i]*np.sign(samples["beta_x"][:,i].mean()))<0).mean() for i in range(x.shape[1])])
  213. keep = sig | (np.arange(len(sig))<len(names))
  214. mu = mu[keep]
  215. low = low[keep]
  216. up = up[keep]
  217. prob = prob[keep]
  218. sign = ["<" if _mu>0 else ">" for i, _mu in enumerate(mu)]
  219. labels = [label for i, label in enumerate(labels) if keep[i]]
  220. n_vars = len(labels)
  221. # effect of capital and controls
  222. fig, ax = plt.subplots(figsize=[6.4, 0.4*(1+n_vars)])
  223. ax.scatter(mu, np.arange(len(labels))[::-1])
  224. ax.errorbar(mu, np.arange(len(labels))[::-1], xerr=(mu-low,up-mu), ls="none", capsize=4, elinewidth=1)
  225. ax.set_yticks(np.arange(len(labels))[::-1], labels)
  226. for i, p in enumerate(prob):
  227. if p>1e-4 and np.abs(p-0.5)>0.4:
  228. ax.text(
  229. -0.02 if mu[i]>0 else 0.02,
  230. np.arange(len(labels))[::-1][i],
  231. f"\\scriptsize $\\mu(\\beta)={mu[i]:.2g}, P(\\beta{sign[i]}0)={p:.2g}$",
  232. ha="right" if mu[i]>0 else "left",
  233. va="center"
  234. )
  235. elif p<0.05/2 or p>1-0.05/2:
  236. ax.text(
  237. -0.02 if mu[i]>0 else 0.02,
  238. np.arange(len(labels))[::-1][i],
  239. f"\\scriptsize $\\mu(\\beta)={mu[i]:.2g}$",
  240. ha="right" if mu[i]>0 else "left",
  241. va="center"
  242. )
  243. ax.set_xlabel(f"Effect on {args.metric}")
  244. ax.axvline(0, color="black")
  245. fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}.eps"), bbox_inches="tight")
  246. # average change score per research area
  247. ratio = args.metric != "diversification"
  248. labels = topics
  249. if ratio:
  250. mu = np.array([(samples["mu_x"][:,i]/samples["mu_pop"]).mean() for i in range(x.shape[1])])
  251. low = np.array([np.quantile(samples["mu_x"][:,i]/samples["mu_pop"], q=0.05/2) for i in range(x.shape[1])])
  252. up = np.array([np.quantile(samples["mu_x"][:,i]/samples["mu_pop"], q=1-0.05/2) for i in range(x.shape[1])])
  253. sig = (up-1)*(low-1)>0
  254. else:
  255. mu = np.array([(samples["mu_x"][:,i]-samples["mu_pop"]).mean() for i in range(x.shape[1])])
  256. low = np.array([np.quantile(samples["mu_x"][:,i]-samples["mu_pop"], q=0.05/2) for i in range(x.shape[1])])
  257. up = np.array([np.quantile(samples["mu_x"][:,i]-samples["mu_pop"], q=1-0.05/2) for i in range(x.shape[1])])
  258. sig = (up)*(low)>0
  259. keep = sig
  260. mu = mu[keep]
  261. low = low[keep]
  262. up = up[keep]
  263. labels = [label for i, label in enumerate(labels) if keep[i]]
  264. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  265. ax.scatter(mu, np.arange(len(labels))[::-1])
  266. ax.errorbar(mu, np.arange(len(labels))[::-1], xerr=(mu-low,up-mu), ls="none", capsize=4, elinewidth=1)
  267. ax.set_yticks(np.arange(len(labels))[::-1], labels)
  268. fig, ax = plt.subplots(figsize=[6.4, 3.2])
  269. df["m_ratio"] = df[f"{args.metric}_score"]/df[f"{args.metric}_score"].mean()
  270. research_areas = df.groupby("primary_research_area").agg(
  271. mu=("m_ratio", "mean"),
  272. low=("m_ratio", lambda x: np.quantile(x, q=0.05/2)),
  273. up=("m_ratio", lambda x: np.quantile(x, q=1-0.05/2)),
  274. label=("origin_label", lambda x: x.iloc[0])
  275. ).reset_index()
  276. ax.scatter(research_areas["mu"], research_areas.index)
  277. ax.errorbar(research_areas["mu"], research_areas.index, xerr=(research_areas["mu"]-research_areas["low"],research_areas["up"]-research_areas["low"]), ls="none", capsize=4, elinewidth=1)
  278. ax.set_yticks(research_areas.index, research_areas["label"])
  279. ax.set_xlabel(f"Ratio to average {args.metric} score" if ratio else f"Difference with average {args.metric} score")
  280. ax.axvline(1 if ratio else 0, color="black")
  281. fig.savefig(opj(args.input, f"{args.metric}_research_area.eps"), bbox_inches="tight")
  282. else:
  283. labels = [
  284. "Intellectual capital (diversity)",
  285. "Social capital (diversity)",
  286. "Social capital (power)",
  287. "Stable affiliation",
  288. ]
  289. if not args.compact:
  290. labels = [f"\\textbf{{{label}}}" for label in labels]
  291. labels += topics
  292. samples = [
  293. np.load(opj(args.input, f"samples_entered_{args.diversity}_{args.power}.npz")),
  294. np.load(opj(args.input, f"samples_exited_{args.diversity}_{args.power}.npz"))
  295. ]
  296. mu = [None, None]
  297. low = [None, None]
  298. up = [None, None]
  299. sig = [None, None]
  300. prob = [None, None]
  301. for i in range(2):
  302. mu[i] = np.array([samples[i][name].mean() for name in names] + [(samples[i]["beta_x"][:,j]*samples[i]["tau"]).mean() for j in range(x.shape[1])])
  303. low[i] = np.array([np.quantile(samples[i][name], q=0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=0.05/2) for j in range(x.shape[1])])
  304. up[i] = np.array([np.quantile(samples[i][name], q=1-0.05/2) for name in names] + [np.quantile(samples[i]["beta_x"][:,j]*samples[i]["tau"], q=1-0.05/2) for j in range(x.shape[1])])
  305. sig[i] = up[i]*low[i]>0
  306. prob[i] = np.array([(samples[i][name]*np.sign(samples[i][name].mean())<0).mean() for name in names] + [((samples[i]["beta_x"][:,j]*np.sign(samples[i]["beta_x"][:,j].mean()))<0).mean() for j in range(x.shape[1])])
  307. if args.compact:
  308. keep = (np.arange(len(sig[0]))<len(names))
  309. else:
  310. keep = sig[0] | sig[1] | (np.arange(len(sig[0]))<len(names))
  311. for i in range(2):
  312. mu[i] = mu[i][keep]
  313. low[i] = low[i][keep]
  314. up[i] = up[i][keep]
  315. prob[i] = prob[i][keep]
  316. sign = [["<" if _mu>0 else ">" for j, _mu in enumerate(mu[i])] for i in range(2)]
  317. labels = [label for i, label in enumerate(labels) if keep[i]]
  318. n_vars = len(labels)
  319. if args.compact:
  320. labels = [
  321. '\n'.join(map(lambda x: f"\\textbf{{{x}}}", wrap(label, width=15))) if i < 4
  322. else
  323. '\n'.join(wrap(label, width=15))
  324. for i, label in enumerate(labels)
  325. ]
  326. print(labels)
  327. # effect of capital and controls
  328. fig, ax = plt.subplots(figsize=[4.8 if args.compact else 6.4, 0.52*(1+n_vars)])
  329. colors = ['#377eb8', '#ff7f00']
  330. legend = ["entered new research area", "exited research area"]
  331. if args.compact:
  332. ax.set_xlim(-0.9, 1.25)
  333. for j in range(2):
  334. dy = -0.125 if j else +0.125
  335. ax.scatter(mu[j], np.arange(len(labels))[::-1]+dy, color=colors[j])
  336. ax.errorbar(mu[j], np.arange(len(labels))[::-1]+dy, xerr=(mu[j]-low[j],up[j]-mu[j]), ls="none", capsize=4, elinewidth=1, color=colors[j], label=legend[j])
  337. for i, p in enumerate(prob[j]):
  338. significant = p<0.05/2
  339. if p>1e-4 and np.abs(p-0.5)>0.4 and significant:
  340. ax.text(
  341. -0.02 if mu[j][i]>0 else 0.02,
  342. np.arange(len(labels))[::-1][i]+dy,
  343. f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g},P(\\beta{sign[j][i]}0)={p:.2g}$",
  344. ha="right" if mu[j][i]>0 else "left",
  345. va="center"
  346. )
  347. elif p>1e-4 and np.abs(p-0.5)>0.4 and (not significant):
  348. ax.text(
  349. -0.02 if mu[j][i]>0 else 0.02,
  350. np.arange(len(labels))[::-1][i]+dy,
  351. f"\\scriptsize $P(\\beta{sign[j][i]}0)={p:.2g}$",
  352. ha="right" if mu[j][i]>0 else "left",
  353. va="center"
  354. )
  355. elif significant:
  356. ax.text(
  357. -0.02 if mu[j][i]>0 else 0.02,
  358. np.arange(len(labels))[::-1][i]+dy,
  359. f"\\scriptsize $\\mu(\\beta)={mu[j][i]:.2g}$",
  360. ha="right" if mu[j][i]>0 else "left",
  361. va="center"
  362. )
  363. ax.set_yticks(np.arange(len(labels))[::-1], labels)
  364. ax.set_xlabel(f"Effect size (log odds ratio)")
  365. ax.axvline(0, color="black")
  366. if args.compact:
  367. ax.legend(loc='upper right', bbox_to_anchor=(1, 1.3))
  368. else:
  369. ax.legend(loc='upper right', bbox_to_anchor=(1, 1.2))
  370. fig.savefig(opj(args.input, f"{args.metric}_score_effects_{args.diversity}_{args.power}{'_compact' if args.compact else ''}.eps"), bbox_inches="tight")
  371. table = df[["bai", "stable", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"]].sort_values(f"{args.metric}_score", ascending=False)
  372. table.to_csv(opj(args.input, f"{args.metric}_scores.csv"))
  373. table["bai"] = table["bai"].str.replace(".1", "")
  374. table["bai"] = table["bai"].str.replace(r"^([A-Z])\.", r"\1.~")
  375. table["bai"] = table["bai"].str.replace(r"\.\~([A-Z])\.", r".~\1.~")
  376. table["bai"] = table["bai"].str.replace(r"([a-zA-Z]{2,})\.", r"\1 ")
  377. table["bai"] = table.apply(lambda r: r["bai"] if not r["stable"] else f"{r['bai']} ($\\ast$)", axis=1)
  378. table["target_label"] += "EOL"
  379. latex = table.head(20).to_latex(
  380. columns=["bai", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"],
  381. header=["Physicist", "$c_a$", "$D(\\bm{I_a})$", "$D(\\bm{S_a})$", "Previous main area", "Current main area"],
  382. index=False,
  383. multirow=True,
  384. multicolumn=True,
  385. column_format='p{0.15\\textwidth}|c|c|c|b{0.25\\textwidth}|b{0.25\\textwidth}',
  386. escape=False,
  387. float_format=lambda x: f"{x:.2f}",
  388. caption="Physicists with the highest change scores $c_a$. $D(\\bm{I_a})$ and $D(\\bm{S_a})$ measure the diversity of intellectual and social capital. Numbers in parentheses indicate the share of attention dedicated to each research area during each time-period. Asterisks ($\\ast$) indicate physicists with a permanent position.",
  389. label=f"table:top_{args.metric}",
  390. position="H"
  391. )
  392. latex = latex.replace('EOL \\\\\n', '\\\\ \\hline\n')
  393. with open(opj(args.input, f"top_{args.metric}.tex"), "w+") as fp:
  394. fp.write(latex)
  395. latex = table.sort_values(f"{args.metric}_score", ascending=True).head(20).to_latex(
  396. columns=["bai", f"{args.metric}_score", "intellectual_entropy", "social_entropy", "origin_label", "target_label"],
  397. header=["Physicist", "$c_a$", "$D(\\bm{I_a})$", "$D(\\bm{S_a})$", "Previous main area", "Current main area"],
  398. index=False,
  399. multirow=True,
  400. multicolumn=True,
  401. column_format='p{0.15\\textwidth}|c|c|c|b{0.25\\textwidth}|b{0.25\\textwidth}',
  402. escape=False,
  403. float_format=lambda x: f"{x:.2f}",
  404. caption="Physicists with the lowest change scores $c_a$. $D(\\bm{I_a})$ and $D(\\bm{S_a})$ measure the diversity of intellectual and social capital. Numbers in parentheses indicate the share of attention dedicated to each research area. Asterisks ($\\ast$) indicate physicists with a permanent position.",
  405. label=f"table:low_{args.metric}",
  406. position="H"
  407. )
  408. latex = latex.replace('EOL \\\\\n', '\\\\ \\hline\n')
  409. with open(opj(args.input, f"low_{args.metric}.tex"), "w+") as fp:
  410. fp.write(latex)