123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890 |
- """Figure 3 plots, use run -i fig3.py"""
- mi = pd.MultiIndex.from_product([grtmseustrs, OPTOS], names=['mseu', 'opto'])
- columns = ['trialis', 'rates', 'blankrates', 'blankcondrates', # single trials
- 'burstratios', 'blankburstratios', 'blankcondburstratios', # single trials
- 'meanrate', 'blankmeanrate', 'blankcondmeanrate',
- 'meanburstratio', 'blankmeanburstratio', 'blankcondmeanburstratio',
- 'osi', 'oripref', 'f1f0',
- 'phi', 'bphi', 'nbphi', 'dphi', 'dbphi', 'dnbphi']
- fig3 = pd.DataFrame(index=mi, columns=columns) # excludes kind and st8
- # plot grating rasters for each unit by state and opto condition:
- showbursts = True
- if EXPTYPE == 'negntsrmvis':
- NTRIALSPERCONDITION = 8 # per stimi and opto combination
- inchespertrial = 1/20*RASTERSCALEX
- else:
- NTRIALSPERCONDITION = 10 # per stimi and opto combination
- inchespertrial = 1/25*RASTERSCALEX
- #outliers = ['PVCre_2018_0001_s02_e02_u36', 'PVCre_2018_0001_s02_e06_u36',
- # 'PVCre_2018_0001_s02_e02_u64', 'PVCre_2018_0001_s02_e06_u64']
- for mseustr in []:#grtmseu2exmpli: #grtmseustrs: #outliers:
- for st8 in ['none']:#ALLST8S:
- for opto in OPTOS:
- dt = grtresp.loc[mseustr, st8, opto]['dt']
- wdt = -OFFSETS[0] + dt + OFFSETS[1] # wide raster duration, sec
- tmin, tmax = 0 + OFFSETS[0], dt + OFFSETS[1]
- optotrange = grtresp.loc[mseustr, st8, opto]['optotrange']
- wraster = grtresp.loc[mseustr, st8, opto]['wraster']
- if np.any(pd.isna(wraster)): # no raster for this condition
- continue
- ntrials = len(wraster)
- title = '%s grating %s %s raster' % (mseustr, st8, opto)
- burstis = None
- if showbursts:
- wburstis = grtresp.loc[mseustr, st8, opto]['wburstis']
- a = simpletraster(raster=wraster, alpha=0.5, s=1, dt=dt, offsets=OFFSETS,
- scatter=True, # False: low quality, but fast
- title=title, inchespersec=1.5*RASTERSCALEX,
- inchespertrial=inchespertrial,
- xaxis=True, burstis=wburstis)
- if opto:
- # plot horizontal line signifying opto ON period, just above axes:
- ton, toff = optotrange
- a.hlines(-5, ton, toff, colors=optoblue, lw=4, clip_on=False,
- in_layout=False)
- # plot horizontal line signifying stimulus period, just above axes:
- a.hlines(-2, 0, dt, colors='k', lw=4, clip_on=False, in_layout=False)
- # plot vertical coloured line just right of axes
- #vlinexpos = dt + OFFSETS[1] + wdt*0.02
- #y0, y1 = a.get_ylim()
- #clr = st82clr[st8]
- #alpha = opto2alpha[opto]
- #a.vlines(vlinexpos, y0, y1, colors=clr, lw=4, alpha=alpha, clip_on=False,
- # in_layout=False)
- a.set_xlim(tmin, tmax)
- #a.set_xticks(range(0, intround(dt)+1)) # force integer 1 sec tick marks
- # force ticks on trial axis separating ori conditions:
- a.set_yticks(range(0, ntrials+1, NTRIALSPERCONDITION))
- # Plot grating tuning curves for example units. Requires a database connection.
- # Uses effectively same grey as 0.4 alpha for opto True condition:
- try:
- tun
- except:
- print("WARNING: Can't plot tuning curves without database connection")
- tun = None
- if tun is not None:
- for mseustr in grtmseu2exmpli: #grtmseustrs:#['Ntsr1Cre_2020_0001_s04_e04_u55']
- tunrow = (tun & {**mseustr2key(mseustr), 'st8_crit':'none'})
- if tunrow:
- tunrow.plot(cs=['k', optoblue])
- ## calculate cycle averages (i.e. grating PSTHs), F1/F0, and phi for all units:
- PLOTCYCPSTH = False
- CYCPSTHTHRESH = 10 # minimum cycle average peak, Hz
- F1F0THRESH = 0.25 # minimum grating modulation index
- # minimum ratio of suppression burst cycle average peak to suppression of all spikes
- # cycle average peak, at maxori:
- BURSTRATIOTHRESH = 0.1
- TESTPEAKS = 'both' # test peak amplitude of 'either' or 'both' cycle PSTH opto conditions
- ncyclesoffset = 0.25 # fraction of previous and next cycle to plot
- figsize = DEFAULTFIGURESIZE
- for st8 in ['none']:#ALLST8S:
- color = st82clr[st8]
- f1f0offs, f1f0ons = [], []
- phioffs, phions, bphioffs, bphions, nbphioffs, nbphions = [], [], [], [], [], []
- dphis, dbphis, dnbphis = [], [], []
- exmplis, exmplmseustrs, normlis = [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs: #['Ntsr1Cre_2020_0001_s04_e04_u12']
- cycpsths, cycbpsths, cycts = {}, {}, {} # indexed by ori and opto
- f1f0s, phis = {}, {} # indexed by ori and opto
- rasters = grtresp.loc[mseustr, st8]['raster']
- brasters = grtresp.loc[mseustr, st8]['braster']
- if rasters.isna().any():
- print('%s: missing one or both raster opto conditions, skipping' % mseustr)
- continue
- if brasters.isna().any():
- print('%s: missing one or both braster opto conditions, skipping' % mseustr)
- continue
- orisopto = grtresp.loc[mseustr, st8]['oris'] # sorted, correspond to rows in raster
- assert np.equal(*orisopto).all() # make sure oris are identical across opto
- # get oris from arbitrary condition, convert to int for use as dict keys:
- uoris = np.int64(np.unique(orisopto[False]))
- for ori in uoris:
- cycpsths[ori], cycbpsths[ori], cycts[ori] = {}, {}, {}
- f1f0s[ori], phis[ori] = {}, {}
- for opto in OPTOS:
- raster = rasters[opto]
- braster = brasters[opto]
- oris = orisopto[opto]
- dt = grtresp.loc[mseustr, st8, opto]['dt']
- tfreq = grtresp.loc[mseustr, st8, opto]['tfreq']
- cycdt = 1 / tfreq # cycle duration, s
- t0 = 0 + cycdt # exclude first cycle...
- t1 = dt # ...include up to end of last cycle
- offsets = np.array([-cycdt, cycdt]) * ncyclesoffset
- # to avoid edge effects of Guassian smoothing in raster2psth(), give it a wide
- # set of bins, and then slice out a slightly narrower (one bin width less at
- # each end) set of bins:
- wtrange = 0+offsets[0], cycdt+offsets[1] # wide (full) trange
- ntrange = wtrange[0]+binw, wtrange[1]-binw # narrow trange
- wcycbins = split_tranges([wtrange], binw, tres)
- ncycbins = split_tranges([ntrange], binw, tres)
- # find which rows in wcycbins correpond to those in ncycbins, based on the
- # start time of each bin:
- nbinis = wcycbins[:, 0].searchsorted(ncycbins[:, 0])
- orirowis = oris == ori
- rast = raster[orirowis] # raster restricted to rows corrsponding to ori
- brast = braster[orirowis]
- cycraster = wrap_raster(rast, t0, t1, cycdt, offsets=offsets)
- cycbraster = wrap_raster(brast, t0, t1, cycdt, offsets=offsets)
- f0, _ = raster2freqcomp(rast, dt, 0, mean='vector')
- f1, phi = raster2freqcomp(rast, dt, tfreq, mean='vector')
- if f0 == 0.0: # no spikes at all for this ori and opto combination
- f1f0s[ori][opto] = np.nan
- phis[ori][opto] = np.nan
- else:
- f1f0s[ori][opto] = f1 / f0
- phis[ori][opto] = np.angle(np.exp(1j*phi)) + pi # wrapped +ve angle, rad
- cycts[ori][opto] = ncycbins.mean(axis=1) # save narrow raster timepoints
- wrast = raster2psth(cycraster, wcycbins, binw, tres, kernel) # wide raster
- wbrast = raster2psth(cycbraster, wcycbins, binw, tres, kernel) # wide burst raster
- cycpsths[ori][opto] = wrast[nbinis] # slice down to narrow raster
- cycbpsths[ori][opto] = wbrast[nbinis]
- # find ori with max cycle average peak, across opto conditions:
- maxcycpsthvals = []
- for ori in uoris:
- maxcycpsthvals.append(max(cycpsths[ori][False].max(), cycpsths[ori][True].max()))
- maxcycpsthvali = np.argmax(maxcycpsthvals)
- maxori = uoris[maxcycpsthvali]
- if TESTPEAKS == 'either':
- # test for minimum PSTH peak height in at least one opto condition:
- maxcycpsthval = maxcycpsthvals[maxcycpsthvali]
- if maxcycpsthval < CYCPSTHTHRESH:
- continue # skip this mseu
- elif TESTPEAKS == 'both':
- # test for minimum PSTH peak height in both opto conditions:
- maxcycpsthoff = cycpsths[maxori][False].max()
- maxcycpsthon = cycpsths[maxori][True].max()
- if (np.array([maxcycpsthoff, maxcycpsthon]) < CYCPSTHTHRESH).any():
- continue # skip this mseu
- # test for minimum f1/f0 in at least one opto condition:
- maxf1f0atmaxori = max(f1f0s[maxori][False], f1f0s[maxori][True])
- if maxf1f0atmaxori < F1F0THRESH:
- continue # skip this mseu
- # collect f1f0 and phi values at maxori:
- f1f0off, f1f0on = f1f0s[maxori][False], f1f0s[maxori][True]
- f1f0offs.append(f1f0off)
- f1f0ons.append(f1f0on)
- phioff, phion = phis[maxori][False], phis[maxori][True]
- if EXPTYPE == 'pvmvis':
- # wrap some points:
- if (phioff < 60*pi/180) & (phion > 240*pi/180):
- phioff += 360*pi/180 # wrap point up over the y=x line
- elif (phioff > 340*pi/180) & (phion < 15*pi/180):
- phioff -= 360*pi/180 # wrap point down over the y=x line
- elif EXPTYPE == 'ntsrmvis':
- # wrap one point:
- if (phioff < 30*pi/180) & (phion > 340*pi/180):
- phioff += 360*pi/180 # wrap point up over the y=x line
- phioffs.append(phioff)
- phions.append(phion)
- fig3.loc[mseustr, 'phi'] = phioff*180/pi, phion*180/pi # save
- dphi = np.angle(np.exp(1j*phioff) / np.exp(1j*phion)) # phioff - phion
- dphis.append(dphi)
- if dphi < (-75*pi/180):
- print('OUTLIER: %s dphi=%g' % (mseustr, dphi))
- fig3.loc[mseustr, 'dphi'] = dphi*180/pi, dphi*180/pi # save, ignore opto field
- # collect phi of mseus that meet minimum ratio of suppression burst cycle average peak
- # to suppression all spikes cycle average peak, at maxori:
- cycbpsthmax, cycpsthmax = cycbpsths[maxori][True].max(), cycpsths[maxori][True].max()
- if cycpsthmax == 0.0:
- if cycbpsthmax == 0.0: # numerator and denominator are both 0
- suppburstratioatmaxori = 0.0
- else:
- suppburstratioatmaxori = np.inf
- else:
- suppburstratioatmaxori = cycbpsthmax / cycpsthmax
- # if suppression burst cycle average peak is big enough, treat is as a burst mseu,
- # otherwise treat it as a nonburst mseu:
- if suppburstratioatmaxori >= BURSTRATIOTHRESH:
- bphioffs.append(phioff)
- bphions.append(phion)
- fig3.loc[mseustr, 'bphi'] = phioff*180/pi, phion*180/pi # save
- dbphi = np.angle(np.exp(1j*phioff) / np.exp(1j*phion)) # bphioff - bphion
- dbphis.append(dbphi)
- fig3.loc[mseustr, 'dbphi'] = dbphi*180/pi, dbphi*180/pi # save, ignore opto field
- else:
- nbphioffs.append(phioff)
- nbphions.append(phion)
- fig3.loc[mseustr, 'nbphi'] = phioff*180/pi, phion*180/pi # save
- dnbphi = np.angle(np.exp(1j*phioff) / np.exp(1j*phion)) # nbphioff - nbphion
- dnbphis.append(dnbphi)
- fig3.loc[mseustr, 'dnbphi'] = dnbphi*180/pi, dnbphi*180/pi # save, ignore opto field
- ## plot maxori cycle average:
- if PLOTCYCPSTH:# and mseustr in grtmseu2exmpli:#['PVCre_2018_0003_s03_e02_u51']
- f, a = plt.subplots(figsize=(2, figsize[1]))
- title = ('%s %s PSTH maxori=%d offset=%g'
- % (mseustr, st8, maxori, ncyclesoffset))
- wintitle(title)
- for opto in OPTOS:
- c = desat(color, opto2alpha[opto]) # do manual alpha mixing
- bc = desat(burstclr, opto2alpha[opto]) # do manual alpha mixing
- fb = opto2fb[opto].title()
- if st8 == 'none':
- label = fb
- else:
- label = ', '.join([fb, st8.title()])
- cyct = cycts[maxori][opto]
- cycpsth = cycpsths[maxori][opto]
- cycbpsth = cycbpsths[maxori][opto]
- a.plot(cyct, cycpsth, '-', color=c, label=label)
- a.plot(cyct, cycbpsth, '-', color=bc, label=label+', Burst')
- a.axvline(x=0, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.axvline(x=cycdt, ls='--', marker='', color='lightgray', zorder=-np.inf)
- #l = a.legend(frameon=False)
- #l.set_draggable(True)
- a.set_xlabel('Time (s)')
- a.set_ylabel('Firing rate (spk/s)')
- a.set_xlim(cyct[0], cyct[-1])
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- keptmseui += 1 # manually increment
- f1f0offs, f1f0ons = np.asarray(f1f0offs), np.asarray(f1f0ons)
- phioffs, phions = np.asarray(phioffs), np.asarray(phions)
- bphioffs, bphions = np.asarray(bphioffs), np.asarray(bphions)
- nbphioffs, nbphions = np.asarray(nbphioffs), np.asarray(nbphions)
- dphis, dbphis, dnbphis = np.asarray(dphis), np.asarray(dbphis), np.asarray(dnbphis)
- ## scatter plot collected maxori f1f0s:
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto f1f0 maxori grating %s CYCPSTHTHRESH=%g F1F0THRESH=%g '
- 'TESTPEAKS=%s' % (st8, CYCPSTHTHRESH, F1F0THRESH, TESTPEAKS))
- # plot y=x line:
- linmin, linmax = 0, 2
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(f1f0ons[normlis], f1f0offs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(f1f0ons[exmpli], f1f0offs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression F1/F0')
- a.set_ylabel('Feedback F1/F0')
- #a.set_xscale('log', basex=2)
- #a.set_yscale('log', basey=2)
- #a.set_xlim(0.125, 2)
- #a.set_ylim(0.125, 2)
- #a.set_xticks([0.125, 0.25, 0.5, 1, 2])
- #a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- #axes_disable_scientific(a)
- a.set_xlim(linmin, linmax)
- a.set_ylim(linmin, linmax)
- a.set_xticks(np.arange(linmin, linmax+1))
- a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- a.minorticks_off()
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- t, p = ttest_rel(f1f0ons, f1f0offs) # paired t-test
- a.add_artist(AnchoredText('p$=$%.1g' % p, loc='upper left', frameon=False))
- ## scatter plot all collected maxori phis, regardless of burst classification:
- figsize = DEFAULTFIGURESIZE[0]*1.02, DEFAULTFIGURESIZE[1] # tweak to make space for labels
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto phi maxori grating %s CYCPSTHTHRESH=%g F1F0THRESH=%g '
- 'TESTPEAKS=%s' % (st8, CYCPSTHTHRESH, F1F0THRESH, TESTPEAKS))
- # plot y=x line:
- #linmin, linmax, linstep = -180, 180, 180
- linmin, linmax, linstep = 0, 360, 180
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(phions[normlis]*180/pi, phioffs[normlis]*180/pi, clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(phions[exmpli]*180/pi, phioffs[exmpli]*180/pi, clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression')# $\phi$ ($\degree$)')
- a.set_ylabel('Feedback')# $\phi$ ($\degree$)')
- a.set_xlim(linmin, linmax)
- a.set_ylim(linmin-10.5, linmax+52)
- a.set_xticks(np.arange(linmin, linmax+linstep, linstep))
- a.set_yticks(a.get_xticks()) # make y ticks the same as x ticks
- a.minorticks_off()
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- ## plot maxori delta phi PDF:
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto delta phi grating pdf %s BURSTRATIOTHRESH=%g' % (st8, BURSTRATIOTHRESH))
- phibins = np.arange(-180, 180+15, 15)
- a.hist(dnbphis*180/pi, bins=phibins, color='black', histtype='step') # non burst mseus
- a.hist(dbphis*180/pi, bins=phibins, color='red', histtype='step') # burst mseus
- #a.axvline(x=0, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.set_xlabel('$\Delta\phi=\phi_{\mathregular{fb}}-\phi_{\mathregular{sup}}$ ($\degree$)')
- a.set_ylabel('Unit count')
- a.set_xlim(-180, 180)
- a.set_xticks([-180, 0, 180])
- #p, k = kuiper(dnbphis, dbphis, axis=0) # test if dnbphis and dbphis are different
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='upper left', frameon=False))
- ## plot maxori delta phi CDF:
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto delta phi grating cdf %s BURSTRATIOTHRESH=%g' % (st8, BURSTRATIOTHRESH))
- # add extra max bin to prevent vertical line:
- dnbphibins = list(np.unique(dnbphis*180/pi)) + [180]
- a.hist(dnbphis*180/pi, bins=dnbphibins, density=True, cumulative=True, histtype='step',
- color='black') # non burst mseus
- dbphibins = list(np.unique(dbphis*180/pi)) + [180]
- a.hist(dbphis*180/pi, bins=dbphibins, density=True, cumulative=True, histtype='step',
- color='red') # non burst mseus
- a.axvline(x=0, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.set_xlabel('$\Delta\phi=\phi_{\mathregular{fb}}-\phi_{\mathregular{sup}}$ ($\degree$)')
- a.set_ylabel('Cumulative probability')
- a.set_xlim(-110, 110)
- #a.set_xticks([-180, 0, 180])
- a.set_yticks([0, 0.5, 1])
- nnbadv = (dnbphis > 0).sum() # non-bursting units whose phase advanced
- nnbtotal = len(dnbphis) # total number of non-bursting units
- pnb = scipy.stats.binom_test(nnbadv, nnbtotal) # test if nnbadv and nnbtotal are equal
- print('non-burst units that advanced: %d/%d, p_binom=%g' % (nnbadv, nnbtotal, pnb))
- nbadv = (dbphis > 0).sum() # bursting units whose phase advanced
- nbtotal = len(dbphis) # total number of bursting units
- pb = scipy.stats.binom_test(nbadv, nbtotal) # test if nbadv and nbtotal are equal
- print('burst units that advanced: %d/%d, p_binom=%g' % (nbadv, nbtotal, pb))
- # scatter plot grating meanrates:
- figsize = DEFAULTFIGURESIZE[0]*1.02, DEFAULTFIGURESIZE[1] # tweak to make space for log units
- logmin, logmax = -1.1, 2
- if EXPTYPE == 'ntsrmvis':
- logmin, logmax = -1.5, 2
- logticks = np.array([-1, 0, 1, 2])
- #log0min = logmin + 0.05
- for st8 in ['none']:#ALLST8S:
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto meanrate grating %s' % st8)
- rons, roffs, sgnfs, exmplis, exmplmseustrs, normlis = [], [], [], [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs:
- trialis = grtresp.loc[mseustr, st8]['trialis'] # non-blank & blank trialis
- if trialis.isna().any(): # missing for at least one opto condition
- continue
- ntrials = { opto:len(trialis[opto]) for opto in OPTOS } # should be equal
- ratesfull = pd.Series({ opto:np.full(ntrials[opto], np.nan) # pad
- for opto in [False, True] })
- meanrate = grtresp.loc[mseustr, st8]['meanrate']
- if meanrate.isna().any(): # missing for at least one opto condition, can't plot
- fig3.loc[mseustr][blnksname] = ratesfull # save nans for all trials
- continue
- rons.append(meanrate[True])
- roffs.append(meanrate[False])
- rates = grtresp.loc[mseustr, st8]['rates'] # trial-wise non-blank rates
- nnblnktrials = { opto:len(rates[opto]) for opto in OPTOS } # num non-blank trials
- for opto in OPTOS:
- ratesfull[opto][:nnblnktrials[opto]] = rates[opto]
- _, pval = ttest_ind(rates[False], rates[True], equal_var=False)
- sgnfs.append(pval < SCATTERPTHRESH) # bool
- fig3.loc[mseustr, 'meanrate'] = meanrate[False], meanrate[True] # save
- fig3.loc[mseustr]['trialis'] = trialis # save, for joining DataFrames trial-wise
- fig3.loc[mseustr]['rates'] = ratesfull # save padded trial-wise values
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- keptmseui += 1 # manually increment
- rons = np.asarray(rons)
- roffs = np.asarray(roffs)
- sgnfs = np.asarray(sgnfs)
- # plot y=x line:
- xyline = [10**logmin, 10**logmax], [10**logmin, 10**logmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- insgnfis, = np.where(sgnfs == False)
- sgnfis, = np.where(sgnfs == True)
- normlinsgnfis = np.intersect1d(normlis, insgnfis)
- normlsgnfis = np.intersect1d(normlis, sgnfis)
- nsgnabovediag = (roffs[sgnfis] > rons[sgnfis]).sum()
- nsgnbelowdiag = (roffs[sgnfis] < rons[sgnfis]).sum()
- print('npoints=%d, nsgnf=%d, ninsgnf=%d, nsgnabovediag=%d, nsgnbelowdiag=%d'
- % (len(sgnfs), len(sgnfis), len(insgnfis), nsgnabovediag, nsgnbelowdiag))
- if len(normlinsgnfis) > 0:
- # plot normal (non-example) insignificant points:
- c = desat(st82clr[st8], SGNF2ALPHA[False]) # do manual alpha mixing
- a.scatter(rons[normlinsgnfis], roffs[normlinsgnfis], clip_on=False,
- marker='.', c='None', edgecolor=c, s=DEFSZ)
- if len(normlsgnfis) > 0:
- # plot normal (non-example) significant points:
- c = desat(st82clr[st8], SGNF2ALPHA[True]) # do manual alpha mixing
- a.scatter(rons[normlsgnfis], roffs[normlsgnfis], clip_on=False,
- marker='.', c='None', edgecolor=c, s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(rons[exmpli], roffs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression')# FR (spk/s)')
- a.set_ylabel('Feedback')# FR (spk/s)')
- a.set_xscale('log')
- a.set_yscale('log')
- a.set_xlim(10**logmin, 10**logmax)
- a.set_ylim(10**logmin, 10**logmax)
- a.set_xticks(10.0**logticks)
- a.set_yticks(a.get_xticks()) # make log scale y ticks the same as x ticks
- a.minorticks_off()
- axes_disable_scientific(a)
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(rons, roffs) # paired t-test
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='lower right', frameon=False))
- #mu = rons.mean(), roffs.mean()
- #txt = '$\mathregular{\mu=%.1f, %.1f}$' % mu
- #a.add_artist(AnchoredText(txt, loc='upper left', frameon=False))
- # scatter plot grating burst ratio:
- figsize = DEFAULTFIGURESIZE[0]*1.04, DEFAULTFIGURESIZE[1] # tweak to make space for log units
- logmin, logmax = -3.55, 0
- if EXPTYPE == 'ntsrmvis':
- logmin, logmax = -3.83, 0
- logticks = np.array([-3, -2, -1, 0])
- for st8 in ['none']:#ALLST8S:
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto burst ratio grating %s' % st8)
- brons, broffs, sgnfs, exmplis, exmplmseustrs, normlis = [], [], [], [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs:
- trialis = grtresp.loc[mseustr, st8]['trialis'] # non-blank & blank trialis
- if trialis.isna().any(): # missing for at least one opto condition
- continue
- ntrials = { opto:len(trialis[opto]) for opto in OPTOS } # should be equal
- burstratiosfull = pd.Series({ opto:np.full(ntrials[opto], np.nan) # pad
- for opto in [False, True] })
- br = grtresp.loc[mseustr, st8]['meanburstratio']
- if br.isna().any(): # missing for at least one opto condition, can't plot
- fig3.loc[mseustr]['burstratios'] = burstratiosfull # save nans for all trials
- continue
- brons.append(br[True])
- broffs.append(br[False])
- burstratios = grtresp.loc[mseustr, st8]['burstratios'] # non-blank burst ratios
- nnblnktrials = { opto:len(burstratios[opto]) for opto in OPTOS } # num non-blank trials
- for opto in OPTOS:
- burstratiosfull[opto][:nnblnktrials[opto]] = burstratios[opto]
- _, pval = ttest_ind(burstratios[False], burstratios[True], equal_var=False)
- sgnfs.append(pval < SCATTERPTHRESH) # bool
- fig3.loc[mseustr, 'meanburstratio'] = br[False], br[True] # save
- fig3.loc[mseustr]['burstratios'] = burstratiosfull # save padded trial-wise values
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- keptmseui += 1 # manually increment
- brons, broffs = np.asarray(brons), np.asarray(broffs)
- sgnfs = np.asarray(sgnfs)
- # plot y=x line:
- xyline = [10**logmin, 10**logmax], [10**logmin, 10**logmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- insgnfis, = np.where(sgnfs == False)
- sgnfis, = np.where(sgnfs == True)
- normlinsgnfis = np.intersect1d(normlis, insgnfis)
- normlsgnfis = np.intersect1d(normlis, sgnfis)
- if len(normlinsgnfis) > 0:
- # plot normal (non-example) insignificant points:
- c = desat(st82clr[st8], SGNF2ALPHA[False]) # do manual alpha mixing
- a.scatter(brons[normlinsgnfis], broffs[normlinsgnfis], clip_on=True,
- marker='.', c='None', edgecolor=c, s=DEFSZ) # clip_on=False fails
- if len(normlsgnfis) > 0:
- # plot normal (non-example) significant points:
- c = desat(st82clr[st8], SGNF2ALPHA[True]) # do manual alpha mixing
- a.scatter(brons[normlsgnfis], broffs[normlsgnfis], clip_on=True,
- marker='.', c='None', edgecolor=c, s=DEFSZ) # clip_on=False fails
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(brons[exmpli], broffs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression')# BR') # keep it short to maximize space for axes
- a.set_ylabel('Feedback')# BR')
- a.set_xscale('log')
- a.set_yscale('log')
- a.set_xlim(10**logmin, 10**logmax)
- a.set_ylim(10**logmin, 10**logmax)
- a.set_xticks(10.0**logticks)
- a.set_yticks(a.get_xticks()) # make log scale y ticks the same as x ticks
- a.minorticks_off()
- axes_disable_scientific(a)
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(brons, broffs) # paired t-test
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='upper left', frameon=False))
- # scatter plot grating opto OSI, R2, and orientation preference:
- oris = np.arange(360) # get nice smooth model output in 1 deg steps
- OSITHRESH = 0.02 # minimum OSI required in both conditions to include in oripref scatter
- R2THRESH = 0.5 # minimum R2 tuning curve fit threshold to include in oripref scatter
- for st8 in ['none']:#ALLST8S:
- color = st82clr[st8]
- osioffs, osions, oproffs, oprons, R2offs, R2ons = [], [], [], [], [], []
- exmplis, exmplmseustrs, normlis, mseustrs = [], [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs:
- tunparams = grtresp.loc[mseustr, st8]['tun']
- tunrsqs = grtresp.loc[mseustr, st8]['tunrsq']
- if tunparams.isna().any(): # missing one or both tunparams
- print('%s: missing one or both opto conditions, skipping' % mseustr)
- continue
- offparams, onparams = tunparams[False], tunparams[True]
- # don't subtract spont (params[5]) - negative rates lead to OSI exceeding 1 a lot more:
- offrates = sum_of_gaussians(oris, *offparams[:5])# - offparams[5] # model output
- onrates = sum_of_gaussians(oris, *onparams[:5])# - onparams[5] # model output
- osioff, osion = vector_OSI(oris, offrates), vector_OSI(oris, onrates)
- osioffs.append(osioff)
- osions.append(osion)
- fig3.loc[mseustr, 'osi'] = osioff, osion # save
- if mseustr in grtmseu2exmpli: # print out OSI values for example units
- print('Example OSI %s, opto_on: %.3f, opto_off: %.3f' % (mseustr, osion, osioff))
- oproff, opron = offparams[0] % 180, onparams[0] % 180 # direction pref mod 180
- oproffs.append(oproff)
- oprons.append(opron)
- R2offs.append(tunrsqs[False])
- R2ons.append(tunrsqs[True])
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- mseustrs.append(mseustr)
- keptmseui += 1 # manually increment
- osioffs, osions = np.asarray(osioffs), np.asarray(osions)
- oproffs, oprons = np.asarray(oproffs), np.asarray(oprons)
- R2offs, R2ons = np.asarray(R2offs), np.asarray(R2ons)
- mseustrs = np.asarray(mseustrs)
- ## scatter plot OSI:
- figsize = DEFAULTFIGURESIZE[0]*1.02, DEFAULTFIGURESIZE[1] # tweak for log units
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto osi grating %s' % st8)
- logmin, logmax, logstep = -2.2, 0, 1
- logticks = np.array([-2, -1, 0])
- # plot y=x line:
- xyline = [10**logmin, 10**logmax], [10**logmin, 10**logmax]
- #xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(osions[normlis], osioffs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(osions[exmpli], osioffs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression')# OSI')
- a.set_ylabel('Feedback')# OSI')
- a.set_xscale('log')
- a.set_yscale('log')
- a.set_xlim(10**logmin, 10**logmax)
- a.set_ylim(10**logmin, 10**logmax)
- a.set_xticks(10.0**logticks)
- a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- a.minorticks_off()
- axes_disable_scientific(a)
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(osions, osioffs) # paired t-test
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='upper left', frameon=False))
- ## scatter plot R2:
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto R2 grating %s' % st8)
- linmin, linmax, linstep = 0, 1, 0.5
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points, coloring by state:
- a.scatter(R2ons[normlis], R2offs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(R2ons[exmpli], R2offs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel(r'Suppression $\mathregular{R^2}$')
- a.set_ylabel(r'Feedback $\mathregular{R^2}$')
- a.set_xlim(linmin, linmax)
- a.set_ylim(linmin, linmax)
- a.set_xticks(np.arange(linmin, linmax+linstep, linstep))
- a.set_yticks(a.get_xticks())
- a.minorticks_off()
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- t, p = ttest_rel(R2ons, R2offs) # paired t-test
- a.add_artist(AnchoredText('p$=$%.2g' % p, loc='lower right', frameon=False))
- ## scatter plot oripref:
- figsize = DEFAULTFIGURESIZE[0]*1.02, DEFAULTFIGURESIZE[1] # tweak tick labels
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto oripref grating %s OSITHRESH=%g R2THRESH=%g' % (st8, OSITHRESH, R2THRESH))
- linmin, linmax, linstep = 0, 180, 90
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- if EXPTYPE == 'pvmvis':
- # wrap some points:
- wrapis = (oproffs < 15) & (oprons > 175)
- assert wrapis.sum() == 2
- oproffs[wrapis] = oproffs[wrapis] + 180 # wrap 2 points up over the y=x line
- # plot only units whose OSI satisfies OSITHRESH and R2 satisfies R2THRESH,
- # get indices of units that are well-tuned and well-fit in both conditions:
- tunis, = np.where((osioffs >= OSITHRESH) & (osions >= OSITHRESH) &
- (R2offs >= R2THRESH) & (R2ons >= R2THRESH))
- normlis = np.intersect1d(tunis, normlis)
- exmplis = np.intersect1d(tunis, exmplis)
- for mseustr, oproff, opron in zip(mseustrs[tunis], oproffs[tunis], oprons[tunis]):
- fig3.loc[mseustr, 'oripref'] = oproff, opron # save
- # plot normal (non-example) points, coloring by state:
- a.scatter(oprons[normlis], oproffs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(oprons[exmpli], oproffs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel(r'Suppression')# $\theta$ ($\degree$)')
- a.set_ylabel(r'Feedback')# $\theta$ ($\degree$)')
- a.set_xlim(linmin, linmax)
- a.set_ylim(ymin=linmin)
- a.set_xticks(np.arange(linmin, linmax+linstep, linstep))
- a.set_yticks(a.get_xticks())
- a.minorticks_off()
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(oprons[tunis], oproffs[tunis]) # paired t-test
- #oriprefm, oriprefb, oriprefr, _, _ = linregress(oproffs[tunis], oprons[tunis])
- #oriprefrsq = oriprefr * oriprefr
- #txt = ('$\mathregular{R^2=}$%.2g\n'
- # '$\mathregular{p=}$%.2g' % (oriprefrsq, p))
- #a.add_artist(AnchoredText(txt, loc='upper left', frameon=False))
- ## plot OSI distributions, for choosing OSITHRESH:
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto osi grating pdf %s' % st8)
- osibins = np.logspace(-2, 0, 15)
- offclr, onclr = desat(color, opto2alpha[False]), desat(color, opto2alpha[True])
- a.hist(osioffs, bins=osibins, color=offclr, histtype='step')
- a.hist(osions, bins=osibins, color=onclr, histtype='step')
- a.axvline(x=OSITHRESH, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.set_xlabel('OSI')
- a.set_ylabel('Unit count')
- a.set_xscale('log')
- ## plot R2 distributions, for choosing R2THRESH:
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto R2 grating pdf %s' % st8)
- R2bins = np.linspace(0, 1, 11)
- a.hist(R2offs, bins=R2bins, color=offclr, histtype='step')
- a.hist(R2ons, bins=R2bins, color=onclr, histtype='step')
- a.axvline(x=R2THRESH, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.set_xlabel('Fit $\mathregular{R^2}$')
- a.set_ylabel('Unit count')
- # scatter plot grating opto mean f1 and f1/f0:
- logmin, logmax = -1, 2
- logticks = np.array([-1, 0, 1, 2])
- for st8 in ['none']:#ALLST8S:
- f1offs, f1ons, f1f0offs, f1f0ons, exmplis, exmplmseustrs, normlis = [], [], [], [], [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs:
- rasters = grtresp.loc[mseustr, st8]['raster']
- dt = grtresp.loc[mseustr, st8, False]['dt']
- tfreq = grtresp.loc[mseustr, st8, False]['tfreq']
- if rasters.isna().any(): # missing one or both rasters
- print('%s: missing one or both opto conditions, skipping' % mseustr)
- continue
- offraster, onraster = rasters[False], rasters[True]
- ## maybe consider std as well, to gauge significance of each f1f0 measure...
- f0off, _ = raster2freqcomp(offraster, dt, 0, mean='scalar')
- f1off, _ = raster2freqcomp(offraster, dt, tfreq, mean='scalar')
- f0on, _ = raster2freqcomp(onraster, dt, 0, mean='scalar')
- f1on, _ = raster2freqcomp(onraster, dt, tfreq, mean='scalar')
- f1f0off = f1off / f0off
- f1f0on = f1on / f0on
- f1offs.append(f1off)
- f1ons.append(f1on)
- f1f0offs.append(f1f0off)
- f1f0ons.append(f1f0on)
- fig3.loc[mseustr, 'f1f0'] = f1f0off, f1f0on # save
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- keptmseui += 1 # manually increment
- f1offs = np.asarray(f1offs)
- f1ons = np.asarray(f1ons)
- f1f0offs = np.asarray(f1f0offs)
- f1f0ons = np.asarray(f1f0ons)
- ## scatter plot mean f1:
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto mean f1 grating %s' % st8)
- # plot y=x line:
- xyline = [10**logmin, 10**logmax], [10**logmin, 10**logmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(f1ons[normlis], f1offs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(f1ons[exmpli], f1offs[exmpli], marker=marker, clip_on=False,
- c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression F1')
- a.set_ylabel('Feedback F1')
- a.set_xscale('log')
- a.set_yscale('log')
- a.set_xlim(10**logmin, 10**logmax)
- a.set_ylim(10**logmin, 10**logmax)
- a.set_xticks(10.0**logticks)
- a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- a.minorticks_off()
- axes_disable_scientific(a)
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(f1ons, f1offs) # paired t-test
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='lower right', frameon=False))
- ## scatter plot mean f1/f0
- figsize = DEFAULTFIGURESIZE
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto mean f1f0 grating %s' % st8)
- # plot y=x line:
- linmin, linmax = 0, 2
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(f1f0ons[normlis], f1f0offs[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(f1f0ons[exmpli], f1f0offs[exmpli], clip_on=False,
- marker=marker, c=c, s=sz, lw=lw)
- a.set_xlabel('Suppression')# F1/F0')
- a.set_ylabel('Feedback')# F1/F0')
- #a.set_xscale('log', basex=2)
- #a.set_yscale('log', basey=2)
- #a.set_xlim(0.125, 2)
- #a.set_ylim(0.125, 2)
- #a.set_xticks([0.125, 0.25, 0.5, 1, 2])
- #a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- #axes_disable_scientific(a)
- a.set_xlim(linmin, linmax)
- a.set_ylim(linmin, linmax)
- a.set_xticks(np.arange(linmin, linmax+1))
- a.set_yticks(a.get_xticks()) # make scale y ticks the same as x ticks
- a.minorticks_off()
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
- #t, p = ttest_rel(f1f0ons, f1f0offs) # paired t-test
- #a.add_artist(AnchoredText('p$=$%.2g' % p, loc='upper left', frameon=False))
- # fig4S1a: scatter plot grating meanburstratio FMI vs meanrate FMI:
- figsize = DEFAULTFIGURESIZE[0]*0.95, DEFAULTFIGURESIZE[1] # tweak to match others in 4S1
- linmin, linmax, linstep = -1, 1, 1
- ticks = np.arange(linmin, linmax+linstep, linstep)
- for st8 in ['none']:#ALLST8S:
- for measure in ['meanburstratio']:
- if measure.startswith('meanrate'):
- continue # don't bother plotting meanrate* against meanrate
- axislabel = measure2axislabel[measure]
- rfmis, msrfmis = [], []
- exmplis, exmplmseustrs, normlis = [], [], []
- keptmseui = 0 # manually init and increment instead of using enumerate()
- for mseustr in grtmseustrs:
- rfmi = grtFMI.loc[mseustr, st8]['meanrate']
- msrfmi = grtFMI.loc[mseustr, st8][measure]
- if pd.isna(rfmi) or pd.isna(msrfmi): # missing at least one FMI value
- continue
- rfmis.append(rfmi)
- msrfmis.append(msrfmi)
- if mseustr in grtmseu2exmpli:
- exmplis.append(keptmseui)
- exmplmseustrs.append(mseustr)
- else:
- normlis.append(keptmseui)
- keptmseui += 1 # manually increment
- rfmis, msrfmis = np.asarray(rfmis), np.asarray(msrfmis)
- ## scatter plot FMIs:
- f, a = plt.subplots(figsize=figsize)
- wintitle('opto FMI %s vs FMI rate %s' % (measure, st8))
- # plot x=0 and y=0 lines:
- a.axhline(y=0, ls='--', marker='', color='lightgray', zorder=-np.inf)
- a.axvline(x=0, ls='--', marker='', color='lightgray', zorder=-np.inf)
- # plot y=x line:
- xyline = [linmin, linmax], [linmin, linmax]
- a.plot(xyline[0], xyline[1], '--', color='gray', zorder=-1)
- # plot normal (non-example) points:
- a.scatter(rfmis[normlis], msrfmis[normlis], clip_on=False,
- marker='.', c='None', edgecolor=st82clr[st8], s=DEFSZ)
- # plot example points, one at a time:
- for exmpli, mseustr in zip(exmplis, exmplmseustrs):
- marker = exmpli2mrk[grtmseu2exmpli[mseustr]]
- c = exmpli2clr[grtmseu2exmpli[mseustr]]
- sz = exmpli2sz[grtmseu2exmpli[mseustr]]
- lw = exmpli2lw[grtmseu2exmpli[mseustr]]
- a.scatter(rfmis[exmpli], msrfmis[exmpli], marker=marker, c=c, s=sz, lw=lw)
- #mm, b, rr, p, stderr = linregress(rfmis, msrfmis)
- #rsq = rr * rr
- #x = np.array([rfmis.min(), rfmis.max()])
- #y = mm * x + b
- #txt = ('$\mathregular{R^{2}=%.2g}$' % rsq)
- #a.add_artist(AnchoredText(txt, loc='upper left', frameon=False))
- #a.plot(x, y, '-', color='red') # plot linregress fit
- a.set_xlabel('Firing rate FMI')
- if axislabel.islower():
- axislabel = axislabel.capitalize()
- ylabel = '%s FMI' % axislabel
- a.set_ylabel(ylabel)
- a.set_xlim(linmin, linmax)
- a.set_ylim(linmin, linmax)
- a.set_xticks(ticks)
- a.set_yticks(ticks)
- a.set_aspect('equal')
- a.spines['left'].set_position(('outward', 4))
- a.spines['bottom'].set_position(('outward', 4))
|