Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

Repo to store all downstream data for PEDLR.

Christoph Koch 51379532ac Figure updates tif ignore 6 月之前
.datalad a3c52f4328 [DATALAD] new dataset 1 年之前
analysis e68149af61 plos_review update 6 月之前
figures 51379532ac Figure updates tif ignore 6 月之前
model_fitting 1c2b831831 Add uncertainty to model data output 6 月之前
parameter_recovery e68149af61 plos_review update 6 月之前
plos_review_01 5415b4d6aa Update review recovery plots 6 月之前
posterior_pred_checks e68149af61 plos_review update 6 月之前
simulation 62b9e5f16d Add updated simulation data for surprise, seplr, uncertainty 6 月之前
.gitattributes ce0657b272 Make sure README.md and LICENSE are not annexed 1 年之前
.gitignore 51379532ac Figure updates tif ignore 6 月之前
LICENSE d811f242b1 Changed license file to CC-BY 6 月之前
README.md 2ee16acf90 Updated readme on plos branch 6 月之前

README.md

pedlr-derivatives

Derivative data for the pedlr project by Christoph Koch, Ondrej Zika, Rasmus Bruckner, and Nicolas W. Schuck. This data set contains all downstream data files that originated from the analysis of the pedlr source dataset (https://doi.org/10.12751/g-node.9gm3lt) using the referenced analysis repository (https://doi.org/10.5281/zenodo.10211239) and described in Koch, C., Zika, O., Bruckner, R., & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. (https://doi.org/10.31234/osf.io/unx5y). The derivatives include all results that were reported in the cited pre-print.

For a description of the repositories structure see a commented folder structure below.

Datalad

This is a datalad repository. For more information on how to use and set up datalad on your machine please see https://www.datalad.org/.

A thorough walkthrough on how to use datalad is given by the datalad handbook. See the installation page in the datalad handbook for more information about setup and configuration of datalad.

Usage

Once you have datalad installed on your machine you can clone the dataset (e.g. via https) using

datalad clone https://gin.g-node.org/koch_means_cook/pedlr-derivatives.git

For in integrated usage with the analysis described in the referenced preprint (Koch, C., Zika, O., Bruckner, R., & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. https://doi.org/10.31234/osf.io/unx5y) clone the Github code repository (doi:10.5281/zenodo.10211239), then clone this datalad repository into the code repository and rename the datalad repository folder to derivatives. This will allow the analysis scripts to directly use this dataset.

Large files will not be downloaded automatically. To get them, you can use

datalad get <filename>

Large files that have been downloaded will be 'locked' and therefore read-only. If you wish to write you will need to unlock them using

datalad unlock <filename>

For more information on locked/unlocked files see here.

Data set structure

├── LICENSE   # License file (CC BY-SA 4.0)
├── README.md # This file
├── analysis  # Dir containing .html files of analysis notebooks
│   ├── data_quality.html   # Data quality assessment
│   ├── demographic.html    # Demographics summary
│   ├── results_01.html     # Main results (behavior)
│   ├── results_02.html     # Main results (modeling)
│   └── (...)
├── figures                 # Dir holding figures .pdf and data
│   └── (...)
├── model_fitting           # Dir holding data for model fitting
│   ├── fit-09RI1ZH_sv-random.tsv   # Example file: fit of all models to choice data (random starting-values)
│   ├── (...)
│   ├── modeldata-09RI1ZH_sv-random.tsv   # Example file: Model choice proabability for each trial (random starting-values)
│   └── (...)
├── parameter_recovery      # Dir holding analysis and data of model and parameter recovery
│   ├── analysis_model_recov.html  # Results model recovery
│   ├── analysis_param_recov.html  # Results parameter recovery
│   ├── modelrecov_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Fit of all models on data simulated by specified model (random parameters, fixed regression betas, random starting-values)
│   ├── (...)
│   ├── paramrecov_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Parameter recovery of all models on data simulated by specified model (random parameters, fixed regression betas, random starting-values)
│   ├── (...)
│   ├── recovdata_base-09RI1ZH_model-rw_randips-TRUE_randbetas-FALSE_randsvs-TRUE_principle-TRUE.tsv # Example file: Trialwise information on recovery (random parameters, fixed regression betas, random starting-values)
│   └── (...)
├── posterior_pred_checks             # Dir holding analysis and data of posterior predictive checks
│   ├── analysis_posterior_pred_checks.html    # Analysis notbook of post. pred. checks
│   ├── postpred-09RI1ZH_model-rw.tsv          # Data for post. pred. check for specified model
│   ├── (...)
│   ├── windowrizepred-09RI1ZH.tsv   # Data for post. pred. check (influence of surprise) for spec. model
│   └── (...)
└── simulation
    └── (...)