Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

outputfigurerescueIII_stats.txt 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. [1] "speed"
  2. Component 1 :
  3. Df Sum Sq Mean Sq F value Pr(>F)
  4. data$group 3 763.19 254.396 25.949 4.404e-12 ***
  5. Residuals 87 852.92 9.804
  6. ---
  7. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  8. Tukey multiple comparisons of means
  9. 95% family-wise confidence level
  10. Fit: aov(formula = data$median_speed ~ data$group)
  11. $`data$group`
  12. diff lwr upr p adj
  13. Control_actin2-Control_actin1 -6.6750135 -9.0935098 -4.256517 0.0000000
  14. Control_actin3 -Control_actin1 -4.6679652 -7.1137900 -2.222140 0.0000174
  15. Experimental_actin-Control_actin1 -0.1541438 -2.5726401 2.264353 0.9983325
  16. Control_actin3 -Control_actin2 2.0070483 -0.4387766 4.452873 0.1458660
  17. Experimental_actin-Control_actin2 6.5208697 4.1023734 8.939366 0.0000000
  18. Experimental_actin-Control_actin3 4.5138214 2.0679966 6.959646 0.0000335
  19. [1] "angledev"
  20. Pairwise comparisons using Wilcoxon rank sum exact test
  21. data: data$stripe_deviation and data$group
  22. Control_actin1 Control_actin2 Control_actin3
  23. Control_actin2 5.8e-12 - -
  24. Control_actin3 0.00016 9.5e-05 -
  25. Experimental_actin 0.01064 4.3e-05 1.00000
  26. P value adjustment method: bonferroni
  27. [1] "speed"
  28. Component 1 :
  29. Df Sum Sq Mean Sq F value Pr(>F)
  30. data$group 3 502.60 167.53 13.119 5.454e-07 ***
  31. Residuals 76 970.54 12.77
  32. ---
  33. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  34. Tukey multiple comparisons of means
  35. 95% family-wise confidence level
  36. Fit: aov(formula = data$median_speed ~ data$group)
  37. $`data$group`
  38. diff lwr upr p adj
  39. Control2_nsyb-Control1_nsyb -3.1700277 -6.1384564 -0.2015991 0.0317212
  40. Control3_nsyb-Control1_nsyb -0.9424625 -3.9108912 2.0259661 0.8381294
  41. Experimental_nsyb-Control1_nsyb 3.7711940 0.8027653 6.7396226 0.0070397
  42. Control3_nsyb-Control2_nsyb 2.2275652 -0.7408635 5.1959938 0.2079812
  43. Experimental_nsyb-Control2_nsyb 6.9412217 3.9727930 9.9096503 0.0000002
  44. Experimental_nsyb-Control3_nsyb 4.7136565 1.7452278 7.6820851 0.0004552
  45. [1] "angledev"
  46. Pairwise comparisons using Wilcoxon rank sum exact test
  47. data: data$stripe_deviation and data$group
  48. Control1_nsyb Control2_nsyb Control3_nsyb
  49. Control2_nsyb 8.0e-07 - -
  50. Control3_nsyb 0.31 1.4e-05 -
  51. Experimental_nsyb 0.16 4.5e-06 1.00
  52. P value adjustment method: bonferroni
  53. [1] "speed"
  54. Component 1 :
  55. Df Sum Sq Mean Sq F value Pr(>F)
  56. data$group 3 430.67 143.558 9.6774 7.149e-06 ***
  57. Residuals 148 2195.48 14.834
  58. ---
  59. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  60. Tukey multiple comparisons of means
  61. 95% family-wise confidence level
  62. Fit: aov(formula = data$median_speed ~ data$group)
  63. $`data$group`
  64. diff lwr upr p adj
  65. control2_tdc1-control1_tdc1 -4.7811273 -7.09754415 -2.4647104 0.0000018
  66. Control3_tdc1-control1_tdc1 -2.5504128 -4.91024689 -0.1905787 0.0285960
  67. Experimental_tdc1-control1_tdc1 -2.9170876 -5.23350450 -0.6006707 0.0071914
  68. Control3_tdc1-control2_tdc1 2.2307145 -0.05206843 4.5134974 0.0580936
  69. Experimental_tdc1-control2_tdc1 1.8640397 -0.37383166 4.1019110 0.1381025
  70. Experimental_tdc1-Control3_tdc1 -0.3666748 -2.64945772 1.9161081 0.9754320
  71. [1] "angledev"
  72. Pairwise comparisons using Wilcoxon rank sum exact test
  73. data: data$stripe_deviation and data$group
  74. control1_tdc1 control2_tdc1 Control3_tdc1
  75. control2_tdc1 9.0e-14 - -
  76. Control3_tdc1 0.0029 2.7e-09 -
  77. Experimental_tdc1 1.0000 3.0e-14 0.0123
  78. P value adjustment method: bonferroni
  79. [1] "speed"
  80. Component 1 :
  81. Df Sum Sq Mean Sq F value Pr(>F)
  82. data$group 3 151.26 50.421 6.4778 0.0006382 ***
  83. Residuals 68 529.29 7.784
  84. ---
  85. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  86. Tukey multiple comparisons of means
  87. 95% family-wise confidence level
  88. Fit: aov(formula = data$median_speed ~ data$group)
  89. $`data$group`
  90. diff lwr upr p adj
  91. control2_tdc2-control1_tdc2 0.1060279 -2.2479530 2.460009 0.9993971
  92. control3_tdc2-control1_tdc2 -0.6010208 -3.3104377 2.108396 0.9365084
  93. Experimental_tdc2-control1_tdc2 3.0460583 0.7195427 5.372574 0.0052574
  94. control3_tdc2-control2_tdc2 -0.7070487 -3.3901173 1.976020 0.8990273
  95. Experimental_tdc2-control2_tdc2 2.9400304 0.6442534 5.235807 0.0066048
  96. Experimental_tdc2-control3_tdc2 3.6470791 0.9880743 6.306084 0.0031623
  97. [1] "angledev"
  98. Pairwise comparisons using Wilcoxon rank sum exact test
  99. data: data$stripe_deviation and data$group
  100. control1_tdc2 control2_tdc2 control3_tdc2
  101. control2_tdc2 3.3e-09 - -
  102. control3_tdc2 0.00109 0.00036 -
  103. Experimental_tdc2 1.7e-06 6.5e-07 1.00000
  104. P value adjustment method: bonferroni
  105. [1] "speed"
  106. Component 1 :
  107. Df Sum Sq Mean Sq F value Pr(>F)
  108. data$group 3 662.4 220.801 13.405 3.59e-07 ***
  109. Residuals 80 1317.7 16.471
  110. ---
  111. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  112. Tukey multiple comparisons of means
  113. 95% family-wise confidence level
  114. Fit: aov(formula = data$median_speed ~ data$group)
  115. $`data$group`
  116. diff lwr upr p adj
  117. control2_np7088-control1_np7088 -6.3940148 -9.680326 -3.107704 0.0000129
  118. control3_np7088-control1_np7088 -5.9551877 -9.241499 -2.668877 0.0000505
  119. Experimental_np7088-control1_np7088 -1.2810092 -4.567320 2.005302 0.7366318
  120. control3_np7088-control2_np7088 0.4388272 -2.847484 3.725138 0.9851304
  121. Experimental_np7088-control2_np7088 5.1130056 1.826695 8.399316 0.0005978
  122. Experimental_np7088-control3_np7088 4.6741784 1.387868 7.960489 0.0019721
  123. [1] "angledev"
  124. Pairwise comparisons using Wilcoxon rank sum exact test
  125. data: data$stripe_deviation and data$group
  126. control1_np7088 control2_np7088 control3_np7088
  127. control2_np7088 8.9e-11 - -
  128. control3_np7088 0.4688 0.0015 -
  129. Experimental_np7088 1.0000 1.8e-05 1.0000
  130. P value adjustment method: bonferroni