In this repository we provide a partial hand-labelled ground-truth
eye movment annotation of the large Hollywood2 data set [1].
ALGORITHM EVALUATION
Below we provide preliminary evaluation results for some popular eye movement
classification algorithms. The reported F1 scores are computed through the
quality evaluation functionality of the sp_tool [2].
|
|
Sample F1 |
Sample F1 |
Sample F1 |
Event F1 |
Event F1 |
Event F1 |
Model |
average F1 |
Fixation |
Saccade |
SP |
Fixation |
Saccade |
SP |
1D CNN-BLSTM: speed + direction |
0.787 |
0.872 |
0.827 |
0.680 |
0.808 |
0.946 |
0.588 |
sp_tool smoothed |
0.755 |
0.853 |
0.816 |
0.617 |
0.820 |
0.905 |
0.516 |
REMoDNaV [3] |
0.748 |
0.779 |
0.755 |
0.622 |
0.784 |
0.931 |
0.615 |
sp_tool [2] |
0.703 |
0.819 |
0.815 |
0.616 |
0.587 |
0.900 |
0.483 |
(Dorr et al. 2010) [4] |
0.685 |
0.832 |
0.796 |
0.373 |
0.821 |
0.884 |
0.403 |
(Larsson et al. 2015) [5] |
0.647 |
0.796 |
0.803 |
0.317 |
0.807 |
0.886 |
0.274 |
(Berg et al. 2009) [6] |
0.601 |
0.824 |
0.729 |
0.137 |
0.845 |
0.826 |
0.243 |
I-VMP |
0.564 |
0.726 |
0.688 |
0.564 |
0.503 |
0.563 |
0.338 |
I-KF |
0.523 |
0.816 |
0.770 |
0.000 |
0.748 |
0.803 |
0.000 |
I-VDT |
0.504 |
0.813 |
0.700 |
0.136 |
0.557 |
0.559 |
0.263 |
I-HMM |
0.480 |
0.811 |
0.720 |
0.000 |
0.646 |
0.700 |
0.000 |
I-DT |
0.473 |
0.803 |
0.486 |
0.000 |
0.744 |
0.802 |
0.000 |
I-VT |
0.432 |
0.810 |
0.705 |
0.000 |
0.520 |
0.555 |
0.000 |
I-VVT |
0.390 |
0.751 |
0.705 |
0.247 |
0.061 |
0.555 |
0.023 |
I-MST |
0.385 |
0.793 |
0.349 |
0.000 |
0.590 |
0.576 |
0.000 |
REFERENCES
[1] Mathe, S., & Sminchisescu, C. (2012, October). Dynamic eye movement datasets and learnt saliency models for visual action recognition. In European Conference on Computer Vision (pp. 842-856). Springer, Berlin, Heidelberg.
[2] Startsev, M., & Agtzidis, I, & Dorr, M. (2019). Characterising and Automatically Detecting Smooth Pursuit in a Large-Scale Ground-Truth Data Set of Dynamic Natural Scenes. Journal of Vision
[3] Dar, A. H., Wagner, A. S., & Hanke, M. (2019). REMoDNaV: Robust Eye Movement Detection for Natural Viewing. BioRxiv, 619254.
[4] Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of vision, 10(10), 28-28.
[5] Larsson, L., Nyström, M., Andersson, R., & Stridh, M. (2015). Detection of fixations and smooth pursuit movements in high-speed eye-tracking data. Biomedical Signal Processing and Control, 18, 145-152.
[6] Berg, D. J., Boehnke, S. E., Marino, R. A., Munoz, D. P., & Itti, L. (2009). Free viewing of dynamic stimuli by humans and monkeys. Journal of vision, 9(5), 19-19.